1
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Delkhosh A, Shabani F, Delashoub M. Experimental accelerating testicular tissue recovery post-methotrexate treatment in rats: A promising role of Sertoli cell-conditioned medium: An experimental study. Int J Reprod Biomed 2024; 22:295-304. [PMID: 39035631 PMCID: PMC11255466 DOI: 10.18502/ijrm.v22i4.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 07/23/2024] Open
Abstract
Background Methotrexate (MET) is one of the most important chemotherapy agents used against various tumors and cancer diseases. One of the critical side effects of MET is inducing male infertility. Objective The current study aimed to investigate Sertoli cell culture-conditioned medium (SCM) recovery effects on MET-induced conditions in rats. Materials and Methods 30 mature male Wistar rats were randomly divided into 3 groups (n = 10). In the first group, rats received normal saline intraperitoneally. In the second group, animals received MET (10 mg/kg; intraperitoneally) once a week for 2 wk. The rats in the third group (MET+SCM) received MET and a single injection of SCM for 56 days post-MET administration. 56 days later, serum, epididymis, and testicular tissue samples were collected, and the animals were euthanized. Sperm parameters, serum levels of luteinizing hormone, follicle-stimulating hormone, and testosterone were examined. The testicular tissues were stained using hematoxylin and eosin solution, and histopathological changes were analyzed. Results The MET-induced condition resulted in significant pathological changes in the testis, decreased hormone levels, and downregulated sperm parameters. However, SCM injection improved hormonal levels, testicular changes, and sperm parameters. Conclusion It can be concluded that a single intra-testicular SCM injection accelerates male reproductive system recovery post-MET treatment.
Collapse
Affiliation(s)
| | - Fatemeh Shabani
- Midwifery Department, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Delashoub
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
- Department of Basic Sciences, Biotechnology Research Centre, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
3
|
Li T, Jiang L, Zheng S, Qiu C, Zhao N, Lin X, Ren H, Huang J, Wang H, Qiu L. Organic anion transporting polypeptide 3a1 is a novel influx pump for Perfluorooctane sulfonate in Sertoli cells and contributes to its reproductive toxicity. CHEMOSPHERE 2023; 345:140428. [PMID: 37858765 DOI: 10.1016/j.chemosphere.2023.140428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Persistent organic pollutant perfluorooctane sulfonate (PFOS) is strongly associated with male reproductive disorders, but the related mechanisms are still not fully understood. In this study, we used in vivo and in vitro models to explore the role of organic anion transporting polypeptide 3a1 (Oatp3a1) on PFOS-induced male reproductive injury. Thirty male C57BL/6 (B6) mice were orally given PFOS (0-10 mg/kg/bw) for 28 days. Body weight, organ index, sperm count, histology, and blood-testis barrier (BTB) integrity were evaluated. Primary Sertoli cells were used to describe the related molecular mechanisms of male reproductive injury caused by PFOS. Our results showed that PFOS induced a decrease in sperm count, morphological damage to testicular Sertoli cells, and disruption of BTB. In the in vitro model, exposure to PFOS significantly increased Oatp3a1 mRNA and protein levels and decreased miR-23a-3p expression in Sertoli cells, accompanied by reduced trans-epithelial electrical resistance (TEER) value. By performing the 14C-PFOS uptake experiment, we showed that 14C-PFOS uptake in HEK293-Oatp3a1 cells was apparently higher than in HEK293-MOCK cells. Meanwhile, treating Sertoli cells with Oatp3a1 siRNA significantly decreased Oatp3a1 expression and rescued PFOS-induced decreases in TEER value. As such, the present study highlights that Oatp3a1 may play an important role in the toxic effect of PFOS on Sertoli cells, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd., Nantong, 226001, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
4
|
O’Donnell L, Dagley LF, Curley M, Darbey A, O’Shaughnessy PJ, Diemer T, Pilatz A, Fietz D, Stanton PG, Smith LB, Rebourcet D. Sertoli cell-enriched proteins in mouse and human testicular interstitial fluid. PLoS One 2023; 18:e0290846. [PMID: 37656709 PMCID: PMC10473511 DOI: 10.1371/journal.pone.0290846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sertoli cells support the development of sperm and the function of various somatic cells in the interstitium between the tubules. Sertoli cells regulate the function of the testicular vasculature and the development and function of the Leydig cells that produce testosterone for fertility and virility. However, the Sertoli cell-derived factors that regulate these cells are largely unknown. To define potential mechanisms by which Sertoli cells could support testicular somatic cell function, we aimed to identify Sertoli cell-enriched proteins in the testicular interstitial fluid (TIF) between the tubules. We previously resolved the proteome of TIF in mice and humans and have shown it to be a rich source of seminiferous tubule-derived proteins. In the current study, we designed bioinformatic strategies to interrogate relevant proteomic and genomic datasets to identify Sertoli cell-enriched proteins in mouse and human TIF. We analysed proteins in mouse TIF that were significantly reduced after one week of acute Sertoli cell ablation in vivo and validated which of these are likely to arise primarily from Sertoli cells based on relevant mouse testis RNASeq datasets. We used a different, but complementary, approach to identify Sertoli cell-enriched proteins in human TIF, taking advantage of high-quality human testis genomic, proteomic and immunohistochemical datasets. We identified a total of 47 and 40 Sertoli cell-enriched proteins in mouse and human TIF, respectively, including 15 proteins that are conserved in both species. Proteins with potential roles in angiogenesis, the regulation of Leydig cells or steroidogenesis, and immune cell regulation were identified. The data suggests that some of these proteins are secreted, but that Sertoli cells also deposit specific proteins into TIF via the release of extracellular vesicles. In conclusion, we have identified novel Sertoli cell-enriched proteins in TIF that are candidates for regulating somatic cell-cell communication and testis function.
Collapse
Affiliation(s)
- Liza O’Donnell
- Griffith University, Parklands Drive, Southport, Queensland, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| | - Laura F. Dagley
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Little France Crescent, Edinburgh, United Kingdom
| | - Annalucia Darbey
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Peter J. O’Shaughnessy
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, United Kingdom
| | - Thorsten Diemer
- Medical Faculty, Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Adrian Pilatz
- Medical Faculty, Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Peter G. Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| | - Lee B. Smith
- Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
5
|
Huang IS, Li LH, Chen WJ, Huang EYH, Juan CC, Huang WJ. Proteomic Analysis of Testicular Interstitial Fluid in Men with Azoospermia. EUR UROL SUPPL 2023; 54:88-96. [PMID: 37545847 PMCID: PMC10403685 DOI: 10.1016/j.euros.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
Background The primary microenvironment of the testis comprises testicular interstitial fluid (TIF) surrounding the seminiferous tubules and testicular interstitial tissue. The pathological alterations of germ and Sertoli cells could affect the TIF composition and might contain putative biomarkers for monitoring active spermatogenesis. Objective We identified differentially expressed proteins in the TIF of patients with obstructive (OA) or nonobstructive (NOA) azoospermia to elucidate the underlying etiology of defective spermatogenesis. Design setting and participants We prospectively enrolled nine patients, including three men with OA and six with NOA with (n = 3) and without (n = 3) successful sperm retrieval. Their TIF was collected during the testicular sperm extraction procedure. Outcome measurements and statistical analysis TIF was analyzed using liquid chromatography-tandem mass spectrometry to identify differentially expressed proteins specific to OA and NOA with or without successful sperm retrieval. The dysregulated protein was further validated using Western blotting. Results and limitations Among the 555 TIF proteins identified in NOA patients, 14 were downregulated relative to OA patients. These proteins participate in biological processes such as proteolysis, complement activation, and immune responses; complement and coagulation cascade pathways were also enriched. Furthermore, 68 proteins with significantly higher levels were identified in the TIF of NOA patients with successful sperm retrieval than in those with failed sperm retrieval; these are mainly implicated in oxidation-reduction processes. The expression of calreticulin, which can distinguish successful and failed testicular sperm retrieval in the NOA group, was validated by Western blotting. Conclusions We provide the first scientific evaluation of TIF protein composition in men with azoospermia. These findings will help identify the physiological and pathological roles of each protein in regulating sperm production. Thus, our study underscores the potential of TIF in sperm retrieval biomarker discovery and would serve as a foundation for further studies to improve treatment strategies against azoospermia. Patient summary Using a proteomic approach, we identified and analyzed the total protein content of testicular interstitial fluid in humans with defective spermatogenesis for the first time and discovered altered protein expression patterns in patients with nonobstructive azoospermia (NOA). Proteins related to oxidation-reduction processes were upregulated in NOA patients with successful sperm retrieval compared with those with failed sperm retrieval. This can aid the development of novel diagnostic tools for successful testicular sperm retrieval.
Collapse
Affiliation(s)
- I-Shen Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Eric Yi-Hsiu Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - William J. Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Navanukraw P, Chotimanukul S, Kemthong T, Choowongkomon K, Chatdarong K. Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques ( Macaca fascicularis). Animals (Basel) 2023; 13:2282. [PMID: 37508065 PMCID: PMC10376863 DOI: 10.3390/ani13142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
FSHr antibodies have been shown to inhibit the differentiation of spermatogonia to primary spermatocytes, resulting in infertility without a pathological effect on reproductive organs. The aim of this study was to develop single-chain variable fragments (scFvs) against the follicular-stimulating hormone receptor (anti-FSHr) using phage-display technology and to evaluate the effects of intratesticular administration of the anti-FSHr scFv on testicular function and testosterone production. A phage clone against the extracellular domain of FSHr selected from a scFv phagemid library was analyzed for binding kinetics by surface plasmon resonance. Using ultrasound guidance, three adult macaques (M. fascicularis) were administered with 1 mL of 0.4 mg/mL anti-FSHr scFv (treatment) and 1 mL sterile phosphate buffer solution (control) into the left and right rete testis, respectively. Testicular appearance and volume, ejaculate quality, and serum testosterone levels were recorded on day 0 (before injection) and on days 7, 28, and 56 (after injection). Testicular tissue biopsies were performed on day 7 and day 56 to quantify the mRNA expressions of androgen binding protein (ABP), inhibin subunit beta B (IHBB), and vascular endothelial growth factor A (VEGFA). The results demonstrated that the anti-FSHr scFv molecule was calculated as 27 kDa with a dissociation constant (KD) of 1.03 µM. The volume of the anti-FSHr scFv-injected testicle was reduced on days 28 and 56 compared with day 0 (p < 0.05). Total sperm number was reduced from day 0 (36.4 × 106 cells) to day 56 (1.6 × 106 cells) (p < 0.05). The percentage of sperm motility decreased from day 0 (81.7 ± 1.0%) to day 7 (23.3 ± 1.9%), day 28 (41.7 ± 53.4%), and day 56 (8.3 ± 1.9%) (p < 0.05). Sperm viability on day 0 was 86.8 ± 0.5%, which reduced to 64.2 ± 1.5%, 67.1 ± 2.2%, and 9.3 ± 1.1% on days 7, 28, and 56, respectively (p < 0.05). The expression of ABP and VEGFA on days 7 (14.2- and 3.2-fold) and 56 (5.6- and 5.5-fold) was less in the scFv-treated testicle compared with the controls (p < 0.05). On day 56, the expression of IHBB was less (p < 0.05) in the treated testis (1.3-fold) compared with the controls. Serum testosterone levels were unchanged throughout the study period (p > 0.05). This study characterized the anti-FSHr scFv and demonstrated that treatment with anti-FSHr ameliorates testicular function without altering testosterone levels, offering a potential alternative contraceptive for the long-tailed macaques.
Collapse
Affiliation(s)
- Pakpoom Navanukraw
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sroisuda Chotimanukul
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Suen HC, Rao S, Luk ACS, Zhang R, Yang L, Qi H, So HC, Hobbs RM, Lee TL, Liao J. The single-cell chromatin accessibility landscape in mouse perinatal testis development. eLife 2023; 12:e75624. [PMID: 37096870 PMCID: PMC10174692 DOI: 10.7554/elife.75624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the 'regulon' of the mouse male germline and supporting somatic cells.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Shitao Rao
- School of Medical Technology and Engineering, Fujian Medical UniversityFujianChina
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Alfred Chun Shui Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Ruoyu Zhang
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Lele Yang
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Hon Cheong So
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Robin M Hobbs
- Germline Stem Cell Biology Laboratory, Centre for Reproductive Health, Hudson Institute of Medical ResearchMelbourneAustralia
| | - Tin-lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New TerritoriesHong KongChina
| |
Collapse
|
8
|
Developmental toxicity window of fetal testicular injury in offspring mice induced by prenatal amoxicillin exposure at different time, doses and courses. Toxicol Lett 2023; 374:85-95. [PMID: 36529298 DOI: 10.1016/j.toxlet.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Amoxicillin is widely used in the clinical treatment of syphilis, gonorrhea and other infectious diseases during pregnancy, but the effects of prenatal amoxicillin exposure (PAmE) on fetal testicular development have not been reported. Based on the characteristics of clinical medication, Kunming mice were orally gavaged with amoxicillin during pregnancy at different time (mid- or late-pregnancy), doses (75, 150 or 300 mg/kg·d) or courses (single- or multi-course). The results showed that compared with the control group, PAmE resulted in fetal testicular abnormal morphological development, cell proliferation inhibition and apoptosis enhancement, Leydig cell steroid synthase system (SF1, StAR, P450scc, CYP17a1) expression inhibition, and fetal blood testosterone levels decreased. Among them, the late-pregnancy and high-dose amoxicillin groups had severe damage, while the damage in different course groups was basically the same. Meanwhile, PAmE could damage the number and function of germ cells at all time, doses and courses, but had no obvious effect on Sertoli cells. It was further found that PAmE inhibited fetal testis AKT and ERK signaling pathways in late pregnancy and high dose, while the damage in different course groups was basically the same. In summary, this study proposed the developmental toxicity window of fetal testicular injury induced by PAmE in late-pregnancy and high-dose and its related mechanism of AKT and ERK signaling pathway, which provided a theoretical and experimental basis for guiding rational drug use during pregnancy and effectively evaluating the risk of fetal testicular developmental toxicity.
Collapse
|
9
|
Mancuso F, Arato I, Bellucci C, Lilli C, Eugeni E, Aglietti MC, Stabile AM, Pistilli A, Brancorsini S, Gaggia F, Calvitti M, Baroni T, Luca G. Zinc restores functionality in porcine prepubertal Sertoli cells exposed to subtoxic cadmium concentration via regulating the Nrf2 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:962519. [PMID: 36843583 PMCID: PMC9950629 DOI: 10.3389/fendo.2023.962519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl2 could counteract the toxic effects induced by Cd in an in vitro model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 μM) and toxic (10 μM) concentrations of CdCl2 for 48 h. MATERIALS AND METHODS Apoptosis, cell cycle, and cell functionality were assessed. The gene expression of Nrf2 and its downstream antioxidant enzymes, ERK1/2, and AKT kinase signaling pathways were evaluated. MATERIALS AND RESULTS We found that Zn, in co-treatment with subtoxic and toxic Cd concentration, increased the number of metabolically active SCs compared to Cd exposure alone but restored SC functionality only in co-treatment with subtoxic Cd concentration with respect to subtoxic Cd alone. Exposure of Cd disrupted cell cycle in SCs, and Zn co-treatment was not able to counteract this effect. Cd alone induced SC death through apoptosis and necrosis in a dose-dependent manner, and co-treatment with Zn increased the pro-apoptotic effect of Cd. Subtoxic and toxic Cd exposures activated the Nrf2 signaling pathway by increasing gene expression of Nrf2 and its downstream genes (SOD, HO-1, and GSHPx). Zn co-treatment with subtoxic Cd attenuated upregulation on the Nrf2 system, while with toxic Cd, the effect was more erratic. Studying ERK1/2 and AKT pathways as a target, we found that the phosphorylation ratio of p-ERK1/2 and p-AKT was upregulated by both subtoxic and toxic Cd exposure alone and in co-treatment with Zn. DISCUSSION Our results suggest that Zn could counteract Cd effects by increasing the number of metabolically active SCs, fully or partially restoring their functionality by modulating Nrf2, ERK1/2, and AKT pathways. Our SC model could be useful to study the effects of early Cd exposure on immature testis, evaluating the possible protective effects of Zn.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| | | | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Tiziano Baroni,
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
MAP4K4/JNK Signaling Pathway Stimulates Proliferation and Suppresses Apoptosis of Human Spermatogonial Stem Cells and Lower Level of MAP4K4 Is Associated with Male Infertility. Cells 2022; 11:cells11233807. [PMID: 36497065 PMCID: PMC9739186 DOI: 10.3390/cells11233807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Spermatogonial stem cells (SSCs) serve as a foundation for spermatogenesis and they are essential for male fertility. The fate of SSC is determined by genetic and epigenetic regulatory networks. Many molecules that regulate SSC fate determinations have been identified in mice. However, the molecules and signaling pathways underlying human SSCs remain largely unclear. In this study, we have demonstrated that MAP4K4 was predominantly expressed in human UCHL1-positive spermatogonia by double immunocytochemical staining. MAP4K4 knockdown inhibited proliferation of human SSCs and induced their apoptosis. Moreover, MAP4K4 silencing led to inhibition of JNK phosphorylation and MAP4K4 phosphorylation at Ser801. RNA sequencing indicated that MAP4K4 affected the transcription of SPARC, ADAM19, GPX7, GNG2, and COLA1. Interestingly, the phenotype of inhibiting JNK phosphorylation by SP600125 was similar to MAP4K4 knockdown. Notably, MAP4K4 protein was lower in the testes of patients with non-obstructive azoospermia than those with normal spermatogenesis as shown by Western blots and immunohistochemistry. Considered together, our data implicate that MAP4K4/JNK signaling pathway mediates proliferation and apoptosis of human SSCs, which provides a novel insight into molecular mechanisms governing human spermatogenesis and might offer new targets for gene therapy of male infertility.
Collapse
|
11
|
Ali W, Ma Y, Zhu J, Zou H, Liu Z. Mechanisms of Cadmium-Induced Testicular Injury: A Risk to Male Fertility. Cells 2022; 11:cells11223601. [PMID: 36429028 PMCID: PMC9688678 DOI: 10.3390/cells11223601] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium is a heavy toxic metal with unknown biological functions in the human body. Over time, cadmium accretion in the different visceral organs (liver, lungs, kidney, and testis) is said to impair the function of these organs, which is associated with a relatively long biological half-life and a very low rate of excretion. Recently studies have revealed that the testes are highly sensitive to cadmium. In this review, we discussed the adverse effect of cadmium on the development and biological functions of the testis. The Sertoli cells (SCs), seminiferous tubules, and Blood Testis Barrier are severely structurally damaged by cadmium, which results in sperm loss. The development and function of Leydig cells are hindered by cadmium, which also induces Leydig cell tumors. The testis's vascular system is severely disturbed by cadmium. Cadmium also perturbs the function of somatic cells and germ cells through epigenetic regulation, giving rise to infertile or sub-fertile males. In addition, we also summarized the other findings related to cadmium-induced oxidative toxicity, apoptotic toxicity, and autophagic toxicity, along with their possible mechanisms in the testicular tissue of different animal species. Consequently, cadmium represents a high-risk factor for male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Thumfart KM, Lazzeri S, Manuella F, Mansuy IM. Long-term effects of early postnatal stress on Sertoli cells. Front Genet 2022; 13:1024805. [PMID: 36353105 PMCID: PMC9638847 DOI: 10.3389/fgene.2022.1024805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2023] Open
Abstract
Sertoli cells are somatic cells in testis essential for spermatogenesis, that support the development, maturation, and differentiation of germ cells. Sertoli cells are metabolically highly active and physiologically regulated by external signals, particularly factors in the blood stream. In disease conditions, circulating pathological signals may affect Sertoli cells and consequentially, alter germ cells and fertility. While the effects of stress on reproductive cells have been well studied, how Sertoli cells respond to stress remains poorly characterized. We used a mouse model of early postnatal stress to assess the effects of stress on Sertoli cells. We developed an improved strategy based on intracellular stainings and obtained enriched preparations of Sertoli cells from exposed males. We show that adult Sertoli cells have impaired electron transport chain (ETC) pathways and that several components of ETC complexes particularly complex I, III, and IV are persistently affected. We identify serum as potential mediator of the effects of stress on Sertoli cells by showing that it can recapitulate ETC alterations in primary cells. These results highlight Sertoli cells as cellular targets of stress in early life that can keep a trace of exposure until adulthood.
Collapse
Affiliation(s)
- Kristina M. Thumfart
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, Brain Research Institute, Medical Faculty of the University Zürich, and Institute of Neuroscience of the Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Samuel Lazzeri
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, Brain Research Institute, Medical Faculty of the University Zürich, and Institute of Neuroscience of the Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, Brain Research Institute, Medical Faculty of the University Zürich, and Institute of Neuroscience of the Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Isabelle M. Mansuy
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, Brain Research Institute, Medical Faculty of the University Zürich, and Institute of Neuroscience of the Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
13
|
Huang J, Ren H, Chen A, Li T, Wang H, Jiang L, Zheng S, Qi H, Ji B, Wang X, Qu J, Zhao J, Qiu L. Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118960. [PMID: 35150797 DOI: 10.1016/j.envpol.2022.118960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5-10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Anni Chen
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Han Qi
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Binyan Ji
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xipei Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China; Jiangsu Province-Hai'an People's Hospital, Hai'an City, Nantong City, 17 Zhongba Middle Road, (Affiliated Haian Hospital of Nantong University), PR China
| | - Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jianya Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
14
|
Yang L, Jiang L, Sun X, Li J, Wang N, Liu X, Yao X, Zhang C, Deng H, Wang S, Yang G. DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity. Food Chem Toxicol 2022; 164:113046. [PMID: 35447293 DOI: 10.1016/j.fct.2022.113046] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023]
Abstract
Exposure to Di (2-ethylhexyl) phthalate (DEHP) has been associated with toxic effects of the reproductive system. However, the exact mechanism remains to be elucidated. In this study we explored the testicular toxicity induced by DEHP, and the probable molecular mechanism in the process. In vivo, the results demonstrated that DEHP affected testosterone levels and blood-testosterone barrier (BTB) integrity and caused ferroptosis. We further demonstrated that DEHP up-regulated the expression of p38α, p-p38α, p53, p-p53, SAT1, ALOX15. This view has also been confirmed in TM4 cells. After pre-treatment with fer-1 or si-MAPK14, the expression of either p53, p-p53, SAT1 and ALOX15 up-regulated by MEHP was inhibited in vitro. Interestingly, p38α can prevent the accumulation of lipid ROS, and the production of lipid ROS in turn promoted the expression of p38α, thus forming a feedback loop during the ferroptosis. In this process, a vicious cycle consisting of p38α, p53, SAT1, ALOX15, lipid ROS was involved. This study provides new mechanistic insights into DEHP-induced toxicity of the reproductive system.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
15
|
Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042416. [PMID: 35206604 PMCID: PMC8878469 DOI: 10.3390/ijerph19042416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3β-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.
Collapse
|
16
|
Shaw IW, Kirkwood PM, Rebourcet D, Cousins FL, Ainslie RJ, Livingstone DEW, Smith LB, Saunders PT, Gibson DA. A role for steroid 5 alpha-reductase 1 in vascular remodeling during endometrial decidualization. Front Endocrinol (Lausanne) 2022; 13:1027164. [PMID: 36465608 PMCID: PMC9709457 DOI: 10.3389/fendo.2022.1027164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia. Androgens are key regulators of decidualization that promote optimal differentiation of stromal fibroblasts and activation of downstream signaling pathways required for endometrial remodeling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualization of human stromal fibroblasts in vitro, but whether this is required for decidualization in vivo has not been tested. In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualization to investigate the role of SRD5A1 and intracrine androgen signaling in endometrial decidualization. We measured decidualization response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualization response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signaling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualization restored decidualization responses, vessel permeability, and expression of angiogenesis genes to wild type levels. Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signaling is required for optimal decidualization in vivo and confirm a major role for androgens in the development of the vasculature during decidualization through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signaling in the endometrium.
Collapse
Affiliation(s)
- Isaac W. Shaw
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Phoebe M. Kirkwood
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Diane Rebourcet
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona L. Cousins
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca J. Ainslie
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dawn E. W. Livingstone
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lee B. Smith
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T.K. Saunders
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas A. Gibson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Douglas A. Gibson,
| |
Collapse
|
17
|
O'Donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol 2021; 121:2-9. [PMID: 34229950 DOI: 10.1016/j.semcdb.2021.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Sertoli cells are the orchestrators of spermatogenesis; they support fetal germ cell commitment to the male pathway and are essential for germ cell development, from maintenance of the spermatogonial stem cell niche and spermatogonial populations, through meiosis and spermiogeneis and to the final release of mature spermatids during spermiation. However, Sertoli cells are also emerging as key regulators of other testis somatic cells, including supporting peritubular myoid cell development in the pre-pubertal testis and supporting the function of the testicular vasculature and in contributing to testicular immune privilege. Sertoli cells also have a major role in regulating androgen production within the testis, by specifying interstitial cells to a steroidogenic fate, contributing to androgen production in the fetal testis, and supporting fetal and adult Leydig cell development and function. Here, we provide an overview of the specific roles for Sertoli cells in the testis and highlight how these cells are key drivers of testicular sperm output, and of adult testis size and optimal function of other testicular somatic cells, including the steroidogenic Leydig cells.
Collapse
Affiliation(s)
- Liza O'Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; Monash University, Clayton 3168, Victoria, Australia.
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
18
|
Liang J, Li H, Mei J, Cao Z, Tang Y, Huang R, Xia H, Zhang Q, Xiang Q, Yang Y, Huang Y. Sertoli cell-derived exosome-mediated transfer of miR-145-5p inhibits Leydig cell steroidogenesis by targeting steroidogenic factor 1. FASEB J 2021; 35:e21660. [PMID: 34010469 DOI: 10.1096/fj.202002589rrrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
In the mammalian testis, two distinct populations of Sertoli cells (SCs), the immature SCs (ISCs) and adult SCs (ASCs), play significant roles in regulating the development and function of Leydig cells. However, the effect of different SC types on the function of Leydig cells is poorly understood. Here, our study showed that miR-145-5p expression was significantly different in SCs at different stages, with the highest expression observed in ISCs. Exosomes mediate the transfer of miR-145-5p from ISCs to Leydig cells. Overexpression of miR-145-5p in Leydig cells significantly downregulated steroidogenic gene expression and inhibited testosterone synthesis. Additionally, miR-145-5p functioned by directly targeted steroidogenic factor-1 (Sf-1) and downregulated the expression of SF-1, which further downregulated the expression of steroidogenic genes, induced accumulation of lipid droplets, and eventually suppressed testosterone production. These findings demonstrate that SC-derived miR-145-5p plays a significant role in regulating the functions of Leydig cells and may therefore serve as a diagnostic biomarker for male hypogonadism developmental abnormalities during puberty.
Collapse
Affiliation(s)
- Jinlian Liang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Hanhao Li
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Jiaxin Mei
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Zhen Cao
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yan Tang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Rufei Huang
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Huan Xia
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Qihao Zhang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
- Department of Cell Biology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
- Biopharmaceutical Research & Development Center, Jinan University, Guangzhou, China
| | - Qi Xiang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
- Department of Cell Biology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
- Biopharmaceutical Research & Development Center, Jinan University, Guangzhou, China
| | - Yan Yang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
- Department of Cell Biology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
- Biopharmaceutical Research & Development Center, Jinan University, Guangzhou, China
| | - Yadong Huang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
- Department of Pharmacology, Jinan University, Guangzhou, China
- Department of Cell Biology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
- Biopharmaceutical Research & Development Center, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
O'Hara L, Christian HC, Le Tissier P, Smith LB. Hyperprolactinemia in a male pituitary androgen receptor knockout mouse is associated with female-like lactotroph development. Andrology 2021; 9:1652-1661. [PMID: 33998165 DOI: 10.1111/andr.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circulating prolactin concentration in rodents and humans is sexually dimorphic. Oestrogens are a well-characterised stimulator of prolactin release. Circulating prolactin fluctuates throughout the menstrual/oestrous cycle of females in response to oestrogen levels, but remains continually low in males. We have previously identified androgens as an inhibitor of prolactin release through characterisation of males of a mouse line with a conditional pituitary androgen receptor knockout (PARKO) which have an increase in circulating prolactin, but unchanged lactotroph number. OBJECTIVES In the present study, we aimed to specify the cell type that androgens act on to repress prolactin release. MATERIALS AND METHODS PARKO, lactotroph-specific, Pit1 lineage-specific and neural-specific conditional androgen receptor knockout male mice were investigated using prolactin ELISA, pituitary electron microscopy, immunohistochemistry and qRT-PCR. RESULTS Lactotroph-specific, Pit1 lineage-specific and neural-specific conditional AR knockouts did not duplicate the high circulating prolactin seen in the PARKO line. Using electron microscopy to examine ultrastructure, we showed that pituitary androgen receptor knockout male mice develop lactotrophs that resemble those seen in female mice. Castrated PARKO males have significantly reduced circulating prolactin compared to intact males. When expression of selected oestrogen-regulated anterior pituitary genes was examined, there were no differences in expression level between controls and knockouts. DISCUSSION The cell type that androgens act on to repress prolactin release is not the lactotroph, cells in the Pit1-lineage, or the dopaminergic neurons in the hypothalamus. PARKO males develop a female-specific lactotroph ultrastructure that this is likely to contribute to the increase in circulating prolactin. Castrated PARKO males have significantly reduced circulating prolactin compared to intact males, which suggests that removal of both circulating oestrogens and androgens reduces the stimulation of pituitary prolactin release. CONCLUSION Further investigation is needed into prolactin regulation by changes in androgen-oestrogen balance, which is involved sexual dimorphism of development and diseases including hyperprolactinemia.
Collapse
Affiliation(s)
- Laura O'Hara
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh, UK.,ZJU-UoE Institute, Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | | | - Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
20
|
Yu DCW, Wu FC, Wu CE, Chow LP, Ho HN, Chen HF. Human pluripotent stem cell-derived DDX4 and KRT-8 positive cells participate in ovarian follicle-like structure formation. iScience 2020; 24:102003. [PMID: 33490911 PMCID: PMC7811146 DOI: 10.1016/j.isci.2020.102003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/21/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms of human pluripotent stem cells (hPSCs) specification, development and differentiation to gametes are useful for elucidating the causes of infertility and potential treatment. This study aims to examine whether hPSCs can be induced to DDX4 extracellularly expressing primordial germ cell-like cells (DDX4ec PGCLCs) and further into ovarian follicle stage in a combined in vitro and in vivo model. The transcriptional signatures show that these DDX4ec PGCLCs are characteristic of PGCs and express ovarian folliculogenesis markers. We also verify that keratin (KRT)-8 is highly expressed in the DDX4ec PGCLCs and plays a crucial role in germ cell migration. By co-culturing DDX4ec PGCLCs with human granulosa cells (GCs), these cells are further induced into ovarian follicle-like structures in a xenograft mice model. This approach can in the future design practical strategies for treating germ cell-associated issues of infertility. hPSC-derived DDX4 PGCLCs participate ovarian follicle-like structure formation Human granulosa cells as a niche environment are participating folliculogenesis Keratin 8 plays an essential role in primordial germ cell migration
Collapse
Affiliation(s)
- Danny C W Yu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Immunotherapy, Fujian Medical University, Fujian, China.,Aging and Disease Prevention Research Center, and Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Fang-Chun Wu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Eng Wu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Zhu M, Lu J, Shen J, Fei L, Chen D. A 22-amino-acid peptide regulates tight junctions through occludin and cell apoptosis. PeerJ 2020; 8:e10147. [PMID: 33194394 PMCID: PMC7646304 DOI: 10.7717/peerj.10147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Occludin is a structural protein of tight junctions (TJ) in the blood–testis barrier (BTB). A 22-amino-acid peptide (22AA) in the second extracellular loop can reversibly regulate TJ, but its regulatory mechanism is unknown. In this study, a 22AA-induced TJ destruction animal model was constructed to investigate the effect of 22AA on Sertoli cells (SCs) and spermatid counts and cell apoptosis at different time points using a multiplex immunofluorescence technique. The effect of 22AA on the location and distribution of occludin was analyzed via dual confocal fluorescence microscope. Western blotting was used to analyze dynamic changes in occludin expression. Real-time RT-PCR was used to analyze miR-122-5p expression changes. Sperm density counts and mating methods were used to analyze the effect of 22AA on fertility in mice. The results showed that 22AA promoted SC and spermatid apoptosis, downregulated occludin, upregulated miR-122-5p, and decreased sperm density and litter size before 27 days (27D). After 27D, the expression of occludin increased again, miR-122-5p expression decreased again, both sperm density and litter size returned to normal, apoptosis stopped, and spermatogenesis began to recover. Therefore, it can be concluded that 22AA can destroy TJ by downregulating occludin and inducing cell apoptosis. After 27D, TJ and spermatogenesis functions return to normal.
Collapse
Affiliation(s)
- Maoying Zhu
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Juan Lu
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Jianyun Shen
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Lumin Fei
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Deyu Chen
- College of Medicine, Fuyang Normal University, Fuyang, Anhui, China
| |
Collapse
|
22
|
O'Hara L, Christian HC, Jeffery N, Le Tissier P, Smith LB. Characterisation of a mural cell network in the murine pituitary gland. J Neuroendocrinol 2020; 32:e12903. [PMID: 32959418 DOI: 10.1111/jne.12903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
The anterior and intermediate lobes of the pituitary are composed of endocrine cells, as well as vasculature and supporting cells, such as folliculostellate cells. Folliculostellate cells form a network with several postulated roles in the pituitary, including production of paracrine signalling molecules and cytokines, coordination of endocrine cell hormone release, phagocytosis, and structural support. Folliculostellate cells in rats are characterised by expression of S100B protein, and in humans by glial fibrillary acid protein. However, there is evidence for another network of supporting cells in the anterior pituitary that has properties of mural cells, such as vascular smooth muscle cells and pericytes. The present study aims to characterise the distribution of cells that express the mural cell marker platelet derived growth factor receptor beta (PDGFRβ) in the mouse pituitary and establish whether these cells are folliculostellate. By immunohistochemical localisation, we determine that approximately 80% of PDGFRβ+ cells in the mouse pituitary have a non-perivascular location and 20% are pericytes. Investigation of gene expression in a magnetic cell sorted population of PDGFRβ+ cells shows that, despite a mostly non-perivascular location, this population is enriched for mural cell markers but not enriched for rat or human folliculostellate cell markers. This is confirmed by immunohistochemistry. The present study concludes that a mural cell network is present throughout the anterior pituitary of the mouse and that this population does not express well-characterised human or rat folliculostellate cell markers.
Collapse
Affiliation(s)
- Laura O'Hara
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
23
|
E4 Transcription Factor 1 (E4F1) Regulates Sertoli Cell Proliferation and Fertility in Mice. Animals (Basel) 2020; 10:ani10091691. [PMID: 32962114 PMCID: PMC7552733 DOI: 10.3390/ani10091691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Male fertility relies on the generation of functional sperm in seminiferous tubules of the testis. In mammals, Sertoli cells are the only somatic cells that directly interact with spermatogenic cells. Compelling evidences suggest that the number of Sertoli cells determines testis size and sperm output, however, molecular mechanisms regulating Sertoli cell proliferation and maturation are not well-understood. Using a Sertoli cell specific loss-of-function approach, here we showed that transcription factor E4F1 played an important role in murine Sertoli cell proliferation. Compared with their littermate control, E4f1 conditional knockout male mice sired a significantly low number of pups. E4f1 deletion resulted in reduced Sertoli cell number and testis size. Further analyses revealed that E4f1 deletion affected Sertoli cell proliferation in the neonatal testis and caused an increase in apoptosis of spermatogenic cells without affecting normal development of spermatogonia, meiotic and post-meiotic germ cells. These findings have shed new light on molecular controlling of spermatogenesis in mice and a similar mechanism likely exists in other animals. Abstract In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.
Collapse
|
24
|
Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2020; 8:903-914. [PMID: 31444950 PMCID: PMC7036326 DOI: 10.1111/andr.12703] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Testicular architecture and sperm production are supported by a complex network of communication between various cell types. These signals ensure fertility by: regulating spermatogonial stem/progenitor cells; promoting steroidogenesis; and driving male-specific differentiation of the gonad. Sertoli cells have long been assumed to be the major cellular player in testis organogenesis and spermatogenesis. However, cells in the interstitial compartment, such as Leydig, vascular, immune, and peritubular cells, also play prominent roles in the testis but are less well understood. OBJECTIVES Here, we aim to outline our current knowledge of the cellular and molecular mechanisms by which interstitial cell types contribute to spermatogenesis and testicular development, and how these diverse constituents of the testis play essential roles in ensuring male sexual differentiation and fertility. METHODS We surveyed scientific literature and summarized findings in the field that address how interstitial cells interact with other interstitial cell populations and seminiferous tubules (i.e., Sertoli and germ cells) to support spermatogenesis, male-specific differentiation, and testicular function. These studies focused on 4 major cell types: Leydig cells, vascular cells, immune cells, and peritubular cells. RESULTS AND DISCUSSION A growing number of studies have demonstrated that interstitial cells play a wide range of functions in the fetal and adult testis. Leydig cells, through secretion of hormones and growth factors, are responsible for steroidogenesis and progression of spermatogenesis. Vascular, immune, and peritubular cells, apart from their traditionally acknowledged physiological roles, have a broader importance than previously appreciated and are emerging as essential players in stem/progenitor cell biology. CONCLUSION Interstitial cells take part in complex signaling interactions with both interstitial and tubular cell populations, which are required for several biological processes, such as steroidogenesis, Sertoli cell function, spermatogenesis, and immune regulation. These various processes are essential for testicular function and demonstrate how interstitial cells are indispensable for male fertility.
Collapse
Affiliation(s)
- Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Suite E-870, Cincinnati, OH, 45267, USA
| |
Collapse
|
25
|
Xia B, Yan Y, Baron M, Wagner F, Barkley D, Chiodin M, Kim SY, Keefe DL, Alukal JP, Boeke JD, Yanai I. Widespread Transcriptional Scanning in the Testis Modulates Gene Evolution Rates. Cell 2020; 180:248-262.e21. [PMID: 31978344 DOI: 10.1016/j.cell.2019.12.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/04/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.
Collapse
Affiliation(s)
- Bo Xia
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Yun Yan
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Florian Wagner
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Dalia Barkley
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Marta Chiodin
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | - Joseph P Alukal
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
26
|
Rebourcet D, Mackay R, Darbey A, Curley MK, Jørgensen A, Frederiksen H, Mitchell RT, O'Shaughnessy PJ, Nef S, Smith LB. Ablation of the canonical testosterone production pathway via knockout of the steroidogenic enzyme HSD17B3, reveals a novel mechanism of testicular testosterone production. FASEB J 2020; 34:10373-10386. [PMID: 32557858 PMCID: PMC7496839 DOI: 10.1096/fj.202000361r] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 11/11/2022]
Abstract
Male development, fertility, and lifelong health are all androgen-dependent. Approximately 95% of circulating testosterone is synthesized by the testis and the final step in this canonical pathway is controlled by the activity of the hydroxysteroid-dehydrogenase-17-beta-3 (HSD17B3). To determine the role of HSD17B3 in testosterone production and androgenization during male development and function we have characterized a mouse model lacking HSD17B3. The data reveal that developmental masculinization and fertility are normal in mutant males. Ablation of HSD17B3 inhibits hyperstimulation of testosterone production by hCG, although basal testosterone levels are maintained despite the absence of HSD17B3. Reintroduction of HSD17B3 via gene-delivery to Sertoli cells in adulthood partially rescues the adult phenotype, showing that, as in development, different cell-types in the testis are able to work together to produce testosterone. Together, these data show that HS17B3 acts as a rate-limiting-step for the maximum level of testosterone production by the testis but does not control basal testosterone production. Measurement of other enzymes able to convert androstenedione to testosterone identifies HSD17B12 as a candidate enzyme capable of driving basal testosterone production in the testis. Together, these findings expand our understanding of testosterone production in males.
Collapse
Affiliation(s)
- Diane Rebourcet
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Rosa Mackay
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Annalucia Darbey
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Michael K Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Peter J O'Shaughnessy
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lee B Smith
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
27
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Yangjing Capsule Can Improve the Function of the Testicular Angiogenesis through Activating VEGFA/eNOS Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1957267. [PMID: 32382279 PMCID: PMC7197003 DOI: 10.1155/2020/1957267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
Abstract
Background The testicular microcirculation was an important aspect of testicular physiology and it offered a stable environment for the transport of nutrients and secretary products in the testis. Yangjing capsule (YC), a traditional Chinese compound herbal prescription, has been proved as an effective drug to ameliorate spermatogenesis, promote testosterone synthesis in vivo, and cure spermatogenesis in clinical practice. Objective This study was aimed at understanding the potential mechanisms of YC exerting angiogenic effects in the mouse spermatogenesis dysfunction model induced by cyclophosphamide (CP) and MLTC-1 cells. Materials and Methods Balb/c mice were randomly divided into five groups: control, CP, CP plus YC (630 mg/kg), CP plus YC (1260 mg/kg), and CP plus YC (2520 mg/kg). After 30 days, mice were sacrificed and the expressions of endothelial marker CD34+, angiogenic marker VEGFA, VEGFR1, VEGFR2, and eNOS in the testes of the mice were examined; moreover, Leydig cell line MLTC-1 cells were cultured and treated with different concentrations of YC extracts (YCE), and the expressions of VEGFA, VEGFR1, VEGFR2, and eNOS, as well as the secretion of NO, were evaluated. Results We observed that YC significantly increased the expressions of VEGFA, VEGFR1, VEGFR2, and eNOS in testes of CP-treated mice; moreover, YCE has led to increased expressions of VEGFA, VEGFR1, VEGFR2, and eNOS and secretion of NO in MLTC-1 in vitro. These data suggested that the YC might be an alternative treatment for the dysfunction of testicular microcirculation by promoting the angiogenesis in the testis.
Collapse
|
29
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
30
|
Sertoli cell-conditioned medium restores spermatogenesis in azoospermic mouse testis. Cell Tissue Res 2019; 379:577-587. [PMID: 31494714 DOI: 10.1007/s00441-019-03092-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
The current study evaluates potential applications of Sertoli cell (SC)-conditioned medium (CM) and explores the effects of the conditioned medium on the spermatogenesis process in azoospermic mice. For this study, 40 adult mice (28-30 g) were divided into 4 experimental groups: (1) control, (2) DMSO 2% (10 μl), (3) busulfan (40 mg/kg single dose) and (4) busulfan/CM (10 μl). SCs were isolated from 4-week-old mouse testes. After using anesthetics, 10 μl of CM was injected over 3-5 min into each testis and subsequently, sperm samples were collected from the tail of the epididymis. Afterward, the animals were euthanized and testis samples were taken for histopathology experiments and RNA extraction in order to examine the expression of c-kit, STRA8 and PCNA genes. The data showed that CM notably increased the total sperm count and the number of testicular cells, such as spermatogonia, primary spermatocytes, round spermatids, SCs and Leydig cells compared with the control, DMSO and busulfan groups. Furthermore, the results showed that expression of c-kit and STRA8 was significantly decreased in the busulfan and busulfan/SC groups at 8 weeks after the last injection (p < 0.001) but no significant difference was found for PCNA compared with the control and DMSO groups (p < 0.05). These findings suggest that the Sertoli cell-conditioned medium may be beneficial as a practical approach for therapeutic strategies in reproductive and regenerative medicine.
Collapse
|
31
|
Rebourcet D, Monteiro A, Cruickshanks L, Jeffery N, Smith S, Milne L, O’Shaughnessy PJ, Smith LB. Relationship of transcriptional markers to Leydig cell number in the mouse testis. PLoS One 2019; 14:e0219524. [PMID: 31291327 PMCID: PMC6619764 DOI: 10.1371/journal.pone.0219524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives The current study aims to identify markers that would reflect the number of Leydig cells present in the testis, to help determine whether labour-intensive methods such as stereology are necessary. We used our well-characterised Sertoli cell ablation model in which we have empirically established the size of the Leydig cell population, to try to identify transcriptional biomarkers indicative of population size. Results Following characterisation of the Leydig cell population after Sertoli cell ablation in neonatal life or adulthood, we identified Hsd3b1 transcript levels as a potential indicator of Leydig cell number with utility for informing decision-making on whether to engage in time-consuming stereological cell counting analysis.
Collapse
Affiliation(s)
- Diane Rebourcet
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Ana Monteiro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lyndsey Cruickshanks
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Sarah Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
| | - Peter J. O’Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lee B. Smith
- Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Rebourcet D, O'Shaughnessy PJ, Smith LB. The expanded roles of Sertoli cells: lessons from Sertoli cell ablation models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Steinfeld K, Beyer D, Mühlfeld C, Mietens A, Eichner G, Altinkilic B, Kampschulte M, Jiang Q, Krombach GA, Linn T, Weidner W, Middendorff R. Low testosterone in ApoE/LDL receptor double-knockout mice is associated with rarefied testicular capillaries together with fewer and smaller Leydig cells. Sci Rep 2018; 8:5424. [PMID: 29615651 PMCID: PMC5882941 DOI: 10.1038/s41598-018-23631-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/13/2018] [Indexed: 11/12/2022] Open
Abstract
The testis as a site for atherosclerotic changes has so far attracted little attention. We used the apolipoprotein E (ApoE)/low density lipoprotein (LDL) receptor deficient mouse model (KO) for atherosclerosis (20, 40, 60 and 87-week-old) to investigate whether Leydig cells or the capillary network are responsible for reduced serum testosterone levels previously observed in extreme ages of this model. In KO mice, overall testosterone levels were reduced whereas the adrenal gland-specific corticosterone was increased excluding a general defect of steroid hormone production. In addition to micro-CT investigations for bigger vessels, stereology revealed a reduction of capillary length, volume and surface area suggesting capillary rarefaction as a factor for diminished testosterone. Stereological analyses of interstitial cells demonstrated significantly reduced Leydig cell numbers and size. These structural changes in the testis occurred on an inflammatory background revealed by qPCR. Reduced litter size of the KO mice suggests hypo- or infertility as a consequence of the testicular defects. Our data suggest reduced testosterone levels in this atherosclerosis model might be explained by both, rarefication of the capillary network and reduced Leydig cell number and size. Thus, this study calls for specific treatment of male infertility induced by microvascular damage through hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Kai Steinfeld
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.,Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Daniela Beyer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gerrit Eichner
- Institute of Mathematics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bora Altinkilic
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Department of Radiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Qingkui Jiang
- Centre of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Thomas Linn
- Centre of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
34
|
Abstract
Testis development and function is regulated by intricate cell-cell cross talk. Characterization of the mechanisms underpinning this has been derived through a wide variety of approaches including pharmacological manipulation, transgenics, and cell-specific ablation of populations. The removal of all or a proportion of a specific cell type has been achieved through a variety of approaches. In this paper, we detail a combined transgenic and pharmacological approach to ablate the Sertoli or germ cell populations using diphtheria toxin in mice. We describe the key steps in generation, validation, and use of the models and also describe the caveats and cautions necessary. We also provide a detailed description of the methodology applied to characterize testis development and function in models of postnatal Sertoli or germ cell ablation.
Collapse
|
35
|
Winters SJ, Moore JP, Clark BJ. Leydig cell insufficiency in hypospermatogenesis: a paracrine effect of activin-inhibin signaling? Andrology 2018; 6:262-271. [PMID: 29409132 DOI: 10.1111/andr.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Clinical findings and a variety of experimental models indicate that Leydig cell dysfunction accompanies damage to the seminiferous tubules with increasing severity. Most studies support the idea that intratesticular signaling from the seminiferous tubules to Leydig cells regulates steroidogenesis, which is disrupted when hypospermatogenesis occurs. Sertoli cells seem to play a pivotal role in this process. In this review, we summarize relevant clinical and experimental observations and present evidence to support the hypothesis that testicular activin signaling and its regulation by testicular inhibin may link seminiferous tubular dysfunction to reduced testosterone biosynthesis.
Collapse
Affiliation(s)
- S J Winters
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - J P Moore
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - B J Clark
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
36
|
Soffientini U, Rebourcet D, Abel MH, Lee S, Hamilton G, Fowler PA, Smith LB, O'Shaughnessy PJ. Identification of Sertoli cell-specific transcripts in the mouse testis and the role of FSH and androgen in the control of Sertoli cell activity. BMC Genomics 2017; 18:972. [PMID: 29246116 PMCID: PMC5731206 DOI: 10.1186/s12864-017-4357-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Sertoli cells act to induce testis differentiation and subsequent development in fetal and post-natal life which makes them key to an understanding of testis biology. As a major step towards characterisation of factors involved in Sertoli cell function we have identified Sertoli cell-specific transcripts in the mouse testis and have used the data to identify Sertoli cell-specific transcripts altered in mice lacking follicle-stimulating hormone receptors (FSHRKO) and/or androgen receptors (AR) in the Sertoli cells (SCARKO). Results Adult iDTR mice were injected with busulfan to ablate the germ cells and 50 days later they were treated with diphtheria toxin (DTX) to ablate the Sertoli cells. RNAseq carried out on testes from control, busulfan-treated and busulfan + DTX-treated mice identified 701 Sertoli-specific transcripts and 4302 germ cell-specific transcripts. This data was mapped against results from microarrays using testicular mRNA from 20 day-old FSHRKO, SCARKO and FSHRKO.SCARKO mice. Results show that of the 534 Sertoli cell-specific transcripts present on the gene chips, 85% were altered in the FSHRKO mice and 94% in the SCARKO mice (mostly reduced in both cases). In the FSHRKO.SCARKO mice additive or synergistic effects were seen for most transcripts. Age-dependent studies on a selected number of Sertoli cell-specific transcripts, showed that the marked effects in the FSHRKO at 20 days had largely disappeared by adulthood although synergistic effects of FSHR and AR knockout were seen. Conclusions These studies have identified the Sertoli cell-specific transcriptome in the mouse testis and have shown that most genes in the transcriptome are FSH- and androgen-dependent at puberty although the importance of FSH diminishes towards adulthood. Electronic supplementary material The online version of this article (10.1186/s12864-017-4357-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- U Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - D Rebourcet
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.,MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - M H Abel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - S Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - G Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - P A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - L B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Newcastle, 2308, Australia
| | - P J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.
| |
Collapse
|
37
|
Rebourcet D, Darbey A, Monteiro A, Soffientini U, Tsai YT, Handel I, Pitetti JL, Nef S, Smith LB, O'Shaughnessy PJ. Sertoli Cell Number Defines and Predicts Germ and Leydig Cell Population Sizes in the Adult Mouse Testis. Endocrinology 2017; 158:2955-2969. [PMID: 28911170 PMCID: PMC5659676 DOI: 10.1210/en.2017-00196] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023]
Abstract
Sertoli cells regulate differentiation and development of the testis and are essential for maintaining adult testis function. To model the effects of dysregulating Sertoli cell number during development or aging, we have used acute diphtheria toxin-mediated cell ablation to reduce Sertoli cell population size. Results show that the size of the Sertoli cell population that forms during development determines the number of germ cells and Leydig cells that will be present in the adult testis. Similarly, the number of germ cells and Leydig cells that can be maintained in the adult depends directly on the size of the adult Sertoli cell population. Finally, we have used linear modeling to generate predictive models of testis cell composition during development and in the adult based on the size of the Sertoli cell population. This study shows that at all ages the size of the Sertoli cell population is predictive of resulting testicular cell composition. A reduction in Sertoli cell number/proliferation at any age will therefore lead to a proportional decrease in germ cell and Leydig cell numbers, with likely consequential effects on fertility and health.
Collapse
Affiliation(s)
- Diane Rebourcet
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Annalucia Darbey
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Ana Monteiro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ugo Soffientini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Yi Ting Tsai
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Ian Handel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Jean-Luc Pitetti
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva 4, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva 4, Switzerland
| | - Lee B Smith
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Faculty of Science, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter J O'Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
38
|
Cobice D, Livingstone DE, Mackay CL, Goodwin RA, Smith LB, Walker BR, Andrew R. Spatial Localization and Quantitation of Androgens in Mouse Testis by Mass Spectrometry Imaging. Anal Chem 2016; 88:10362-10367. [PMID: 27676129 PMCID: PMC5102453 DOI: 10.1021/acs.analchem.6b02242] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
Abstract
Androgens are essential for male development and reproductive function. They are transported to their site of action as blood-borne endocrine hormones but can also be produced within tissues to act in intracrine and paracrine fashions. Because of this, circulating concentrations may not accurately reflect the androgenic influence within specific tissue microenvironments. Mass spectrometry imaging permits regional analysis of small molecular species directly from tissue surfaces. However, due to poor ionization and localized ion suppression, steroid hormones are difficult to detect. Here, derivatization with Girard T reagent was used to charge-tag testosterone and 5α-dihydrotestosterone allowing direct detection of these steroids in mouse testes, in both basal and maximally stimulated states, and in rat prostate. Limits of detection were ∼0.1 pg for testosterone. Exemplary detection of endogenous steroids was achieved by matrix-assisted laser desorption ionization and either Fourier transform ion cyclotron resonance detection (at 150 μm spatial resolution) or quadrupole-time-of-flight detection (at 50 μm spatial resolution). Structural confirmation was achieved by collision induced fragmentation following liquid extraction surface analysis and electrospray ionization. This application broadens the scope for derivatization strategies on tissue surfaces to elucidate local endocrine signaling in health and disease.
Collapse
Affiliation(s)
- Diego
F. Cobice
- University/British
Heart Foundation Centre for Cardiovascular Science, Queen’s
Medical Research Institute, University of
Edinburgh, 47 Little
France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Dawn E.
W. Livingstone
- University/British
Heart Foundation Centre for Cardiovascular Science, Queen’s
Medical Research Institute, University of
Edinburgh, 47 Little
France Crescent, Edinburgh, EH16 4TJ, United Kingdom
- Centre
for Integrative Physiology, University of
Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, United Kingdom
| | - C. Logan Mackay
- SIRCAMS,
School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh, EH9 3JJ, United Kingdom
| | | | - Lee B. Smith
- MRC
Centre for Reproductive Health; Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, United
Kingdom
| | - Brian R. Walker
- University/British
Heart Foundation Centre for Cardiovascular Science, Queen’s
Medical Research Institute, University of
Edinburgh, 47 Little
France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Ruth Andrew
- University/British
Heart Foundation Centre for Cardiovascular Science, Queen’s
Medical Research Institute, University of
Edinburgh, 47 Little
France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|