1
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications†. Biol Reprod 2025; 112:204-224. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization, and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia, gestational diabetes mellitus, preterm birth, and fetal growth restriction, may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction, and gene transcription. In this review, we focus on the impact of various post-translational modifications on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Hasanpour-Segherlou Z, Butler AA, Candelario-Jalil E, Hoh BL. Role of the Unique Secreted Peptide Adropin in Various Physiological and Disease States. Biomolecules 2024; 14:1613. [PMID: 39766320 PMCID: PMC11674490 DOI: 10.3390/biom14121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy. In cerebrovascular diseases, adropin demonstrates protective effects by reducing blood-brain barrier permeability, brain edema, and infarct size while improving cognitive and sensorimotor functions in ischemic stroke models. The protective effects of adropin extend to preventing endothelial damage, promoting angiogenesis, and mitigating inflammation, making it a promising therapeutic target for cardiovascular and neurodegenerative diseases. This review provides a comprehensive overview of adropin's multifaceted roles in physiological and pathological conditions, as well as our recent work demonstrating adropin's role in subarachnoid hemorrhage-mediated neural injury and delayed cerebral infarction.
Collapse
Affiliation(s)
| | - Andrew A. Butler
- Department of Pharmacology and Physiological Sciences, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brian L. Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
3
|
Deng S, Wu Y, Huang S, Yang X. Novel insights into the roles of migrasome in cancer. Discov Oncol 2024; 15:166. [PMID: 38748047 PMCID: PMC11096295 DOI: 10.1007/s12672-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Collapse
Affiliation(s)
- Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Sheng Huang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China.
| |
Collapse
|
4
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
5
|
Abstract
Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans. We also discuss the interactions between the embryo and the decidualising endometrium that regulate interstitial implantation and determine embryo fitness. Together, this Review highlights the precarious but adaptable nature of the implantation process.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-4610, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| |
Collapse
|
6
|
Soltani S, Beigrezaei S, Malekahmadi M, Clark CCT, Abdollahi S. Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocr Disord 2023; 23:73. [PMID: 37029398 PMCID: PMC10080945 DOI: 10.1186/s12902-023-01327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
OBJECTIVE Adropin, a newly identified regulatory protein has garnered attention given its potential role in metabolism regulation, especially glucose metabolism and insulin resistance. However, studies on the association between adropin and type 2 diabetes mellitus (T2DM) are equivocal. The aim of this study is to assess the association between serum adropin levels and T2DM using a systematic review and meta-analysis of observational studies. METHODS PubMed, Scopus, ISI Web of science, and Google Scholar were searched, up to August 2022, for studies that reported the association between serum levels of adropin in adults with T2DM compared to a control group without diabetes. A random-effect model was used to compute the pooled weighted mean difference (WMD) with 95% confidence intervals (CI). RESULTS Meta-analysis of 15 studies (n = 2813 participants) revealed that the serum adropin concentrations were significantly lower in patients with T2DM compared with the control group (WMD= -0.60 ng/mL, 95% CI: -0.70 to -0.49; I2 = 99.5%). Subgroup analysis also found lower concentration of adropin in patients with T2DM who were otherwise healthy compared to a control group (n = 9; WMD=-0.04 ng/ml, 95% CI= -0.06 to -0.01, p = 0.002; I2 = 96.4). CONCLUSIONS Our study showed adropin levels are lower in patients with diabetes compared to a control group without diabetes. However, the limitations of observational studies challenge the validity of the results, and further investigations are needed to confirm the veracity of these findings and additionally explore possible mechanisms.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Beigrezaei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
7
|
Zhang H, Chen N. Adropin as an indicator of T2DM and its complications. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Brosens JJ, Bennett PR, Abrahams VM, Ramhorst R, Coomarasamy A, Quenby S, Lucas ES, McCoy RC. Maternal selection of human embryos in early gestation: Insights from recurrent miscarriage. Semin Cell Dev Biol 2022; 131:14-24. [PMID: 35094946 PMCID: PMC9325922 DOI: 10.1016/j.semcdb.2022.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Compared to most mammals, human pregnancy is unusual in that it involves chromosomally diverse embryos, cyclical breakdown and regeneration of the uterine mucosa, and intimate integration of fetal and maternal cells at the uteroplacental interface. Not surprisingly, pregnancy often falters in early gestation. Whether these losses result in clinical miscarriages depends on the origins and impacts of chromosomal errors on fetal development and the ability of the decidualizing endometrium to engage in embryo biosensing and selection. Aneuploidy originating in oocytes during meiosis drives the age-related risk of miscarriage. By contrast, the frequency of endometrial cycles with an impaired decidual response may account for the stepwise increase in miscarriage rates with each pregnancy loss independently of maternal age. Additional physiological mechanisms operate in early gestation to ensure that most failing pregnancies are lost before vascular maternal-fetal connections are established by the end of the first trimester. Here, we summarise how investigations into the mechanisms that cause miscarriage led to new insights into the processes that govern maternal selection of human embryos in early gestation.
Collapse
Affiliation(s)
- Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK.
| | - Phillip R Bennett
- Tommy's National Centre for Miscarriage Research, Imperial College London, UK
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Arri Coomarasamy
- Tommy's National Centre for Miscarriage Research, Institute of Metabolism and Systems Research, University of Birmingham, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Mann ON, Kong CS, Lucas ES, Brosens JJ, Hanyaloglu AC, Brighton PJ. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci Rep 2022; 12:8624. [PMID: 35597810 PMCID: PMC9124191 DOI: 10.1038/s41598-022-12495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
The human luteinising hormone choriogonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR expression has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity, and we identified a small subpopulation of stromal cells with detectable LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild-type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.
Collapse
Affiliation(s)
- O N Mann
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - C-S Kong
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - E S Lucas
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - P J Brighton
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.
| |
Collapse
|
10
|
OUP accepted manuscript. Glycobiology 2022; 32:616-628. [DOI: 10.1093/glycob/cwac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/14/2022] Open
|
11
|
Muter J, Kong CS, Brosens JJ. The Role of Decidual Subpopulations in Implantation, Menstruation and Miscarriage. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:804921. [PMID: 36303960 PMCID: PMC9580781 DOI: 10.3389/frph.2021.804921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- *Correspondence: Joanne Muter
| | - Chow-Seng Kong
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| |
Collapse
|
12
|
Kong CS, Ordoñez AA, Turner S, Tremaine T, Muter J, Lucas ES, Salisbury E, Vassena R, Tiscornia G, Fouladi-Nashta AA, Hartshorne G, Brosens JJ, Brighton PJ. Embryo biosensing by uterine natural killer cells determines endometrial fate decisions at implantation. FASEB J 2021; 35:e21336. [PMID: 33749894 PMCID: PMC8251835 DOI: 10.1096/fj.202002217r] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Decidualizing endometrial stromal cells (EnSC) critically determine the maternal response to an implanting conceptus, triggering either menstruation-like disposal of low-fitness embryos or creating an environment that promotes further development. However, the mechanism that couples maternal recognition of low-quality embryos to tissue breakdown remains poorly understood. Recently, we demonstrated that successful transition of the cycling endometrium to a pregnancy state requires selective elimination of pro-inflammatory senescent decidual cells by activated uterine natural killer (uNK) cells. Here we report that uNK cells express CD44, the canonical hyaluronan (HA) receptor, and demonstrate that high molecular weight HA (HMWHA) inhibits uNK cell-mediated killing of senescent decidual cells. In contrast, low molecular weight HA (LMWHA) did not attenuate uNK cell activity in co-culture experiments. Killing of senescent decidual cells by uNK cells was also inhibited upon exposure to medium conditioned by IVF embryos that failed to implant, but not successful embryos. Embryo-mediated inhibition of uNK cell activity was reversed by recombinant hyaluronidase 2 (HYAL2), which hydrolyses HMWHA. We further report a correlation between the levels of HYAL2 secretion by human blastocysts, morphological scores, and implantation potential. Taken together, the data suggest a pivotal role for uNK cells in embryo biosensing and endometrial fate decisions at implantation.
Collapse
Affiliation(s)
- Chow-Seng Kong
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Sarah Turner
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Tina Tremaine
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Joanne Muter
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Emma S Lucas
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emma Salisbury
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Ali A Fouladi-Nashta
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Geraldine Hartshorne
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Jan J Brosens
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Paul J Brighton
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring. Int J Mol Sci 2021; 22:ijms22136918. [PMID: 34203166 PMCID: PMC8267851 DOI: 10.3390/ijms22136918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications.
Collapse
|
14
|
Diniz-da-Costa M, Kong CS, Fishwick KJ, Rawlings T, Brighton PJ, Hawkes A, Odendaal J, Quenby S, Ott S, Lucas ES, Vrljicak P, Brosens JJ. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium. STEM CELLS (DAYTON, OHIO) 2021; 39:1067-1080. [PMID: 33764639 DOI: 10.1002/stem.3367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022]
Abstract
Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.
Collapse
Affiliation(s)
- Maria Diniz-da-Costa
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Chow-Seng Kong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thomas Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Amelia Hawkes
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Joshua Odendaal
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Harden SL, Zhou J, Gharanei S, Diniz-da-Costa M, Lucas ES, Cui L, Murakami K, Fang J, Chen Q, Brosens JJ, Lee YH. Exometabolomic Analysis of Decidualizing Human Endometrial Stromal and Perivascular Cells. Front Cell Dev Biol 2021; 9:626619. [PMID: 33585482 PMCID: PMC7876294 DOI: 10.3389/fcell.2021.626619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the menstrual cycle with decidual transformation of perivascular cells (PVC) surrounding the terminal spiral arterioles and endometrial stromal cells (EnSC) underlying the luminal epithelium. Decidualization involves extensive cellular reprogramming and acquisition of a secretory phenotype, essential for coordinated placental trophoblast invasion. Secreted metabolites are an emerging class of signaling molecules, collectively known as the exometabolome. Here, we used liquid chromatography-mass spectrometry to characterize and analyze time-resolved changes in metabolite secretion (exometabolome) of primary PVC and EnSC decidualized over 8 days. PVC were isolated using positive selection of the cell surface marker SUSD2. We identified 79 annotated metabolites differentially secreted upon decidualization, including prostaglandin, sphingolipid, and hyaluronic acid metabolites. Secreted metabolites encompassed 21 metabolic pathways, most prominently glycerolipid and pyrimidine metabolism. Although temporal exometabolome changes were comparable between decidualizing PVC and EnSC, 32 metabolites were differentially secreted across the decidualization time-course. Further, targeted metabolomics demonstrated significant differences in secretion of purine pathway metabolites between decidualized PVC and EnSC. Taken together, our findings indicate that the metabolic footprints generated by different decidual subpopulations encode spatiotemporal information that may be important for optimal embryo implantation.
Collapse
Affiliation(s)
- Sarah L. Harden
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jieliang Zhou
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Seley Gharanei
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Maria Diniz-da-Costa
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Emma S. Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Liang Cui
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
| | - Keisuke Murakami
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Jinling Fang
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jan J. Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Singapore–MIT Alliance for Research and Technology, Singapore, Singapore
- Translational ‘Omics and Biomarkers Group, KK Research Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
16
|
Ma M, Lee JH, Kim M. Identification of a TMEM182 rs141764639 polymorphism associated with central obesity by regulating tumor necrosis factor-α in a Korean population. J Diabetes Complications 2020; 34:107732. [PMID: 32938560 DOI: 10.1016/j.jdiacomp.2020.107732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
AIMS To investigate the effect of a single nucleotide polymorphism (SNP) in transmembrane protein 182 (TMEM182) on the risk of having central obesity and the related phenotype. METHODS In total, 2141 subjects with central obesity (n = 827) and normal controls (n = 1314) were included. The most strongly associated SNPs were related to waist circumference, and one SNP, rs141764639, was identified in TMEM182 (p = 7.30E-06, q = 0.0326). RESULTS The TC genotype was associated with more central obesity; higher levels of blood pressure, glucose-related parameters, and inflammatory markers; abnormal lipid profiles; and smaller LDL particle sizes than the major allele homozygotes in the total population. TNF-α in the TC genotype showed extremely high levels compared to the TT genotype. There were significant interactions between the genotypes and waist circumference in relation to LDL particle size, TNF-α level, and IL-6 level. Compared with the reference group, the odds ratio for central obesity in C allele carriers was significantly increased by 2-fold. CONCLUSIONS The polymorphism of TMEM182 rs141764639 might have an effect on the incidence of central obesity in the Korean population by interacting with the upregulation of TNF-α, a proinflammatory cytokine. Moreover, LDL particle size, which is an atherogenic lipid profile trait, was associated with the TMEM182 rs141764639 genotype.
Collapse
Affiliation(s)
- Minjueng Ma
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Kim
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Republic of Korea.
| |
Collapse
|
17
|
Endometrial Decidualization: The Primary Driver of Pregnancy Health. Int J Mol Sci 2020; 21:ijms21114092. [PMID: 32521725 PMCID: PMC7312091 DOI: 10.3390/ijms21114092] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
Interventions to prevent pregnancy complications have been largely unsuccessful. We suggest this is because the foundation for a healthy pregnancy is laid prior to the establishment of the pregnancy at the time of endometrial decidualization. Humans are one of only a few mammalian viviparous species in which decidualization begins during the latter half of each menstrual cycle and is therefore independent of the conceptus. Failure to adequately prepare (decidualize) the endometrium hormonally, biochemically, and immunologically in anticipation of the approaching blastocyst—including the downregulation of genes involved in the pro- inflammatory response and resisting tissue invasion along with the increased expression of genes that promote angiogenesis, foster immune tolerance, and facilitate tissue invasion—leads to abnormal implantation/placentation and ultimately to adverse pregnancy outcome. We hypothesize, therefore, that the primary driver of pregnancy health is the quality of the soil, not the seed.
Collapse
|
18
|
Ogawa M, Okajima T. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol 2019; 56:72-77. [PMID: 30669087 DOI: 10.1016/j.sbi.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022]
Abstract
Extracellular O-GlcNAc is a unique modification restricted to the epidermal growth factor (EGF) domain-containing glycoproteins. This O-GlcNAcylation is catalyzed by the EGF-domain specific O-GlcNAc transferase (EOGT), which is localized in the lumen of endoplasmic reticulum. In humans, EOGT is one of the causative genes of a congenital disease, Adams-Oliver syndrome. EOGT is highly expressed in endothelial cells and regulates vascular development and integrity by potentiating Delta-like ligand-mediated Notch signaling. In Drosophila, Eogt modifies Dumpy, an apical extracellular matrix glycoprotein, and affects Dumpy-dependent cell-matrix interaction. In this review, we summarize the current findings of the structure and functions of extracellular O-GlcNAc in animals.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
19
|
Yu M, Wang H, Liu J, Qin H, Liu S, Yan Q. The sialyltransferase ST3Gal3 facilitates the receptivity of the uterine endometrium
in vitro
and
in vivo. FEBS Lett 2018; 592:3696-3707. [DOI: 10.1002/1873-3468.13252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Huamin Qin
- Department of Pathology The Second Affiliated Hospital of Dalian Medical University China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| |
Collapse
|
20
|
Ewington LJ, Tewary S, Brosens JJ. New insights into the mechanisms underlying recurrent pregnancy loss. J Obstet Gynaecol Res 2018; 45:258-265. [PMID: 30328240 DOI: 10.1111/jog.13837] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Recurrent pregnancy loss (RPL), defined as multiple consecutive miscarriages, is a devastating disorder for which there are no good treatment options. Two opposing paradigms have emerged to explain RPL. The prevailing clinical viewpoint is that RPL is caused by a spectrum of subclinical disorders, ranging from thrombophilia to anatomical, endocrine and immunological disorders, that somehow converge on a 'fragile' early pregnancy state, leading to miscarriage. A new paradigm, based on emerging concepts around early implantation events, challenges the conventional thinking around RPL. It purports that the high incidence of embryonic aneuploidies and mosaicism coupled with a cycling endometrium necessitates the introduction of multiple 'quality control' checkpoints in the first trimester of pregnancy to limit maternal investment in a failing pregnancy. Here we review the evidence underpinning both paradigms and examine how new thinking around RPL may lead to more effective preventative strategies.
Collapse
Affiliation(s)
- Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, UK
| |
Collapse
|
21
|
Brosens I, Muter J, Ewington L, Puttemans P, Petraglia F, Brosens JJ, Benagiano G. Adolescent Preeclampsia: Pathological Drivers and Clinical Prevention. Reprod Sci 2018; 26:159-171. [DOI: 10.1177/1933719118804412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ivo Brosens
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Lauren Ewington
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | | | - Felice Petraglia
- Department of Biomedical, Experimental and Clinical Sciences (Mario Serio), University of Florence, Florence, Italy
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Giuseppe Benagiano
- Department of Gynaecology, Obstetrics and Urology, “Sapienza” University, Rome, Italy
| |
Collapse
|
22
|
Lima VV, Dela Justina V, Dos Passos RR, Volpato GT, Souto PCS, San Martin S, Giachini FR. O-GlcNAc Modification During Pregnancy: Focus on Placental Environment. Front Physiol 2018; 9:1263. [PMID: 30298013 PMCID: PMC6160872 DOI: 10.3389/fphys.2018.01263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Successful placentation is a key event for fetal development, which commences following embryo implantation into the uterine wall, eliciting decidualization, placentation, and remodeling of blood vessels to provide physiological exchange between embryo-fetus and mother. Several signaling pathways are recruited to modulate such important processes and specific proteins that regulate placental function are a target for the glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc), or O-GlcNAcylation. This is a reversible post-translational modification on nuclear and cytoplasmic proteins, mainly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation has been implicated as a modulator of proteins, both in physiological and pathological conditions and, more recently, O-GlcNAc has also been shown to be an important modulator in placental tissue. In this mini-review, the interplay between O-GlcNAcylation of proteins and placental function will be addressed, discussing the possible implications of this post-translational modification through placental development and pregnancy.
Collapse
Affiliation(s)
- Victor Vitorino Lima
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | | | | | - Gustavo Tadeu Volpato
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Paula Cristina S Souto
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Sebastian San Martin
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernanda Regina Giachini
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil.,Institute of Biological Science, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|