1
|
Sheng MHC, Lau KHW, Rundle CH, Alsunna A, Wilson SM, Baylink DJ. Defective bone repletion in aged Balb/cBy mice was caused by impaired osteoblastic differentiation. J Bone Miner Metab 2022; 40:900-913. [PMID: 35947191 PMCID: PMC9722502 DOI: 10.1007/s00774-022-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This study was undertaken to gain mechanistic information about bone repair using the bone repletion model in aged Balb/cBy mice. MATERIALS AND METHODS one month-old (young) mice were fed a calcium-deficient diet for 2 weeks and 8 month-old (adult) and 21-25 month-old (aged) female mice for 4 weeks during depletion, which was followed by feeding a calcium-sufficient diet for 16 days during repletion. To determine if prolonged repletion would improve bone repair, an additional group of aged mice were repleted for 4 additional weeks. Control mice were fed calcium-sufficient diet throughout. In vivo bone repletion response was assessed by bone mineral density gain and histomorphometry. In vitro response was monitored by osteoblastic proliferation, differentiation, and senescence. RESULTS There was no significant bone repletion in aged mice even with an extended repletion period, indicating an impaired bone repletion. This was not due to an increase in bone cell senescence or reduction in osteoblast proliferation, but to dysfunctional osteoblastic differentiation in aged bone cells. Osteoblasts of aged mice had elevated levels of cytosolic and ER calcium, which were associated with increased Cav1.2 and CaSR (extracellular calcium channels) expression but reduced expression of Orai1 and Stim1, key components of Stored Operated Ca2+ Entry (SOCE). Activation of Cav1.2 and CaSR leads to increased osteoblastic proliferation, but activation of SOCE is associated with osteoblastic differentiation. CONCLUSION The bone repletion mechanism in aged Balb/cBy mice is defective that is caused by an impaired osteoblast differentiation through reducedactivation of SOCE.
Collapse
Affiliation(s)
- Matilda H-C Sheng
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA.
| | - Kin-Hing William Lau
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Charles H Rundle
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Anar Alsunna
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Sean M Wilson
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - David J Baylink
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| |
Collapse
|
2
|
Ahmed ASI, Sheng MHC, Lau KHW, Wilson SM, Wongworawat MD, Tang X, Ghahramanpouri M, Nehme A, Xu Y, Abdipour A, Zhang XB, Wasnik S, Baylink DJ. Calcium released by osteoclastic resorption stimulates autocrine/paracrine activities in local osteogenic cells to promote coupled bone formation. Am J Physiol Cell Physiol 2022; 322:C977-C990. [PMID: 35385325 PMCID: PMC9109806 DOI: 10.1152/ajpcell.00413.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. We hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation. Osteoclastic resorption increases interstitial fluid calcium locally from the normal 1.8 mM up to 5 mM. MC3T3-E1 osteoprogenitors, cultured in a 3.6 mM calcium medium, demonstrated that calcium signaling stimulated osteogenic cell proliferation, differentiation, and migration. Calcium channel knockdown studies implicated calcium channels, Cav1.2, store-operated calcium entry (SOCE), and calcium-sensing receptor (CaSR) in regulating bone cell anabolic activities. MC3T3-E1 cultured in a 3.6 mM calcium medium expressed increased gene expression of Wnt signaling and growth factors platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and bone morphogenic protein-2 (BMP 2). Our coupling model of bone formation, the Receptor activator of nuclear factor-kappa-Β ligand (RANKL) treated mouse calvaria, confirmed the role of calcium signaling in coupled bone formation by exhibiting increased gene expression for osterix and osteocalcin. Critically, dual immunocytochemistry showed that RANKL treatment increased osterix positive cells and increased fluorescence intensity of Cav1.2 and CaSR protein expression per osterix positive cell. The data established that calcium released by osteoclasts contributed to the regulation of coupled bone formation. CRISPR/Cas-9 knockout of Cav1.2 in osteoprogenitors cultured in basal calcium medium caused a >80% decrease in the expression of downstream osteogenic genes, emphasizing the large magnitude of the effect of calcium signaling. Thus, calcium signaling is a major regulator of coupled bone formation.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matilda H C Sheng
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, United States
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, United States
| | - Sean M Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - M Daniel Wongworawat
- Department of Orthopaedic Surgery, Loma Linda University, Loma Linda, California, United States
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Mahdis Ghahramanpouri
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - Antoine Nehme
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - Yi Xu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,Division of Hematology and Oncology, Department of Medicine, Loma Linda University and Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Amir Abdipour
- Division of Nephrology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Xiao-Bing Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, United States
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|