1
|
Srinivasan M, Thangaraj SR, Arzoun H. Gene Therapy - Can it Cure Type 1 Diabetes? Cureus 2021; 13:e20516. [PMID: 35004071 PMCID: PMC8723777 DOI: 10.7759/cureus.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most prevalent early-onset autoimmune diseases, and numerous treatment regimens have been developed over the years with a mainstay focus on insulin injections, infusions, and pumps. However, with the evolution of modern medicine in the recent decade, can gene therapy be a possible solution to prevent and even cure this autoimmune diabetes? In this review, the authors discuss the present-day advancements around the globe where gene therapy is implemented in different techniques to halt and even reverse T1D. The main focus of the final included studies for this review was to regenerate or preserve pancreatic β cells from other cell types in order to optimize insulin secretions in non-obese autoimmune diabetic patients. A literature search was done in various databases such as PubMed, ScienceDirect, and Google Scholar, and a final of eight studies were included. On the whole, the studies reviewed suggested favorable results of gene therapy, although these researches were done mainly in vitro or as animal studies. The application of different virus vector encoding gene transfer through transcription factors, mRNA electroporation, insulin-like growth factor gene expression as well as combination gene transfer concluded beneficial effects on normalizing insulin production, which could pave the path to perfecting gene therapy, and may even find a permanent cure for T1D in the near future.
Collapse
|
2
|
Akil AAS, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med 2021; 19:137. [PMID: 33794915 PMCID: PMC8017850 DOI: 10.1186/s12967-021-02778-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes affects millions of people globally and requires careful management to avoid serious long-term complications, including heart and kidney disease, stroke, and loss of sight. The type 1 diabetes patient cohort is highly heterogeneous, with individuals presenting with disease at different stages and severities, arising from distinct etiologies, and overlaying varied genetic backgrounds. At present, the “one-size-fits-all” treatment for type 1 diabetes is exogenic insulin substitution therapy, but this approach fails to achieve optimal blood glucose control in many individuals. With advances in our understanding of early-stage diabetes development, diabetes stratification, and the role of genetics, type 1 diabetes is a promising candidate for a personalized medicine approach, which aims to apply “the right therapy at the right time, to the right patient”. In the case of type 1 diabetes, great efforts are now being focused on risk stratification for diabetes development to enable pre-clinical detection, and the application of treatments such as gene therapy, to prevent pancreatic destruction in a sub-set of patients. Alongside this, breakthroughs in stem cell therapies hold great promise for the regeneration of pancreatic tissues in some individuals. Here we review the recent initiatives in the field of personalized medicine for type 1 diabetes, including the latest discoveries in stem cell and gene therapy for the disease, and current obstacles that must be overcome before the dream of personalized medicine for all type 1 diabetes patients can be realized.
Collapse
Affiliation(s)
- Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| | - Esraa Yassin
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aljazi Al-Maraghi
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khulod Al-Malki
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
3
|
The Impact of Curcumin on Bone Osteogenic Promotion of MC3T3 Cells under High Glucose Conditions and Enhanced Bone Formation in Diabetic Mice. COATINGS 2020. [DOI: 10.3390/coatings10030258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetic osteoporosis (DOP) is characterized by impaired bone microstructure and reduced bone density resulting from high glucose levels. Curcumin (CURC) is extensively applied in the treatment of inflammation-associated diseases. However, the effect of curcumin on bone metabolism in diabetic osteoporosis is unclear. Therefore, this study investigated the optimal concentration of curcumin on enhancing osteogenesis in diabetic osteoporosis. Osteoblasts were treated with a high or low concentration of curcumin under a series of concentrations of high-glucose conditions. Type 2 diabetic mice were intervened with curcumin. Cell proliferation, apoptosis, and osteogenesis-related gene expressions were evaluated by CCK-8, flow cytometry, and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bone formation was evaluated by histological staining. The findings revealed that curcumin suppressed apoptosis and enhanced proliferation and osteogenesis-related gene expressions of osteoblasts under high glucose concentrations (p < 0.05). The histological sections displayed reduced bone destruction and increased the growth rate of trabecular bone and the bone density of diabetic mice treated with curcumin, compared to diabetic mice. These results showed that curcumin could reverse the harmful effects of diabetic osteoporosis in a dose-dependent manner, and 10 μmol/L was regarded as the optimal concentration, which supports the potential use of curcumin for bone regeneration under high glucose concentrations.
Collapse
|
4
|
Xie A, Yan H, Fu J, He A, Xiao X, Li XC, Chen W. T follicular helper and memory cell responses and the mTOR pathway in murine heart transplantation. J Heart Lung Transplant 2019; 39:134-144. [PMID: 31831210 DOI: 10.1016/j.healun.2019.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) inhibitors are valuable immunosuppressants in clinical transplantation; however, the mTOR regulation of allogeneic T-cell responses is not fully understood yet. Therefore, the objective of this study is to investigate the effects of T-cell-specific mTOR deletion on the allogeneic T-cell responses and heart transplant survival. METHODS BALB/c heart allografts, with or without BALB/c skin sensitization, were transplanted in the wild-type C57BL/6, Mtorfl/flCd4-Cre, Stat3fl/flCd4-Cre, and Mtorfl/flStat3fl/flCd4-Cre mice. Graft survival and histology, as well as T-cell frequencies and phenotypes, were evaluated after transplantation. RESULTS In the absence of donor skin sensitization, long-term heart allograft survival was achieved in the Mtorfl/flCd4-Cre recipients, which was associated with significantly decreased frequencies of CD62L-CD44+ effector T cells and BCL-6+CXCR5+ T follicular helper (Tfh) cells in the periphery. Long-term heart allograft survival was also achieved in the donor skin-sensitized Mtorfl/flStat3fl/flCd4-Cre mice, whereas the heart allograft survival was prolonged in the donor skin-sensitized Mtorfl/flCd4-Cre and Stat3fl/flCd4-Cre mice. CONCLUSIONS mTOR is required for Tfh cell response in murine heart transplantation. T-cell-specific deletion of both mTOR and Stat3 abrogates the memory response to heart transplants. These findings help us to better understand the molecular mechanisms underlying the T cell immunity to transplanted organs.
Collapse
Affiliation(s)
- Aini Xie
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yan
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jinfei Fu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Adam He
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Xian C Li
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York.
| |
Collapse
|
5
|
Chellappan DK, Sivam NS, Teoh KX, Leong WP, Fui TZ, Chooi K, Khoo N, Yi FJ, Chellian J, Cheng LL, Dahiya R, Gupta G, Singhvi G, Nammi S, Hansbro PM, Dua K. Gene therapy and type 1 diabetes mellitus. Biomed Pharmacother 2018; 108:1188-1200. [PMID: 30372820 DOI: 10.1016/j.biopha.2018.09.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by T cell-mediated self-destruction of insulin-secreting islet β cells. Management of T1DM is challenging and complicated especially with conventional medications. Gene therapy has emerged as one of the potential therapeutic alternatives to treat T1DM. This review primarily focuses on the current status and the future perspectives of gene therapy in the management of T1DM. A vast number of the studies which are reported on gene therapy for the management of T1DM are done in animal models and in preclinical studies. In addition, the safety of such therapies is yet to be established in humans. Currently, there are several gene level interventions that are being investigated, notably, overexpression of genes and proteins needed against T1DM, transplantation of cells that express the genes against T1DM, stem-cells mediated gene therapy, genetic vaccination, immunological precursor cell-mediated gene therapy and vectors. METHODS We searched the current literature through searchable online databases, journals and other library sources using relevant keywords and search parameters. Only relevant publications in English, between the years 2000 and 2018, with evidences and proper citations, were considered. The publications were then analyzed and segregated into several subtopics based on common words and content. A total of 126 studies were found suitable for this review. FINDINGS Generally, the pros and cons of each of the gene-based therapies have been discussed based on the results collected from the literature. However, there are certain interventions that require further detailed studies to ensure their effectiveness. We have also highlighted the future direction and perspectives in gene therapy, which, researchers could benefit from.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Nandhini S Sivam
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kai Xiang Teoh
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Wai Pan Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Tai Zhen Fui
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kien Chooi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nico Khoo
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Fam Jia Yi
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Lim Lay Cheng
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, NSW, 2751, Australia; NICM Health Research Institute, Western Sydney University, NSW, 2751, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia; School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|