1
|
Cobbaut M, McDonald NQ, Parker PJ. Control of atypical PKCι membrane dissociation by tyrosine phosphorylation within a PB1-C1 interdomain interface. J Biol Chem 2023; 299:104847. [PMID: 37211093 PMCID: PMC10333572 DOI: 10.1016/j.jbc.2023.104847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial β-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK.
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
2
|
Panicker V, Wilson SG, Walsh JP, Richards JB, Brown SJ, Beilby JP, Bremner AP, Surdulescu GL, Qweitin E, Gillham-Nasenya I, Soranzo N, Lim EM, Fletcher SJ, Spector TD. A locus on chromosome 1p36 is associated with thyrotropin and thyroid function as identified by genome-wide association study. Am J Hum Genet 2010; 87:430-5. [PMID: 20826269 DOI: 10.1016/j.ajhg.2010.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/21/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022] Open
Abstract
Thyroid hormones are key regulators of cellular growth, development, and metabolism, and thyroid disorders are a common cause of ill health in the community. Circulating concentrations of thyrotropin (TSH), thyroxine (T4) and triiodothyronine (T3) have a strong heritable component and are thought to be under polygenic control, but the genes responsible are mostly unknown. In order to identify genetic loci associated with these metabolic phenotypes, we performed a genome-wide association study of 2,120,505 SNPs in 2014 female twins from the TwinsUK study and found a significant association between rs10917469 on chromosome 1p36.13 and serum TSH (p = 3.2 × 10(-8)). The association of rs10917469 with serum TSH was replicated (p = 2.0 × 10(-4)) in an independent community-based sample of 1154 participants in the Busselton Health Study. This SNP is located near CAPZB, which might be a regulator of TSH secretion and thus of pituitary-thyroid axis function. Twenty-nine percent of white individuals carry the variant, and the difference in mean TSH concentrations between wild-type individuals and those homozygous for the minor G allele was 0.5 mU/l, which is likely to be clinically relevant. We also provide evidence of suggestive association (p < 5.0 × 10(-6)) of other SNPs with serum TSH, free T4, and free T3 concentrations, and these SNPs might be good targets for further studies. These results advance understanding of the genetic basis of pituitary-thyroid axis function and metabolic regulation.
Collapse
|
3
|
Flavin R, Jackl G, Finn S, Smyth P, Ring M, O'Regan E, Cahill S, Unger K, Denning K, Jinghuan Li, Aherne S, Tallini G, Gaffney E, O'Leary JJ, Zitzelsberger H, Sheils O. RET/PTC rearrangement occurring in primary peritoneal carcinoma. Int J Surg Pathol 2009; 17:187-97. [PMID: 19147513 DOI: 10.1177/1066896908329593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RET/PTC rearrangements are initiating events in the development of a significant proportion of papillary thyroid carcinomas. Activated RET/PTC mutations are thought to be restricted to thyroid disease, but this study proposes that these events may also occur in nonthyroid tumors. A total of 57 nonthyroid papillary tumors were examined for RET/PTC rearrangements using interphase fluorescence in situ hybridization, Taqman reverse transcriptase polymerase chain reaction, and immunohistochemistry. Taqman single nucleotide polymorphism detection was used to analyze for expression of mutated BRAF T1799A. In all, 20% (3/15) of primary peritoneal carcinoma had detectable RET/PTC1 rearrangements by all 3 methodologies. A further case of similar histotype had an alternate RET/ PTC rearrangement. No RET/PTC1 rearrangements were detected in the remaining tumor cohort. All 57 tumors were homozygous for wild-type BRAF. The results indicate that RET/PTC rearrangements occur in a small subset of nonthyroid papillary tumors. These rearrangements may not be directly implicated in tumor growth; rather representing "passenger" mutations reflecting RET instability in secondary tumor subclones.
Collapse
Affiliation(s)
- Richard Flavin
- Department of Histopathology, Trinity College Medical School, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang Y, Du D, Fang L, Yang G, Zhang C, Zeng R, Ullrich A, Lottspeich F, Chen Z. Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling. EMBO J 2006; 25:5058-70. [PMID: 17053785 PMCID: PMC1630420 DOI: 10.1038/sj.emboj.7601384] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 09/12/2006] [Indexed: 11/08/2022] Open
Abstract
The conserved polarity complex, comprising the partitioning-defective (Par) proteins Par3 and Par6, and the atypical protein kinase C, functions in various cell-polarization events and asymmetric cell divisions. However, little is known about whether and how external stimuli-induced signals may regulate Par3 function in epithelial cell polarity. Here, we found that Par3 was tyrosine phosphorylated through phosphoproteomic profiling of pervanadate-induced phosphotyrosine proteins. We also demonstrated that the tyrosine phosphorylation event induced by multiple growth factors including epidermal growth factor (EGF) was dependent on activation of Src family kinase (SFK) members c-Src and c-Yes. The tyrosine residue 1127 (Y1127) of Par3 was identified as the major EGF-induced phosphorylation site. Moreover, we found that Y1127 phosphorylation reduced the association of Par3 with LIM kinase 2 (LIMK2), thus enabling LIMK2 to regulate cofilin phosphorylation dynamics. Substitution of Y1127 for phenylalanine impaired the EGF-induced Par3 and LIMK2 dissociation and delayed epithelial tight junction (TJ) assembly considerably. Collectively, these data suggest a novel, phosphotyrosine-dependent fine-tuning mechanism of Par3 in epithelial TJ assembly controlled by the EGF receptor-SFK signaling pathway.
Collapse
Affiliation(s)
- Yiguo Wang
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Dan Du
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Longhou Fang
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Guang Yang
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Chenyi Zhang
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | - Zhengjun Chen
- Key Laboratory of Proteomics and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- SHARF Laboratory, Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China. Tel.: 86 21 54921081; Fax: 86 21 54921081; E-mail:
| |
Collapse
|
5
|
Yates C, Wells A, Turner T. Luteinising hormone-releasing hormone analogue reverses the cell adhesion profile of EGFR overexpressing DU-145 human prostate carcinoma subline. Br J Cancer 2005; 92:366-75. [PMID: 15655536 PMCID: PMC2361841 DOI: 10.1038/sj.bjc.6602350] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cetrorelix, a luteinising hormone-releasing hormone (LHRH) analogue, has been shown to limit growth of the human androgen-independent prostate cell line DU-145, although other inhibitory actions may also be affected. Both growth and invasion of DU-145 cells are linked to autocrine epidermal growth factor receptor (EGFR) signalling. Invasiveness requires not only cells to migrate to conduits, but also reduced adhesiveness between tumour cells to enable separation from the tumour mass. Thus, we investigated whether Cetrorelix alters the DU-145 cell-cell adhesion and if this occurs via altered EGFR signalling. Pharmacologic levels of Cetrorelix limited the invasiveness of a highly invasive DU-145 subline overexpressing full-length EGFR (DU-145 WT). Extended exposure of the cells to Cetrorelix resulted in increased levels of the cell-cell adhesion complex molecules E-cadherin, alpha- and beta-catenin, and p120. Puromycin blocked the increases in E-cadherin and beta-catenin levels, suggesting that de novo protein synthesis is required. The Cetrorelix effect appears to occur via transmodulation of EGFR by a protein kinase C (PKC)-dependent mechanism, as there were no changes in DU-145 cells expressing EGFR engineered to negate the PKC transattenuation site (DU-145 A654); downregulation of EGFR signalling produced a similar upregulation in adhesion complex proteins, further suggesting a role for autocrine signalling. Cetrorelix increased the cell-cell adhesiveness of DU-145 WT cells to an extent similar to that seen when autocrine EGFR signalling is blocked; as expected, DU-145 A654 cell-cell adhesion also was unaffected by Cetrorelix. The increased adhesiveness is expected as the adhesion complex molecules moved to the cells' periphery. These data offer direct insight into the possible crosstalk pathways between the LHRH and EGFR receptor signalling. The ability of Cetrorelix to downregulate EGFR signalling and subsequently reverse the antiadhesiveness found in metastatic prostate cancer highlights a novel potential target for therapeutic strategies.
Collapse
Affiliation(s)
- C Yates
- Department of Pathology, University of Pittsburgh, and Pittsburgh VAMC, Pittsburgh, PA 15261, USA
- Department of Biology and Center for Cancer Research, Carver Research Foundation, Tuskegee University, Tuskegee, AL 36088, USA
| | - A Wells
- Department of Pathology, University of Pittsburgh, and Pittsburgh VAMC, Pittsburgh, PA 15261, USA
| | - T Turner
- Department of Biology and Center for Cancer Research, Carver Research Foundation, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biology and Center for Cancer Research, Carver Research Foundation, Tuskegee University, Tuskegee, AL 36088, USA. E-mail:
| |
Collapse
|
6
|
Basuroy S, Sheth P, Kuppuswamy D, Balasubramanian S, Ray RM, Rao RK. Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer. J Biol Chem 2003; 278:11916-24. [PMID: 12547828 DOI: 10.1074/jbc.m211710200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The activity of Src kinases appears to play a role in both assembly and disassembly of tight junction. However, the role of a specific isoform of Src kinase in regulation of tight junction is not known. In the present study the role of c-Src in regulation of epithelial tight junction was investigated in Caco-2 cell monolayers. Oxidative stress (xanthine oxidase + xanthine) induced an activation and membrane translocation of c-Src. The oxidative stress-induced decrease in transepithelial electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 from the intercellular junctions were prevented by PP2. The rates of oxidative stress-induced activation of c-Src, tyrosine phosphorylation of ZO-1 and beta-catenin, decrease in resistance, increase in permeability to inulin, and redistribution of occludin and ZO-1 were significantly greater in cells transfected with wild type c-Src, whereas it was low in cells transfected with kinase-inactive c-SrcK297R mutant, when compared with those in empty vector-transfected cells. The rates of recovery of resistance, increase in barrier to inulin, and reorganization of occludin and ZO-1 into the intercellular junctions during the calcium-induced reassembly of tight junction were much greater in Caco-2 cells transfected with c-SrcK297R as compared with those in cells transfected with empty vector or wild type c-Src. These results show that the dominant-negative expression of kinase-inactive c-Src delays the oxidative stress-induced disruption of tight junction and accelerates calcium-induced assembly of tight junction in Caco-2 cells and demonstrate that oxidative stress-induced disruption of tight junction is mediated by the activation of c-Src.
Collapse
Affiliation(s)
- Shyamali Basuroy
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
7
|
Guo X, Rao JN, Liu L, Rizvi M, Turner DJ, Wang JY. Polyamines regulate beta-catenin tyrosine phosphorylation via Ca(2+) during intestinal epithelial cell migration. Am J Physiol Cell Physiol 2002; 283:C722-34. [PMID: 12176729 DOI: 10.1152/ajpcell.00054.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyamines are essential for early mucosal restitution that occurs by epithelial cell migration to reseal superficial wounds after injury. Normal intestinal epithelial cells are tightly bound in sheets, but they need to be rapidly disassembled during restitution. beta-Catenin is involved in cell-cell adhesion, and its tyrosine phosphorylation causes disassembly of adhesion junctions, enhancing the spreading of cells. The current study determined whether polyamines are required for the stimulation of epithelial cell migration by altering beta-catenin tyrosine phosphorylation. Migration of intestinal epithelial cells (IEC-6 line) after wounding was associated with an increase in beta-catenin tyrosine phosphorylation, which decreased the binding activity of beta-catenin to alpha-catenin. Polyamine depletion by alpha-difluoromethylornithine reduced cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)), prevented induction of beta-catenin phosphorylation, and decreased cell migration. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin restored beta-catenin phosphorylation and promoted migration in polyamine-deficient cells. Decreased beta-catenin phosphorylation through the tyrosine kinase inhibitor herbimycin-A or genistein blocked cell migration, which was accompanied by reorganization of cytoskeletal proteins. These results indicate that beta-catenin tyrosine phosphorylation plays a critical role in polyamine-dependent cell migration and that polyamines induce beta-catenin tyrosine phosphorylation at least partially through [Ca(2+)](cyt).
Collapse
Affiliation(s)
- Xin Guo
- Department of Surgery, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | |
Collapse
|
8
|
Smyth P, Sheils O, Finn S, Martin C, O'Leary J, Sweeney EC. Real-time quantitative analysis of E-cadherin expression in ret/PTC-1-activated thyroid neoplasms. Int J Surg Pathol 2001; 9:265-72. [PMID: 12574841 DOI: 10.1177/106689690100900402] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Papillary thyroid carcinoma (PTC), the most common variety of thyroid cancer, is found in a variety of morphologic variants, usually grows slowly, and is clinically indolent, although rare, aggressive forms, with local invasion or distant metastases, occur. Our group has previously demonstrated an association between Hashimoto thyroiditis and ret/PTC-1 activation, and have hypothesised that c-ret activation might be implicated in immune reaction to thyroid epithelium. The objective of this study was to examine expression of the cellular adhesion molecule, E-cadherin, in various thyroid tumor types and Hashimoto thyroiditis in the context of ret/PTC-1 positivity by using laser capture microdissection and TaqMan reverse transcription-polymerase chain reaction (RT-PCR). Variable down-regulation of E-cadherin among carcinomas was demonstrated, with anaplastic carcinomas showing little or no expression. Follicular thyroid carcinomas consistently had significantly decreased E-cadherin expression compared with papillary thyroid carcinomas. The ret/PTC-1-positive papillary thyroid carcinoma (PTCret+) and Hashimoto thyroiditis cases had consistently lower E-cadherin expression levels than the corresponding ret/PTC-1-negative papillary carcinomas (PTCret-), suggesting not only an association between ret activation and the loss of cellular adhesion but also, more significantly, an association between papillary thyroid carcinoma and Hashimoto thyroiditis.
Collapse
Affiliation(s)
- P Smyth
- Department of Histopathology, Trinity College, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Yap AS. Initiation of cell locomotility is a morphogenetic checkpoint in thyroid epithelial cells regulated by ERK and PI3-kinase signals. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:93-103. [PMID: 11443739 DOI: 10.1002/cm.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epithelial locomotility is a fundamental determinant of tissue patterning that is subject to strict physiological regulation. The current study sought to identify cellular signals that initiate cell migration in cultured thyroid epithelial cells. Porcine thyroid cells cultured as 3-dimensional follicles convert to 2-dimensional monolayers when deprived of agents that stimulate cAMP/PKA signaling. This morphogenetic event is driven by the activation of cell-on-substrate locomotility, providing a convenient assay for events that regulate the initiation of locomotion. In this system, the extracellular signal regulated kinase (ERK) pathway became activated as follicles converted to monolayer, as demonstrated by immunoblotting for activation-specific phosphorylation and nuclear accumulation of ERK. Inhibition of ERK activation using the drug PD98059 effectively prevented cells from beginning to migrate. PD98059 inhibited cell spreading, actin filament reorganization and the assembly of focal adhesions, cellular events that mediate the initiation of thyroid cell locomotility. Akt (PKB) signaling was also activated during follicle-to-monolayer conversion and the phosphoinositide 3-kinase (PI3-kinase) inhibitor, wortmannin, also blocked the initiation of cell movement. Wortmannin did not, however, block activation of ERK signaling. These findings, therefore, identify the ERK and PI3-kinase signaling pathways as important stimulators of thyroid cell locomotility. These findings are incorporated into a model where the initiation of thyroid cell motility constitutes a morphogenetic checkpoint regulated by coordinated changes in stimulatory (ERK, PI3-kinase) and tonic inhibitory (cAMP/PKA) signaling pathways.
Collapse
Affiliation(s)
- A S Yap
- Department of Physiology and Pharmacology and Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Abstract
Among oncogenes studied in thyroid cancers, a specific activated form of c-ret has been found in a minority of papillary thyroid carcinomas (PTCs). In these tumours, c-ret is activated when by somatic rearrangements, the intracellular domain of RET is juxtaposed with the amino-terminal portion of a different donor gene such as H4, thereby generating a chimeric transcript (ret/PTC-1). The functional effects of c-ret activation and its prognostic implications are currently unclear. This study was undertaken to assess the frequency of RET/PTC-1 expression, any distinctive features of positive tumours to which it might be related, and its prognostic importance. Archival material from 88 thyroid neoplasms [50 PTCs, eight anaplastic carcinomas (ATCs), 25 follicular thyroid carcinomas (FTCs) and five follicular adenomas (FAs)] were analysed for ret/PTC-1 and H4 expression using 5' nuclease assay (TaqMan RT-PCR). RNA from the TPC-1 cell line was included as a positive control for c-ret activation. No FTC or FA displayed activation of ret/PTC-1, though all expressed H4. c-ret activation was found in 24% of PTCs (12 of 50), in 87.5% of ATCs (7 of 8), and in 33% of the combined PTC/ATC group. The frequency of c-ret activation in the aggressive ATC variants noted here suggests that ret/PTC-1-positive PTCs might also have a similar poor prognosis and a follow-up study on this cohort is in progress. Ninety per cent of ret/PTC-1-positive tumours failed to express H4, a phenomenon that has not been described previously and which may have considerable bearing on tumour morphology. A statistically significant proportion (58%) of ret/PTC-1-positive, H4-negative PTCs was associated with chronic inflammatory cell infiltration of the tumour and/or the surrounding thyroid. This association has not been reported previously.
Collapse
Affiliation(s)
- O M Sheils
- Department of Histopathology, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
11
|
Sheils OM, O'eary J, Uhlmann V, Lättich K, Sweeney EC. ret/PTC-1 Activation in Hashimoto Thyroiditis. Int J Surg Pathol 2000; 8:185-189. [PMID: 11493988 DOI: 10.1177/106689690000800305] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of ret/PTC-1 has been documented in a minority of papillary thyroid carcinomas (PTC). In a recent study, the authors' group detected the presence of ret/PTC-1 in association with a background of florid lymphocytic thyroiditis (LT) in 58% of cases of PTC studied, which prompted them to examine the incidence of RET/PTC-1 expression in 27 examples of various forms of nonlymphomatous lymphoid infiltration of the thyroid by using TaqMan RT-PCR. Overall, 21 cases (78%) were found to express the chimeric transcript of ret/PTC-1. Eighteen cases of Hashimoto thyroiditis were positive (95%), and, of these, three had concomitant PTC while the remainder had no histologic evidence of associated malignancy. Three cases of lymphocytic thyroiditis demonstrated activated ret/PTC-1 (43%), two having associated PTC. These data suggest either that ret/PTC-1 is an indicator of follicular thyroid cell activation or that ret/PTC-1 activation is an early event in malignant transformation. If the latter is the case, it may be that, in a defined subset of the cell population, ret/PTC-1 activation elicits an autoimmune response, which, while possibly curtailing the development of PTC in the majority of cases, results in destruction of the thyroid parenchyma. Int J Surg Pathol 8(3):185-189, 2000
Collapse
Affiliation(s)
- O. M. Sheils
- Department of Histopathology, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
12
|
Cho JY, Sagartz JE, Capen CC, Mazzaferri EL, Jhiang SM. Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic mice. Oncogene 1999; 18:3659-65. [PMID: 10380889 DOI: 10.1038/sj.onc.1202709] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The RET/PTC1 oncogene, a rearranged form of the RET proto-oncogene, has been reported to be associated with human papillary thyroid carcinomas. We have shown that targeted expression of RET/PTC1 in the thyroid gland leads to the development of thyroid carcinomas in transgenic mice with histologic and cytologic similarities to human papillary thyroid carcinoma. To further investigate how RET/PTC1 expression contributes to the pathogenesis of papillary thyroid tumor, the time of tumor onset and the early phenotypic consequences of RET/PTC1 expression in thyrocytes were determined. All high copy transgenic mice developed bilateral thyroid tumors as early as 4 days of age. At embryological days 16-18, increased proliferation rate, distorted thyroid follicle formation and reduced radioiodide concentrating activity were identified in transgenic embryos. The reduced radioiodide concentrating activity was attributed to decreased expression of the sodium-iodide symporter. Our study showed that RET/PTC1 not only increased proliferation of thyrocytes, it also altered morphogenesis and differentiation. These findings provide a model for the role of RET/PTC1 in the formation of abnormal follicles with reduced iodide uptake ability observed in human papillary thyroid carcinoma.
Collapse
Affiliation(s)
- J Y Cho
- Department of Physiology, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|