1
|
Li Z, Xu L, Huang D, Li C, Haenen GRMM, Zhang M. NR0B2 Is a Key Factor for Gastric Diseases: A GEO Database Analysis Combined with Drug-Target Mendelian Randomization. Genes (Basel) 2024; 15:1210. [PMID: 39336801 PMCID: PMC11431353 DOI: 10.3390/genes15091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Small Heterodimer Partner (SHP; NR0B2) is an orphan receptor that acts as a transcriptional regulator, controlling various metabolic processes, and is a potential therapeutic target for cancer. Examining the correlation between the expression of NR0B2 and the risk of gastric diseases could open a new path for treatment and drug development. The Gene Expression Omnibus (GEO) database was utilized to explore NR0B2 gene expression profiles in gastric diseases. Co-expressed genes were identified through Weighted Correlation Network Analysis (WGCNA), and GO enrichment was performed to identify potential pathways. The Xcell method was employed to analyze immune infiltration relationships. To determine the potential causal relationship between NR0B2 expression and gastric diseases, we identified six single-nucleotide polymorphisms (SNPs) as a proxy for NR0B2 expression located within 100 kilobases of NR0B2 and which are associated with triglyceride homeostasis and performed drug-target Mendelian randomization (MR). Bioinformatics analysis revealed that NR0B2 expression levels were reduced in gastric cancer and increased in gastritis. GO analysis and Gene Set Enrichment Analysis (GSEA) showed that NR0B2 is widely involved in oxidation-related processes. Immune infiltration analyses found that NR0B2 was associated with Treg. Prognostic analyses showed that a low expression of NR0B2 is a risk factor for the poor prognoses of gastric cancer. MR analyses revealed that NR0B2 expression is associated with a risk of gastric diseases (NR0B2 vs. gastric cancer, p = 0.006, OR: 0.073, 95%CI: 0.011-0.478; NR0B2 vs. gastric ulcer, p = 0.03, OR: 0.991, 95%CI: 0.984-0.999; NR0B2 vs. other gastritis, p = 0.006, OR:3.82, 95%CI: 1.468-9.942). Our study confirms the causal relationship between the expression of NR0B2 and the risk of gastric diseases, and highlights its role in the progression of gastric cancer. The present study opens new avenues for exploring the potential of drugs that either activate or inhibit the NR0B2 receptor in the treatment of gastric diseases.
Collapse
Affiliation(s)
- Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China; (L.X.); (D.H.)
| | - Lijia Xu
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China; (L.X.); (D.H.)
| | - Dongliang Huang
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China; (L.X.); (D.H.)
| | - Chujie Li
- Precision Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Personalized Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| |
Collapse
|
2
|
Vidana Gamage HE, Shahoei SH, Wang Y, Jacquin E, Weisser E, Bautista RO, Henn MA, Schane CP, Nelczyk AT, Ma L, Das Gupta A, Bendre SV, Nguyen T, Tiwari S, Tjoanda E, Krawczynska N, He S, Albright ST, Farmer R, Smith AJ, Fink EC, Chen H, Sverdlov M, Gann PH, Boidot R, Vegran F, Fanning SW, Hergenrother PJ, Apetoh L, Nelson ER. NR0B2 re-educates myeloid immune cells to reduce regulatory T cell expansion and progression of breast and other solid tumors. Cancer Lett 2024; 597:217042. [PMID: 38908543 DOI: 10.1016/j.canlet.2024.217042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/24/2024]
Abstract
Although survival from breast cancer has dramatically increased, many will develop recurrent, metastatic disease. Unfortunately, survival for this stage of disease remains very low. Activating the immune system has incredible promise since it has the potential to be curative. However, immune checkpoint blockade (ICB) which works through T cells has been largely disappointing for metastatic breast cancer. One reason for this is a suppressive myeloid immune compartment that is unaffected by ICB. Cholesterol metabolism and proteins involved in cholesterol homeostasis play important regulatory roles in myeloid cells. Here, we demonstrate that NR0B2, a nuclear receptor involved in negative feedback of cholesterol metabolism, works in several myeloid cell types to impair subsequent expansion of regulatory T cells (Tregs); Tregs being a subset known to be highly immune suppressive and associated with poor therapeutic response. Within myeloid cells, NR0B2 serves to decrease many aspects of the inflammasome, ultimately resulting in decreased IL1β; IL1β driving Treg expansion. Importantly, mice lacking NR0B2 exhibit accelerated tumor growth. Thus, NR0B2 represents an important node in myeloid cells dictating ensuing Treg expansion and tumor growth, thereby representing a novel therapeutic target to re-educate these cells, having impact across different solid tumor types. Indeed, a paper co-published in this issue demonstrates the therapeutic utility of targeting NR0B2.
Collapse
Affiliation(s)
- Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | | | - Erin Weisser
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rafael O Bautista
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Claire P Schane
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Adam T Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Tiffany Nguyen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Evelyn Tjoanda
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Samuel T Albright
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rachel Farmer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Amanda J Smith
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Emma C Fink
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | - Hong Chen
- Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
| | - Peter H Gann
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA; Department of Pathology, University of Illinois at Chicago, Illinois, USA
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center, Dijon, France; ICMUB UMR CNRS 6302, Dijon, France
| | | | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| | | | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA.
| |
Collapse
|
3
|
Vidana Gamage HE, Albright ST, Smith AJ, Farmer R, Shahoei SH, Wang Y, Fink EC, Jacquin E, Weisser E, Bautista RO, Henn MA, Schane CP, Nelczyk AT, Ma L, Das Gupta A, Bendre SV, Nguyen T, Tiwari S, Krawczynska N, He S, Tjoanda E, Chen H, Sverdlov M, Gann PH, Boidot R, Vegran F, Fanning SW, Apetoh L, Hergenrother PJ, Nelson ER. Development of NR0B2 as a therapeutic target for the re-education of tumor associated myeloid cells. Cancer Lett 2024; 597:217086. [PMID: 38944231 DOI: 10.1016/j.canlet.2024.217086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Immune checkpoint blockade (ICB) has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. A paper co-published in this issue describes how NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Here, we develop NR0B2 as a potential therapeutic target. NR0B2 in tumors is associated with improved survival for several cancer types including breast. Importantly, NR0B2 expression is also prognostic of ICB success. Within breast tumors, NR0B2 expression is inversely associated with FOXP3, a marker of Tregs. While a described agonist (DSHN) had some efficacy, it required high doses and long treatment times. Therefore, we designed and screened several derivatives. A methyl ester derivative (DSHN-OMe) emerged as superior in terms of (1) cellular uptake, (2) ability to regulate expected expression of genes, (3) suppression of Treg expansion using in vitro co-culture systems, and (4) efficacy against the growth of primary and metastatic tumors. This work identifies NR0B2 as a target to re-educate myeloid immune cells and a novel ligand with significant anti-tumor efficacy in preclinical models.
Collapse
Affiliation(s)
- Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Samuel T Albright
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Amanda J Smith
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rachel Farmer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Emma C Fink
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | | | - Erin Weisser
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rafael O Bautista
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Claire P Schane
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Adam T Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Tiffany Nguyen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Evelyn Tjoanda
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Hong Chen
- Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
| | - Peter H Gann
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA; Department of Pathology, University of Illinois at Chicago, Illinois, USA
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center, Dijon, France; ICMUB UMR CNRS 6302, Dijon, France
| | | | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | | | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA.
| |
Collapse
|
4
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Ahamed F, Eppler N, Jones E, He L, Zhang Y. Small Heterodimer Partner Modulates Macrophage Differentiation during Innate Immune Response through the Regulation of Peroxisome Proliferator Activated Receptor Gamma, Mitogen-Activated Protein Kinase, and Nuclear Factor Kappa B Pathways. Biomedicines 2023; 11:2403. [PMID: 37760844 PMCID: PMC10525324 DOI: 10.3390/biomedicines11092403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatic macrophages act as the liver's first line of defense against injury. Their differentiation into proinflammatory or anti-inflammatory subpopulations is a critical event that maintains a delicate balance between liver injury and repair. In our investigation, we explored the influence of the small heterodimer partner (SHP), a nuclear receptor primarily associated with metabolism, on macrophage differentiation during the innate immune response. During macrophage differentiation, we observed significant alterations in Shp mRNA expression. Deletion of Shp promoted M1 differentiation while interfering with M2 polarization. Conversely, overexpression of SHP resulted in increased expression of peroxisome proliferator activated receptor gamma (Pparg), a master regulator of anti-inflammatory macrophage differentiation, thereby inhibiting M1 differentiation. Upon lipopolysaccharide (LPS) injection, there was a notable increase in the proinflammatory M1-like macrophages, accompanied by exacerbated infiltration of monocyte-derived macrophages (MDMs) into the livers of Shp myeloid cell specific knockout (Shp-MKO). Concurrently, we observed significant induction of tumor necrosis factor alpha (Tnfa) and chemokine (C-C motif) ligand 2 (Ccl2) expression in LPS-treated Shp-MKO livers. Additionally, the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways were activated in LPS-treated Shp-MKO livers. Consistently, both pathways were hindered in SHP overexpression macrophages. Finally, we demonstrated that SHP interacts with p65, thereby influencing macrophage immune repones. In summary, our study uncovered a previously unrecognized role of SHP in promoting anti-inflammatory macrophage differentiation during the innate immune response. This was achieved by SHP acting as a regulator for the Pparg, MAPK, and NF-κB pathways.
Collapse
Affiliation(s)
| | | | | | | | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (F.A.); (N.E.); (E.J.); (L.H.)
| |
Collapse
|
6
|
Gamage HEV, Shahoei SH, Albright ST, Wang Y, Smith AJ, Farmer R, Fink EC, Jacquin E, Weisser E, Bautista RO, Henn MA, Schane CP, Nelczyk AT, Ma L, Gupta AD, Bendre SV, Nguyen T, Tiwari S, Krawczynska N, He S, Tjoanda E, Chen H, Sverdlov M, Gann PH, Boidot R, Vegran F, Fanning SW, Apetoh L, Hergenrother PJ, Nelson ER. Re-education of myeloid immune cells to reduce regulatory T cell expansion and impede breast cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553229. [PMID: 37645737 PMCID: PMC10462080 DOI: 10.1101/2023.08.14.553229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.
Collapse
Affiliation(s)
- Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Samuel T. Albright
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Amanda J. Smith
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rachel Farmer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Emma C. Fink
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | | | - Erin Weisser
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Rafael O. Bautista
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Madeline A. Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Claire P. Schane
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Adam T. Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Shruti V. Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Tiffany Nguyen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Srishti Tiwari
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Evelyn Tjoanda
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Hong Chen
- Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Maria Sverdlov
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
| | - Peter H. Gann
- Research Histology and Tissue Imaging Core, University of Illinois at Chicago, Illinois, USA
- Department of Pathology, University of Illinois at Chicago, Illinois, USA
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-Francois Leclerc cancer Center, Dijon, France, and ICMUB UMR CNRS 6302, Dijon, France
| | | | - Sean W. Fanning
- Department of Cancer Biology, Loyola University Chicago Health Sciences Campus, Illinois, USA
| | | | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
7
|
Bayram M, Irak K, Cifci S, Koksal AR, Kazezoglu C, Acar Z, Ozarı HO, Alkim H. The effectiveness of small heterodimer partner and FGF 19 levels in prediction of perinatal morbidity in intrahepatic cholestasis of pregnancy. J OBSTET GYNAECOL 2022; 42:1174-1178. [DOI: 10.1080/01443615.2022.2028275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehmet Bayram
- Department of Gastroenterology, Health Sciences University Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Kader Irak
- Department of Gastroenterology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sami Cifci
- Department of Gastroenterology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ali Riza Koksal
- Department of Gastroenterology & Hepatology, Tulane University of Medicine, New Orleans, LA, USA
| | - Cemal Kazezoglu
- Department of Biochemistry, Health Sciences University Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Zuat Acar
- Department of Perinatology, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Halil Onur Ozarı
- Department of Gastroenterology, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Huseyin Alkim
- Department of Gastroenterology, Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Hutchinson SA, Websdale A, Cioccoloni G, Røberg-Larsen H, Lianto P, Kim B, Rose A, Soteriou C, Pramanik A, Wastall LM, Williams BJ, Henn MA, Chen JJ, Ma L, Moore JB, Nelson E, Hughes TA, Thorne JL. Liver x receptor alpha drives chemoresistance in response to side-chain hydroxycholesterols in triple negative breast cancer. Oncogene 2021; 40:2872-2883. [PMID: 33742124 PMCID: PMC8062267 DOI: 10.1038/s41388-021-01720-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Triple negative breast cancer (TNBC) is challenging to treat successfully because targeted therapies do not exist. Instead, systemic therapy is typically restricted to cytotoxic chemotherapy, which fails more often in patients with elevated circulating cholesterol. Liver x receptors are ligand-dependent transcription factors that are homeostatic regulators of cholesterol, and are linked to regulation of broad-affinity xenobiotic transporter activity in non-tumor tissues. We show that LXR ligands confer chemotherapy resistance in TNBC cell lines and xenografts, and that LXRalpha is necessary and sufficient to mediate this resistance. Furthermore, in TNBC patients who had cancer recurrences, LXRalpha and ligands were independent markers of poor prognosis and correlated with P-glycoprotein expression. However, in patients who survived their disease, LXRalpha signaling and P-glycoprotein were decoupled. These data reveal a novel chemotherapy resistance mechanism in this poor prognosis subtype of breast cancer. We conclude that systemic chemotherapy failure in some TNBC patients is caused by co-opting the LXRalpha:P-glycoprotein axis, a pathway highly targetable by therapies that are already used for prevention and treatment of other diseases.
Collapse
Affiliation(s)
- Samantha A Hutchinson
- School of Food Science and Nutrition, University of Leeds, Leeds, UK.,Institute for Cancer Research, London, UK
| | - Alex Websdale
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | - Priscilia Lianto
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Baek Kim
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ailsa Rose
- School of Medicine, University of Leeds, Leeds, UK
| | - Chrysa Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | | | | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Joy J Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | | | - Erik Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.,Cancer Center at Illinois, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Thomas A Hughes
- School of Medicine, University of Leeds, Leeds, UK. .,Leeds Breast Cancer Research Group, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds, UK. .,Leeds Breast Cancer Research Group, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, Menon K, Chen JJ, Baek AE, Vardanyan A, Shahoei SH, Park S, Shapiro DJ, Nanjappa SG, Nelson ER. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 2020; 493:266-283. [PMID: 32861706 DOI: 10.1016/j.canlet.2020.08.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chaeyeon Han
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Karan Menon
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joy J Chen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Amy E Baek
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anna Vardanyan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Som G Nanjappa
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
Sipe LM, Chaib M, Pingili AK, Pierre JF, Makowski L. Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity. Immunol Rev 2020; 295:220-239. [PMID: 32320071 PMCID: PMC7841960 DOI: 10.1111/imr.12856] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) are known facilitators of nutrient absorption but recent paradigm shifts now recognize BAs as signaling molecules regulating both innate and adaptive immunity. Bile acids are synthesized from cholesterol in the liver with subsequent microbial modification and fermentation adding complexity to pool composition. Bile acids act on several receptors such as Farnesoid X Receptor and the G protein-coupled BA receptor 1 (TGR5). Interestingly, BA receptors (BARs) are expressed on immune cells and activation either by BAs or BAR agonists modulates innate and adaptive immune cell populations skewing their polarization toward a more tolerogenic anti-inflammatory phenotype. Intriguingly, recent evidence also suggests that BAs promote anti-tumor immune response through activation and recruitment of tumoricidal immune cells such as natural killer T cells. These exciting findings have redefined BA signaling in health and disease wherein they may suppress inflammation on the one hand, yet promote anti-tumor immunity on the other hand. In this review, we provide our readers with the most recent understanding of the interaction of BAs with the host microbiome, their effect on innate and adaptive immunity in health and disease with a special focus on obesity, bariatric surgery-induced weight loss, and immune checkpoint blockade in cancer.
Collapse
Affiliation(s)
- Laura M. Sipe
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ajeeth K. Pingili
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Liza Makowski
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Shahoei SH, Kim YC, Cler SJ, Ma L, Anakk S, Kemper JK, Nelson ER. Small Heterodimer Partner Regulates Dichotomous T Cell Expansion by Macrophages. Endocrinology 2019; 160:1573-1589. [PMID: 31050726 PMCID: PMC6549582 DOI: 10.1210/en.2019-00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
The involvement of small heterodimer partner (SHP) in the inhibition of hepatic bile acid synthesis from cholesterol has been established. However, extrahepatic expression of SHP implies that SHP may have regulatory functions other than those in the liver. Here, we find that SHP mRNA expression is high in murine bone marrow cells, suggesting a physiological role within macrophages. Indeed, expression of SHP in macrophages decreases the transcriptional activity and nuclear localization of nuclear factor κB, whereas downregulation of SHP has the opposite effects. Expression of genes associated with macrophage-T cell crosstalk were altered by overexpression or downregulation of SHP. Intriguingly, increasing SHP expression in macrophages resulted in decreased T cell expansion, a hallmark of T cell activation, whereas knockdown of SHP resulted in increased expansion. Analyses of the expanded T cells revealed a dichotomous skewing between effector T cells and regulatory T cells (Tregs), with SHP overexpression reducing Tregs and downregulation of SHP increasing their expansion. The expanded Tregs were confirmed to be suppressive via adoptive transfers. IL-2 and TGF-β, known inducers of Treg differentiation, were found to be regulated by SHP. Furthermore, SHP occupancy at the promoter region of IL-2 was increased after macrophages were challenged with lipopolysaccharide. Neutralizing antibodies to IL-2 and TGF-β inhibited the expansion of Tregs mediated by downregulation of SHP. This study demonstrates that expression and activity of SHP within macrophages can alter T cell fate and identifies SHP as a potential therapeutic target for autoimmune diseases or solid cancers.
Collapse
Affiliation(s)
- Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Samuel J Cler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jongsook K Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Correspondence: Erik R. Nelson, PhD, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue (MC-114), Urbana, Illinois 61801. E-mail:
| |
Collapse
|