1
|
Mogollón García HD, de Andrade Ferrazza R, Ochoa JC, de Athayde FF, Vidigal PMP, Wiltbank M, Kastelic JP, Sartori R, Ferreira JCP. Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development. Biol Res 2024; 57:76. [PMID: 39468655 PMCID: PMC11514973 DOI: 10.1186/s40659-024-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows. RESULTS Integrated analysis of gene ontology (GO), gene set enrichment (GSEA), protein-protein interaction (PPI), and gene topology identified that differentially expressed genes (DEGs) in the largest ovarian follicles at deviation (Dev) were primarily involved in FSH-negative feedback, steroidogenesis, cell proliferation, apoptosis, and the prevention of early follicle rupture. In contrast, DEGs in the second largest follicles (DevF2) were mainly related to loss of cell viability, apoptosis, and immune cell invasion. In the dominant (PostDev) and preovulatory (PreOv) follicles, DEGs were associated with vascular changes and inflammatory responses. CONCLUSIONS The transcriptome of ovarian follicular fluid cells had a predominance of granulosa cells in the dominant follicle at deviation, with upregulation of genes involved in cell viability, steroidogenesis, and apoptosis prevention, whereas in the non-selected follicle there was upregulation of cell death-related transcripts. Immune cell transcripts increased significantly after deviation, particularly in preovulatory follicles, indicating strong intrafollicular chemotactic activity. We inferred that immune cell invasion occurred despite an intact basal lamina, contributing to follicular maturation.
Collapse
Affiliation(s)
- Henry David Mogollón García
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
- Department of Genetic, Evolution, Microbiology and Immunology. Biology Institute, Campinas State University, Campinas, São Paulo, Brazil
- Computational Systems Biology Laboratory (CSBL), Institut Pasteur, University of São Paulo (USP), São Paulo, Brazil
| | | | - Julian Camilo Ochoa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
| | - Flávia Florencio de Athayde
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Milo Wiltbank
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, USA
| | | | - Roberto Sartori
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil.
| |
Collapse
|
2
|
Chang CL, Lo WC, Lee TH, Sung JY, Sung YJ. Oocyte-specific disruption of adrenomedullin 2 gene enhances ovarian follicle growth after superovulation. Front Endocrinol (Lausanne) 2022; 13:1047498. [PMID: 36452323 PMCID: PMC9702065 DOI: 10.3389/fendo.2022.1047498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adrenomedullin 2 (ADM2), adrenomedullin (ADM), and calcitonin gene-related peptides (α- and β-CGRPs) signal through heterodimeric calcitonin receptor-like receptor/receptor activity-modifying protein 1, 2 and 3 (CLR/RAMP1, 2 and 3) complexes. These peptides are important regulators of neurotransmission, vasotone, cardiovascular development, and metabolic homeostasis. In rodents, ADM is essential for regulating embryo implantation, fetal-placental development, and hemodynamic adaptation during pregnancy. On the other hand, ADM2 was shown to affect vascular lumen enlargement, and cumulus cell-oocyte complex (COC) communication in rodent and bovine ovarian follicles. To investigate whether oocyte-derived ADM2 plays a physiological role in regulating ovarian folliculogenesis, we generated mice with oocyte-specific disruption of the Adm2 gene using a LoxP-flanked Adm2 transgene (Adm2 loxP/loxP) and crossed them with Zp3-Cre mice which carry a zona pellucida 3 (Zp3) promoter-Cre recombinase transgene. RESULTS While heterozygous Adm2 +/-/Zp3-Cre and homozygous Adm2 -/-/Zp3-Cre mice were fertile, Adm2 disruption in oocytes significantly increased the number of ovulated oocytes following a superovulation treatment. Oocyte-specific Adm2 disruption also significantly impaired the developmental capacity of fertilized eggs and decreased the size of the corpus luteum following superovulation, perhaps due to a reduction of ovarian cyclin D2-associated signaling. CONCLUSIONS The disruption of intrafollicular ADM2 signaling leads to follicular dysfunction. These data suggested that oocyte-derived ADM2 plays a facilitative role in the regulation of hormonal response and follicle growth independent of the closely related ADM and CGRP peptides, albeit in a subtle manner.
Collapse
|
3
|
Sousa LMMDC, Mendes GP, Campos DB, Baruselli PS, Papa PDC. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum. PLoS One 2016; 11:e0164089. [PMID: 27711194 PMCID: PMC5053489 DOI: 10.1371/journal.pone.0164089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/18/2016] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1—the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2—the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3—the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular matrix (ECM).
Collapse
Affiliation(s)
| | - Gabriela Pacheco Mendes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Danila Barreiro Campos
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Paraíba, Areia, Paraíba, Brazil
| | - Pietro Sampaio Baruselli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Paula de Carvalho Papa
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Chauhan M, Balakrishnan M, Blesson CS, Yallampalli C. Adrenomedullin2 (ADM2)/intermedin (IMD) in rat ovary: changes in estrous cycle and pregnancy and its role in ovulation and steroidogenesis. Biol Reprod 2014; 92:39. [PMID: 25395681 DOI: 10.1095/biolreprod.113.112854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Adrenomedullin2 (ADM2) is reported to facilitate embryo implantation and placental development. Therefore, the current study was undertaken to identify if ADM2 has a functional role in ovary to facilitate its reproductive actions. This study shows that the expression of ADM2 is differentially regulated in rat estrous cycle and that ADM2 increases the synthesis and secretion of 17beta-estradiol accompanied with an increase in the expression of steroidogenic factor 1 (Sf1), estrogen receptor Esr1, and enzymes involved in steroidogenesis in equine chorionic gonadotropin (eCG)-treated rat ovaries. In addition, inhibition of endogenous ADM2 function in eCG-treated immature rats caused impaired ovulation. Furthermore, the mRNA expression of Adm2 and receptor activity modifying protein 3 is higher in the ovary on Day 18 compared to nonpregnant and pregnant rats on Day 22. ADM2-like immunoreactivity is localized in granulosa cells, blood vessels, oocytes, cumulous oophorus, and corpus luteum of pregnant ovaries, suggesting a potential role for ADM2 in the ovary. This is supported by the presence of ADM2-like immunoreactivity in the corpus luteum during pregnancy and a decline in aromatase immunoreactivity in corpus luteum on Day 9 of gestation in rats infused with ADM2 antagonist during implantation and decidualization phase. Taken together, this study suggests a potential involvement of ADM2 in the rat ovary in regulating synthesis of estradiol to support ovulation and facilitate efficient implantation and placental development for a successful pregnancy.
Collapse
Affiliation(s)
- Madhu Chauhan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Meena Balakrishnan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Chellakkan S Blesson
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Chandra Yallampalli
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Li L, Tang F, O WS. Preimplantation antagonism of adrenomedullin action compromises fetoplacental development and reduces litter size. Theriogenology 2012; 77:1846-53. [DOI: 10.1016/j.theriogenology.2011.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 10/28/2022]
|
6
|
Li L, O WS, Tang F. Adrenomedullin in rat follicles and corpora lutea: expression, functions and interaction with endothelin-1. Reprod Biol Endocrinol 2011; 9:111. [PMID: 21824440 PMCID: PMC3175455 DOI: 10.1186/1477-7827-9-111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/09/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Adrenomedullin (ADM), a novel vasorelaxant peptide, was found in human/rat ovaries. The present study investigated the interaction of ADM and endothelin-1 (ET-1) in follicles and newly formed corpora lutea (CL) and the actions of ADM on progesterone production in CL during pregnancy. METHODS The peptide and gene expression level of adrenomedullin in small antral follicles, large antral follicles and CL was studied by real-time RT-PCR and EIA. The effect of ADM treatment on oestradiol production in 5-day follicular culture and on progesterone production from CL of different pregnant stages was measured by EIA. The interaction of ADM and ET-1 in follicles and CL at their gene expression level was studied by real-time RT-PCR. RESULTS In the rat ovary, the gene expression of Adm increased during development from small antral follicles to large antral follicles and CL. In vitro treatment of preantral follicular culture for 5 days with ADM increased oestradiol production but did not affect follicular growth or ovulation rate. The regulation of progesterone production by ADM in CL in culture was pregnancy-stage dependent, inhibitory at early and late pregnancy but stimulatory at mid-pregnancy, which might contribute to the high progesterone production rate of the CL at mid-pregnancy. Moreover, the interaction between ADM and ET-1 at both the production and functional levels indicates that these two vasoactive peptides may form an important local, fine-tuning regulatory system together with LH and prolactin for progesterone production in rat CL. CONCLUSIONS As the CL is the major source of progesterone production even after the formation of placenta in rats, ADM may be an important regulator in progesterone production to meet the requirement of pregnancy.
Collapse
Affiliation(s)
- Lei Li
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wai-Sum O
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fai Tang
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Li L, Tang F, O WS. Coexpression of adrenomedullin and its receptor component proteins in the reproductive system of the rat during gestation. Reprod Biol Endocrinol 2010; 8:130. [PMID: 21034462 PMCID: PMC2984462 DOI: 10.1186/1477-7827-8-130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/29/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adrenomedullin (ADM), a novel vasorelaxant peptide, was found in human/rat ovaries and uteri. Plasma ADM level increases in pregnant women and pregnant rats. METHODS The gene expression levels of Adm and its receptor components - Crlr, Ramp1, Ramp2 and Ramp3, the ADM peptide concentration and localization in the rat female reproductive system during gestation were studied by real-time RT-PCR, EIA and immunohistochemical techniques. RESULTS The mRNAs of Adm and its receptor component and ADM were differentially distributed between implantation sites and inter-implantation sites of the pregnant uterus. The day on which vaginal sperm were found was taken to be pregnancy day 1. The Adm mRNA levels in the implantation sites of the uteri in mid- (day 12) and late pregnancy (day 17) were more than 10-fold higher than those in nonpregnancy, pre-implantation (day 3) or early (day 7) pregnancy. ADM was localized in the endometrial stroma with increased immunoreactivity from nonpregnancy to pregnancy. The ADM level and the mRNA levels of Adm, Crlr, Ramp2 and Ramp3 in the corpus luteum all increased in late pregnancy compared with early pregnancy. The gene expression of Adm and it receptor components and intense immunostaining of ADM were also found in the oviduct during pregnancy. CONCLUSIONS The gene expressions levels of Adm and its receptor components - Crlr, Ramp1, Ramp2 and Ramp3, and ADM peptide concentration exhibited a spatio-temporal pattern in the rat female reproductive system during gestation and this suggests that ADM may play important roles in gestation.
Collapse
Affiliation(s)
- Lei Li
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fai Tang
- Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wai-Sum O
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
8
|
Marinoni E, Feliciani E, Muzzonigro F, Letizia C, Tranquilli A, Tranquilli D, Aragona C, Moscarini M, Di Iorio R. Intrafollicular concentration of adrenomedullin is associated with IVF outcome. Gynecol Endocrinol 2010; 26:435-9. [PMID: 20170350 DOI: 10.3109/09513591003632076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To test the hypothesis that serum or intrafollicular concentrations of adrenomedullin (AM) would correlate with reproductive outcomes in in vitro fertilisation (IVF) cycles. DESIGN Serum and follicular fluid samples were collected during transvaginal oocyte retrieval. The follicular fluid was individually aspirated, and the presence of oocyte was recorded. AM concentrations were measured using an enzyme-linked immunosorbent assay. SETTING Department of Gynaecology, Perinatology and Child Health, 'Sapienza' University of Rome, Italy. PATIENTS Eighty women undergoing IVF for primary infertility aged 18-45 years. MAIN OUTCOME MEASURES AM concentrations in plasma and follicular fluid were correlated to follicular fluid volume, presence of oocyte, oocyte maturation, embryo grading, fertilisation and pregnancy rates, live-birth rate and plasma estrogen concentration. RESULTS Monofollicular fluid AM concentrations did not differ between follicles containing oocyte and those without oocyte; however, AM concentrations were lower in follicles that resulted in pregnancy than in those that failed. Serum but not follicular fluid AM concentrations correlated with serum estrogen levels. Follicular fluid AM correlated with plasma AM levels. CONCLUSION We conclude that higher level of AM in the follicular fluid appears to be associated with a negative outcome in IVF treatment.
Collapse
Affiliation(s)
- Emanuela Marinoni
- Center for Scientific Research, San Pietro Hospital Fatebenefratelli, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li YY, Li L, Hwang ISS, Tang F, O WS. Coexpression of Adrenomedullin and Its Receptors in the Reproductive System of the Rat: Effects on Steroid Secretion in Rat Ovary1. Biol Reprod 2008; 79:200-8. [DOI: 10.1095/biolreprod.107.064022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
10
|
Krzysik-Walker SM, Ocón-Grove OM, Maddineni SB, Hendricks GL, Ramachandran R. Identification of Calcitonin Expression in the Chicken Ovary: Influence of Follicular Maturation and Ovarian Steroids1. Biol Reprod 2007; 77:626-35. [PMID: 17582014 DOI: 10.1095/biolreprod.106.054957] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.
Collapse
Affiliation(s)
- Susan M Krzysik-Walker
- Department of Poultry Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
11
|
Takei Y, Hyodo S, Katafuchi T, Minamino N. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 2004; 25:1643-56. [PMID: 15476931 DOI: 10.1016/j.peptides.2004.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Adrenomedullin (AM) has been recognized as a member of the calcitonin (CT)/CT gene-related peptide (CGRP) family. However, an independent AM family consisting of five paralogous peptides exists in teleost fish. Among them, the peptide named AM1 is an ortholog of mammalian AM as determined by the linkage analysis of orthologous genes and the presence of proAM N-terminal 20 peptide (PAMP)-like sequence in the prosegment. Since the peptides named AM2 and 3 are distinct from other members with respect to the precursor sequence, tissue distribution of the transcripts, and exon-intron organization, we searched for their mammalian orthologs from genome databases, which resulted in an identification of AM2 in human, rat, and mouse. AM2 was expressed abundantly in the submaxillary gland, kidney, and some vascular and digestive tissues of mice. AM2 injected in vivo induced potent cardiovascular and renal effects in mice. In the heart and kidney of mice, AM2 was localized in endothelial cells of the coronary vessels and in glomeruli and vasa recta, respectively. AM2 increased cAMP accumulation in cells expressing human CT receptor-like receptor (CRLR) and one of receptor activity-modifying proteins (RAMPs), but it was no more potent than CGRP and AM. AM2 was also less potent than CT in cells expressing CT receptor and RAMP. There remains a possibility that a new AM2-specific receptor or an additional RAMP that enables CRLR to be an AM2-specific receptor, exists in mammals.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | | | |
Collapse
|
12
|
Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett 2003; 556:53-8. [PMID: 14706825 DOI: 10.1016/s0014-5793(03)01368-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified cDNA encoding a new member of the adrenomedullin (AM) family, AM2, for the first time in mammals (mouse, rat and human). The predicted precursor carried mature AM2 in the C-terminus, which had an intramolecular ring formed by an S-S bond and a possibly amidated C-terminus. Phylogenetic analyses clustered AM2 and AM into two distinct but closely related groups. Similarity of exon-intron structure and synteny of neighboring genes showed that mammalian AM2 is an ortholog of pufferfish AM2 and a paralog of mammalian AM. AM2 mRNA was expressed in submaxillary gland, kidney, stomach, ovary, lymphoid tissues and pancreas of mice, but not in adrenal and testis. Intravenous injection of synthetic mature AM2 decreased arterial pressure more potently than AM, and induced antidiuresis and antinatriuresis in mice. These results show that at least two peptides, AM and AM2, comprise an adrenomedullin family in mammals, and that AM2 may play pivotal roles in cardiovascular and body fluid regulation.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano-ku, 164-8639, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Adrenomedullin (AM) was originally identified in the extracts of human pheochromocytoma tissue, but this peptide is now known to be synthesized and secreted from many kinds of cells in the body, including vascular smooth muscle cells, endothelial cells, fibroblasts, cardiac myocytes, epithelial cells, and cancer cells. In this review, we summarize AM-secreting and AM gene-expressing cells in addition to the regulation of secretion and gene expression of AM. Although the data are still limited to deduce the general features of AM gene expression, synthesis, and secretion, AM is assumed to be classified into the new class of biologically active peptides, which is mainly expressed and secreted from non-endocrine type cells by the stimulation with inflammation-related substances. It is also interesting that serious physiological conditions such as inflammation or hypoxia potently stimulate AM expression and release, suggesting its unique physiological function distinct from other known biologically active peptides.
Collapse
Affiliation(s)
- Naoto Minamino
- National Cardiovascular Center Research Institute, Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | |
Collapse
|
14
|
Manau D, Balasch J, Jiménez W, Fábregues F, Civico S, Casamitjana R, Creus M, Vanrell JA. Follicular fluid concentrations of adrenomedullin, vascular endothelial growth factor and nitric oxide in IVF cycles: relationship to ovarian response. Hum Reprod 2000; 15:1295-9. [PMID: 10831558 DOI: 10.1093/humrep/15.6.1295] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marked granulosa cell proliferation along with important changes in the vascular bed of the ovary characterize IVF cycles associated with multiple follicular growth and maturation. The present report investigated follicular fluid (FF) and circulating concentrations of adrenomedullin, vascular endothelial growth factor (VEGF) and nitric oxide (NO) in 70 IVF patients (14 of whom became pregnant); these three vasoactive substances may be implicated in extensive ovarian tissue remodelling. Serum and FF concentrations of oestradiol and progesterone were also measured in the 70 IVF cycles studied. Follicular fluid concentrations of VEGF and adrenomedullin but not nitrite/nitrate (the two stable oxidation products of NO metabolism) were significantly higher (P < 0.0001) than the corresponding circulating concentrations. Follicular fluid concentrations of oestradiol and progesterone were not correlated with those of adrenomedullin, VEGF or nitrite/nitrate. No relationship existed between circulating concentrations of adrenomedullin, VEGF or nitrite/nitrate on the day of oocyte aspiration and parameters of ovarian response to gonadotrophin stimulation. In contrast, FF adrenomedullin concentration showed a direct relationship with day 3 FSH serum concentration (r = 0.53, P < 0.01) and the number of ampoules of gonadotrophin administered (r = 0.36, P < 0.005), but an inverse correlation with the total number of oocytes retrieved (r = -0.29, P < 0.01) and the number of mature oocytes (r = -0.25, P < 0. 05). A positive correlation was found for FF VEGF concentration and chronological age (r = 0.29, P < 0.05) and ampoules of gonadotrophins administered (r = 0.30, P < 0.05). There was no relationship between nitrite/nitrate FF concentrations and parameters of ovarian response. Neither serum concentrations nor FF concentrations of adrenomedullin, VEGF or nitrite/nitrate were correlated with IVF outcome. This study suggested for the first time that increased FF concentrations of adrenomedullin can be a marker of decreased ovarian response in IVF. Our results also provide further evidence favouring an association between FF VEGF and patient's age, while on the basis of our findings NO measurements are not a useful marker of ovarian response.
Collapse
Affiliation(s)
- D Manau
- Institut Clínic of Gynaecology, Obstetrics and Neonatology and Hormonal Laboratory, Faculty of Medicine-University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Since the discovery of adrenomedullin in 1993 several hundred papers have been published regarding the regulation of its secretion and the multiplicity of its actions. It has been shown to be an almost ubiquitous peptide, with the number of tissues and cell types synthesizing adrenomedullin far exceeding those that do not. In Section II of this paper we give a comprehensive review both of tissues and cell lines secreting adrenomedullin and of the mechanisms regulating gene expression. The data on circulating adrenomedullin, obtained with the various assays available, are also reviewed, and the disease states in which plasma adrenomedullin is elevated are listed. In Section III the pharmacology and biochemistry of adrenomedullin binding sites, both specific sites and calcitonin gene-related peptide (CGRP) receptors, are discussed. In particular, the putative adrenomedullin receptor clones and signal transduction pathways are described. In Section IV the various actions of adrenomedullin are discussed: its actions on cellular growth, the cardiovascular system, the central nervous system, and the endocrine system are all considered. Finally, in Section V, we consider some unresolved issues and propose future areas for research.
Collapse
Affiliation(s)
- J P Hinson
- Department of Molecular and Cellular Biology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, University of London, United Kingdom.
| | | | | |
Collapse
|