1
|
Izzi-Engbeaya C, Jones S, Crustna Y, Machenahalli PC, Papadopoulou D, Modi M, Panayi C, Starikova J, Eng PC, Phylactou M, Mills E, Yang L, Ratnasabapathy R, Sykes M, Plumptre I, Coumbe B, Wing VC, Pacuszka E, Bech P, Minnion J, Tharakan G, Tan T, Veldhuis J, Abbara A, Comninos AN, Dhillo WS. Effects of Glucagon-like Peptide-1 on the Reproductive Axis in Healthy Men. J Clin Endocrinol Metab 2020; 105:5735220. [PMID: 32052032 PMCID: PMC7082082 DOI: 10.1210/clinem/dgaa072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) potently reduces food intake and augments glucose-stimulated insulin secretion. Recent animal data suggest that GLP-1 may also influence reproduction. As GLP-1 receptor agonists are currently widely used in clinical practice to treat obesity/type 2 diabetes, it is necessary to determine the effects of GLP-1 on the reproductive system in humans. OBJECTIVE To investigate the effects of GLP-1 administration on the reproductive axis in humans. DESIGN Single-blind, randomized, placebo-controlled crossover study. SETTING Clinical Research Facility, Imperial College Healthcare NHS Trust. PARTICIPANTS Eighteen healthy men (mean age 24.7 ± 0.1years, mean BMI 22.1 ± 0.4kg/m2). INTERVENTION Eight-hour intravenous infusion of 0.8 pmol/kg/min GLP-1 or rate-matched vehicle infusion. MAIN OUTCOME MEASURES Number of luteinizing hormone (LH) pulses, LH, follicle-stimulating hormone (FSH), and testosterone levels. RESULTS The number of LH pulses (number of LH pulses/500 min: vehicle 4.2 ± 0.4, GLP-1 4.5 ± 0.3, P = 0.46), LH area under the curve (AUC) (vehicle 1518 ± 88min.IU/L, GLP-1 1524 ± 101min.IU/L, P = 0.95), follicle-stimulating hormone AUC (vehicle 1210 ± 112 min IU/L, GLP-1 1216 ± 112 min IU/L, P = 0.86), and testosterone AUC (vehicle 10893 ± 615 min nmol/L, GLP-1 11088 ± 792 min nmol/L, P = 0.77) did not significantly differ during vehicle and GLP-1 administration. Glucagon-like peptide-1 significantly reduced food intake (vehicle 15.7 ± 1.3 kcal/kg, GLP-1 13.4 ± 1.3 kcal/kg, P = 0.01). CONCLUSIONS In contrast to the animal literature, our data demonstrate that acute GLP-1 administration does not affect reproductive hormone secretion in healthy men.
Collapse
Affiliation(s)
- Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Sophie Jones
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Yoshibye Crustna
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Pratibha C Machenahalli
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Deborah Papadopoulou
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Manish Modi
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Christos Panayi
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Jessica Starikova
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Edouard Mills
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Risheka Ratnasabapathy
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Mark Sykes
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Isabella Plumptre
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Ben Coumbe
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Victoria C Wing
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Ewa Pacuszka
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Acute Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Department of Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Correspondence and Reprint Requests: Waljit S. Dhillo, MBBS, PhD, Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK. E-mail:
| |
Collapse
|
2
|
López-Doval S, Salgado R, Pereiro N, Moyano R, Lafuente A. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. ENVIRONMENTAL RESEARCH 2014; 134:158-168. [PMID: 25171141 DOI: 10.1016/j.envres.2014.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/08/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a neurotoxic agent and it can disrupt the endocrine system activity. This work was undertaken to evaluate the possible effects of PFOS exposure on the hypothalamic-pituitary-testicular axis (HPT) in adult male rats, and to evaluate the possible morphological alterations induced by PFOS in the endocrine tissues of this axis. Adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0 mg of PFOS/kg/day for 28 days. After PFOS exposure, hypothalamic noradrenaline concentration increased in the anterior hypothalamus and in the median eminence, not changing in the mediobasal hypothalamus. PFOS treated rats presented a decrease of the gonadotropin releasing hormone (GnRH) gene expression, increasing the mRNA levels of the luteinizing hormone (LH) in rats treated with all doses administered except with the dose of 6 mg/kg/day. PFOS also induced a raise of the follicle stimulating hormone (FSH) gene expression in the animals exposed to 0.5 and 1.0 mg of PFOS/kg/day. After PFOS exposure, hypothalamic GnRH concentration was modified, LH and testosterone release was inhibited and FSH secretion was stimulated. Moreover, PFOS induced several histopathological alterations in the hypothalamus, pituitary gland and testis. The results obtained in the present study suggest in general terms that PFOS can inhibit the physiological activity of the reproductive axis in adult male rats, which could be explained, at least in part, by the structural alterations showed in the animals exposed to this chemical: very dense chromatin, condensed ribosomes and a loss of the morphology in the hypothalamus; a degeneration of the gonadotrophic cells, as well as a loss and degeneration of the spermatozoids and a very marked edema in the testis.
Collapse
Affiliation(s)
- S López-Doval
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - R Salgado
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - N Pereiro
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - R Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, Veterinary Faculty, University of Córdoba, Córdoba 14071, Spain
| | - A Lafuente
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain.
| |
Collapse
|
3
|
Causey MW, Rivadeneira DE, Steele SR. Historical and current trends in colon trauma. Clin Colon Rectal Surg 2012; 25:189-99. [PMID: 24294119 PMCID: PMC3577616 DOI: 10.1055/s-0032-1329389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The authors discuss the evolution of the evaluation and management of colonic trauma, as well as the debate regarding primary repair versus fecal diversion. Their evidence-based review covers diagnosis, management, surgical approaches, and perioperative care of patients with colon-related trauma. The management of traumatic colon injuries has evolved significantly over the past 50 years; here the authors describe a practical approach to the treatment and management of traumatic injuries to the colon based on the most current research. However, management of traumatic colon injuries remains a challenge and continues to be associated with significant morbidity. Familiarity with the different methods to the approach and management of colonic injuries will allow surgeons to minimize unnecessary complications and mortality.
Collapse
Affiliation(s)
- Marlin Wayne Causey
- Department of Surgery, Uniformed Services University of the Health Sciences (USUHS), Madigan Healthcare System, Fort Lewis, Washington
| | - David E. Rivadeneira
- Department of Surgery, St. Catherine of Siena Medical Center, Smithtown, New York
| | - Scott R. Steele
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
4
|
Allen CD, Waser B, Körner M, Reubi JC, Lee S, Rivier C. Neuropeptide Y acts within the rat testis to inhibit testosterone secretion. Neuropeptides 2011; 45:55-61. [PMID: 21112087 PMCID: PMC3053052 DOI: 10.1016/j.npep.2010.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/09/2010] [Accepted: 10/19/2010] [Indexed: 01/11/2023]
Abstract
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Collapse
Affiliation(s)
- Camryn D Allen
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States
| | | | | | | | | | | |
Collapse
|
5
|
Boonekamp JJ, Ros AHF, Verhulst S. Immune activation suppresses plasma testosterone level: a meta-analysis. Biol Lett 2009; 4:741-4. [PMID: 18700197 DOI: 10.1098/rsbl.2008.0347] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Females often select mates on the basis of sexual signals, which can be reliable indicators of male quality when the costliness of these signals prevents cheating. The immunocompetence handicap hypothesis (ICHH) provides a mechanistic explanation of these costs, by proposing a trade-off between immune function and sexual displays. This trade-off arises because testosterone enhances sexual signals, but suppresses immune function. Many studies have investigated the ICHH by administrating testosterone, and a recent meta-analysis found little evidence that testosterone suppressed immune function. However, another component of the ICHH, which has received less empirical interest, suggests that there may also be an interaction in the other direction, with immune activation suppressing testosterone levels. We present a meta-analysis to test for this effect. Overall, there was a strong suppressive effect of experimental immune activation on testosterone levels (r=-0.52), regardless of whether live pathogens or non-pathogenic antigens were used to challenge the immune system. The latter is important because it shows that immune activation per se suppresses testosterone levels. Thus, a trade-off between immunocompetence and sexual displays may primarily be generated by the effect of immune activation on testosterone, rather than the opposite effect that has received most attention.
Collapse
Affiliation(s)
- Jelle J Boonekamp
- Behavioural Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
6
|
Abstract
Corticotropin-releasing factor (CRF) has previously been reported in rat testes in which it inhibits Leydig cells activity. However, recent studies in our laboratory have suggested that some of the effects originally attributed to CRF were instead due to the related peptide Urocortin 1 (Ucn 1) and that this latter hormone, not CRF, was detectable in Leydig cells. We show here that Ucn 1 [a mixed CRF receptor (CRFR) type 1 and CRFR2 agonist] and the CRFR1-selective peptide Stressin 1, but not Ucn 2 or Ucn 3 (both considered selective CRFR2 ligands), significantly blunt the testosterone response to human chorionic gonadotropin. The effect of Ucn 1 is observed regardless of whether this peptide is injected iv or directly into the testes, and it is reversed by the mixed CRFR1/R2 antagonist Astressin B. Blockade of GnRH receptors with the antagonist Azalin B does not interfere with the influence of Ucn 1, thereby demonstrating that pituitary luteinizing hormone does not appear to be involved in this model. Collectively these results suggest that Ucn 1, not CRF, is present in the rat testes and interferes with Leydig cell activity. However, whereas we previously reported that alcohol up-regulated gonadal Ucn 1 gene expression, CRF receptor antagonists were unable to reverse the inhibitory effect exerted by alcohol on human chorionic gonadotropin-induced testosterone release. The functional role played by testicular Ucn 1 in stress models characterized by blunted androgen levels therefore needs to be further investigated.
Collapse
Affiliation(s)
- Catherine L Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA.
| |
Collapse
|
7
|
James P, Rivier C, Lee S. Presence of corticotrophin-releasing factor and/or tyrosine hydroxylase in cells of a neural brain-testicular pathway that are labelled by a transganglionic tracer. J Neuroendocrinol 2008; 20:173-81. [PMID: 18047555 DOI: 10.1111/j.1365-2826.2007.01630.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our laboratory has shown that male testosterone levels are not solely controlled by the release of hypothalamic gonadotrophin-releasing hormone and pituitary luteinising hormone, but are also regulated by a multisynaptic pathway connecting the brain and the testis that interferes with the testosterone response to gonadotrophins. This pathway, which is independent of the pituitary gland, is activated by an i.c.v. injection of either the stress-related peptide corticotrophin-releasing factor (CRF) or of beta-adrenoceptor agonists, both of which alter androgen release and decrease levels of the peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein within Leydig cells. Our original studies used the retrograde transganglionic tracer pseudorabies virus (PRV) to map progression of the virus from the testes to upper brain levels. The present study aimed to extend this work by identifying the regions where CRF and catecholamine neurones represented components of the stress-activated, brain-testicular pathway that prevents testosterone increases. To this end, anaesthetised adult male rats received an intra-testicular injection of PRV. Using immunofluorescence, we identified co-labelling of PRV and either CRF or tyrosine hydroxylase (TH), the enzyme responsible for biogenic amine synthesis. Co-labelling of PRV and CRF was found in the bed nucleus of the stria terminalis, the paraventricular nucleus of the hypothalamus (PVN) and the central amygdala. Co-labelling of PRV and TH was found in the PVN, substantia nigra, A7/Kölliker-Fuse area, area of A5, locus coeruleus, nucleus of solitary tract, area of C3, area of C2 and the area of C1/A1. These results indicate that most cell groups of the ventral noradrenergic pathway have neurones that are a part of the brain-testicular pathway. This suggests that the stress hormones CRF and catecholamines may act as neurotransmitters that signal the pathway to inhibit increases in plasma testosterone levels.
Collapse
Affiliation(s)
- P James
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
8
|
Toxic effects of methoxychlor administered subcutaneously on the hypothalamic-pituitary-testicular axis in adult rats. Food Chem Toxicol 2007; 46:1570-5. [PMID: 18226848 DOI: 10.1016/j.fct.2007.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 11/28/2007] [Accepted: 12/12/2007] [Indexed: 11/23/2022]
Abstract
This study was undertaken to evaluate the effects of methoxychlor MTX at the hypothalamic-pituitary-testicular axis in adult male rats. This global objective comprises three major aims: (1) to analyze the possible differential MTX effects in norepinephrine and serotonin concentration an in serotoninergic metabolism in anterior, mediobasal and posterior hypothalamus and median eminence; (2) to evaluate effects induced by MTX exposure on gonadotropins and testosterone; 93 to elucidate whether the regulatory interactions in the hypothalamic-pituitary-testicular axis are modified by this pesticide. Animals were administered subcutaneously 25mg/kg/day of MTX for 1 month. MTX increased norepinephrine and serotonin content in anterior hypothalamus (P < or = 0.05), but decreased serotonin concentration in posterior hypothalamus (P < or = 0.05). MTX diminished serotonin turnover in anterior hypothalamus (P < or = 0.01) and decreased plasma LH (P < or = 0.001) and testosterone (P < or = 0.05) levels but those of FSH remained unmodified. We can conclude that MTX exposure: (1) could exert differential effects in norepinephrine and serotonin concentration an in serotoninergic metabolism in anterior, mediobasal and posterior hypothalamus and median eminence, being the anterior hypothalamus the most sensitive region to the pesticide; (2) could inhibit LH and testosterone secretion without changing FSH; (3) four potential pathways might be involved in MTX effects on testosterone secretion (changing LH secretion; modifying serotonin and norepinephrine at the hypothalamic level; alterating the direct neural pathway between brain and testes; and/or by a direct effect in testes).
Collapse
|
9
|
Selvage DJ, Parsons L, Rivier C. Role played by brainstem neurons in regulating testosterone secretion via a direct neural pathway between the hypothalamus and the testes. Endocrinology 2006; 147:3070-5. [PMID: 16556770 DOI: 10.1210/en.2005-1358] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported anatomical and functional evidence for a direct, inhibitory neural pathway that regulates testosterone (T) secretion independently of the pituitary. This pathway is activated by the intracerebroventricular (icv) administration of agents that stimulate stress responses, such as IL-1beta, corticotropin-releasing factor (CRF), and norepinephrine (NE), which results in a blunted T response to the administration of human chorionic gonadotropin (hCG). Blunting of the T response is mediated by central beta-adrenergic receptor stimulation. CRF, but not ethanol (EtOH) or IL-1beta, acts directly on the paraventricular nucleus of the hypothalamus to activate the pathway. Here we explored the role played by brain areas hypothesized to be part of this pathway, such as neurons in the dorsal pons [including the locus coeruleus (LC) of the brainstem], where NE is produced. Microinfusion of EtOH or IL-1beta, but not CRF, into these neurons activated the pathway. Electrolytic lesions of this region significantly reversed the inhibitory effect of icv-administered EtOH on hCG-induced T release, while having no effect on the ability of IL-1beta or CRF to do so. However, the icv administration of IL-1beta, EtOH, or CRF, in doses that rapidly inhibit the T response to hCG, all caused a significant depletion of NE from the LC. Collectively, these results indicate that in addition to the paraventricular nucleus, the brainstem area containing the LC is part of a neural pathway that connects the brain to the testes independently of the pituitary. We also speculate that EtOH may stimulate this pathway through NE-dependent activation of the dorsal pons.
Collapse
Affiliation(s)
- Daniel J Selvage
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
10
|
Herman M, Rivier C. Activation of a neural brain-testicular pathway rapidly lowers Leydig cell levels of the steroidogenic acute regulatory protein and the peripheral-type benzodiazepine receptor while increasing levels of neuronal nitric oxide synthase. Endocrinology 2006; 147:624-33. [PMID: 16239298 DOI: 10.1210/en.2005-0879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of a neural brain-testicular pathway by the intracerebroventricular injection of the beta-adrenergic agonist isoproterenol (ISO), the hypothalamic peptide corticotropin-releasing factor (CRF), or alcohol (EtOH) rapidly decreases the testosterone (T) response to human chorionic gonadotropin. To elucidate the intratesticular mechanisms responsible for this phenomenon, we investigated the influence of intracerebroventricular-injected ISO, CRF, or EtOH on levels of the steroidogenic acute regulatory (StAR) protein, the peripheral-type benzodiazepine receptor (PBR), and the cytochrome P450 side-chain cleavage enzyme in semipurified Leydig cells. ISO (10 microg), CRF (5 microg), or EtOH (5 microl of 200 proof, a dose that does not induce neuronal damage nor leaks to the periphery) rapidly decreased StAR and PBR but not cytochrome P450 side-chain cleavage enzyme protein levels. Levels of the variant of the neuronal nitric oxide synthase (nNOS) that is restricted to Leydig cells, TnNOS, significantly increased in response to ISO, CRF, and EtOH over the time course of altered StAR/PBR concentrations. However, pretreatment of the rats with N(w)nitro-arginine methylester, which blocked ISO-induced increases in TnNOS, neither restored the T response to human chorionic gonadotropin nor prevented the decreases in StAR and PBR. These results provide evidence of concomitant changes in Leydig cell StAR and PBR levels in live rats. They also indicate that activation of a neural brain-testicular pathway rapidly decreases concentrations of these steroidogenic proteins while up-regulating testicular NO production. However, additional studies are necessary to elucidate the functional role played by this gas in our model.
Collapse
Affiliation(s)
- Melissa Herman
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
11
|
Simorangkir DR, Ramaswamy S, Marshall GR, Plant TM. In the adult male rhesus monkey (Macaca mulatta), unilateral orchidectomy in the face of unchanging gonadotropin stimulation results in partial compensation of testosterone secretion by the remaining testis. Endocrinology 2004; 145:5115-20. [PMID: 15308611 DOI: 10.1210/en.2004-0824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined, in adult monkeys, the role that gonadotropin-independent mechanisms play in compensation of testosterone (T) secretion by the testis that remains after unilateral orchidectomy (UO). We employed a model (testicular clamp), in which endogenous gonadotropin secretion was abolished with a GnRH receptor antagonist, and the gonadotropin drive to the testes was concomitantly replaced with an invariant iv pulsatile infusion of recombinant human LH and FSH (1-min pulse every 2.5 h: LH, 0.08-0.12 IU/kg.pulse; FSH, 0.12-0.32 IU/kg.pulse) that provided the Leydig cells with a physiological stimulus. Within 5 h of UO (n = 5), circulating T concentrations had declined to 43% of pre-UO levels. By d 4, however, loss of the first testis was partially compensated, as reflected by the finding that circulating T had reached a plateau of 67% of the pre-UO level, where it remained for the duration of the study (39 d). That the recovery in circulating T was the result of increased T secretion by the remaining testis was suggested by the finding that the pulsatile pattern and decay of T during the intergonadotropin pulse interval before and after UO were indistinguishable. Interestingly, inhibin B production by the remaining testis also showed a delayed, albeit, minor, compensation (13% on d 10-11; P > 0.05) after loss of the first testis. These results suggest that compensation in T production by the remaining testis after UO in adult monkeys may be achieved in part by a gonadotropin-independent mechanism that probably involves direct neural inputs to the primate testis.
Collapse
Affiliation(s)
- David R Simorangkir
- Department of Cell Biology and Physiology, University of Pittsburgh, S-828A Scaife Hall, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
12
|
Selvage DJ, Lee SY, Parsons LH, Seo DO, Rivier CL. A hypothalamic-testicular neural pathway is influenced by brain catecholamines, but not testicular blood flow. Endocrinology 2004; 145:1750-9. [PMID: 14684600 DOI: 10.1210/en.2003-1441] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the existence of a descending multisynaptic, pituitary-independent, neural pathway between the hypothalamus and the testes in the male rat. Stimulation of this pathway by the intracerebroventricular (icv) injection of IL-1beta or corticotropin-releasing factor blunts the testosterone (T) response to human chorionic gonadotropin (hCG). This response is mediated at least in part by catecholamine beta-adrenergic receptor activation. The present work was performed to further investigate the role of brain catecholamines and testicular blood flow in this pathway. The icv injection of 5 microl of 200 proof ethanol (EtOH; 86 micromol) did not result in detectable levels of the drug in the general circulation and did not induce neuronal damage, but rapidly blunted hCG-induced T release while not decreasing LH levels or altering testicular blood flow. EtOH significantly up-regulated transcripts of the immediate-early gene c-fos in the paraventricular nucleus (PVN) of the hypothalamus. Lesions of the PVN blocked the inhibitory effect of IL-1beta on T, but only partially interfered with the influence of EtOH. PVN catecholamine turnover significantly increased after icv injection of IL-1beta, but not EtOH. Brain catecholamine depletion due to the neurotoxin 6-hydroxydopamine did not alter the ability of hCG to induce T release, but significantly reversed the inhibitory effect of icv EtOH or IL-1beta on this response. Collectively, these results indicate that icv-injected IL-1beta or EtOH blunts hCG-induced T secretion through a catecholamine-mediated mechanism that does not depend on either peripherally mediated effects or pituitary LH, and that the PVN plays a role in these effects.
Collapse
Affiliation(s)
- Daniel J Selvage
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Selvage DJ, Rivier C. Importance of the paraventricular nucleus of the hypothalamus as a component of a neural pathway between the brain and the testes that modulates testosterone secretion independently of the pituitary. Endocrinology 2003; 144:594-8. [PMID: 12538621 DOI: 10.1210/en.2002-220781] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that in adult male rats, the intracerebroventricular (icv) injection of corticotropin-releasing factor (CRF) or the beta-adrenergic agonist isoproterenol (ISO) significantly inhibited the ability of human chorionic gonadotropin (hCG) to stimulate testosterone (T) secretion. The finding that this phenomenon also took place when LH release had been blocked with an LHRH antagonist suggested that icv CRF and ISO did not alter Leydig cell function by influencing the activity of pituitary gonadotrophs. We therefore proposed the existence of a neural pathway connecting the brain to the testes, whose activation by icv CRF or ISO interfered with T secretion. Based on the intratesticular injection of the transganglionic tracer pseudorabies virus, we recently identified the paraventricular nucleus (PVN) of the hypothalamus as a component of this neural link. The aim of the present work was to investigate the functional role of this brain area in mediating the ability of CRF and ISO to inhibit the ability of hCG to stimulate T secretion. We first demonstrated that local microinfusion of CRF or ISO directly into the PVN mimicked the effect of their icv injection, suggesting that the PVN does indeed represent a site of action of ISO and CRF in altering Leydig cell responsiveness to gonadotropin. In contrast, neither CRF nor ISO microinfusion into the central amygdala or the frontal cortex influenced hCG-stimulated T secretion. To further investigate the role of the PVN in ISO- and CRF-induced blunting of hCG stimulation of T, we determined the effect of icv CRF or ISO on testicular activity of rats with electrolytic lesions of the PVN. These lesions, which did not in themselves influence Leydig cell responsiveness to hCG, blocked the effect of both icv ISO and CRF on hCG-induced T release. Collectively, these results support the hypothesis that CRF- and ISO-induced activation of cells in the area of the PVN decreases the ability of gonadotropin to release T and suggests that this nucleus represents an important site of the proposed neural connection between the brain and the testes.
Collapse
Affiliation(s)
- Daniel J Selvage
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Lee S, Miselis R, Rivier C. Anatomical and functional evidence for a neural hypothalamic-testicular pathway that is independent of the pituitary. Endocrinology 2002; 143:4447-54. [PMID: 12399442 DOI: 10.1210/en.2002-220392] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testosterone (T) secretion is classically considered to be under the primary control of pituitary LH, itself regulated by the hypothalamic peptide LH-releasing hormone. Secretagogues present in the general circulation and/or manufactured in the testis can also alter Leydig cell activity independently of the pituitary. Finally, spanchnic innervation regulates testicular LH receptors and blood flow. In the present work, we provide evidence that, in addition, there may be a neural brain-testicular circuit that regulates T release function independently of LH release. We had recently reported that the intracerebroventricular injection of IL-1beta, corticotropin-releasing factor, or beta-adrenergic agonists significantly interfered with the T response to human chorionic gonadotropin through mechanisms that did not involve LH. Here, we show that the injection of the transganglionic retrograde tracer pseudorabies virus into the testes caused viral staining in the spinal cord, the brain stem, and the hypothalamus. This observation indicates the presence of a neural pathway between the central nervous system and the testis. We then demonstrated that spinal cord injury significantly interfered with this staining, thus supporting the hypothesis that the proposed circuit travels through the cord. Finally, we showed that spinal cord injury completely abolished the ability of intracerebroventricularly injected IL-1beta or corticotropin-releasing factor to blunt the T response to human chorionic gonadotropin, which suggests that these two secretagogues act within the brain to stimulate a neural pathway that interferes with Leydig cell function independently of the pituitary. The hitherto unsuspected brain-testicular circuit that these experiments have uncovered may play a role in pathologies, so far unexplained, that are characterized by decreased T levels despite normal LH production.
Collapse
Affiliation(s)
- Soon Lee
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
15
|
Banczerowski P, Csaba Z, Csernus V, Gerendai I. Lesion of the insular cortex affects luteinizing hormone and testosterone secretion of rat. Lateralized effect. Brain Res 2001; 906:25-30. [PMID: 11430858 DOI: 10.1016/s0006-8993(01)02540-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The possible involvement of the insular cortex in the neural control of the hypophyseal-testicular axis was studied in male rats. Right- but not left-sided lesion of the insular cortex resulted in a significant decrease in basal testosterone secretion in vitro and serum testosterone concentration. Both right- and left-sided lesions of the insular cortex induced significant increase in serum luteinizing hormone (LH) concentration. Unilateral lesion of the insular cortex on either sides had no effect on serum follicle stimulating hormone (FSH) level. The results indicate that the insular cortex is involved in the control of testosterone and LH secretion. The data further suggest that the right insular cortex plays a predominant role in the control of male endocrine reproductive processes.
Collapse
Affiliation(s)
- P Banczerowski
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Tuzolto u.58, H-1094 Budapest, Hungary
| | | | | | | |
Collapse
|
16
|
Ogilvie KM, Held Hales K, Roberts ME, Hales DB, Rivier C. The inhibitory effect of intracerebroventricularly injected interleukin 1beta on testosterone secretion in the rat: role of steroidogenic acute regulatory protein. Biol Reprod 1999; 60:527-33. [PMID: 9916024 DOI: 10.1095/biolreprod60.2.527] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Exposure to disease or injury often results in impaired reproductive activity accompanied by decreased testosterone levels. After immune activation, the cytokine interleukin 1-beta (IL-1beta) circulates in high concentrations, and its exogenous administration evokes many of the sequelae of immune activation. Previously, we have shown that the administration of this cytokine into the cerebral ventricles blunts hCG-stimulated testosterone secretion. This effect, though time-dependent, occurs before significant elevation of interleukin 6 in the peripheral bloodstream, does not depend on adrenal activation, and/or changes in LH concentrations, leading us to hypothesize a direct connection between the brain and testis. To explore this mechanism further, we isolated testicular tissue from rats treated intracerebroventricularly (icv) with vehicle or IL-1beta 30 or 90 min before they were killed. We found that in vivo cytokine treatment blunted ex vivo testosterone secretion in response to hCG, showing that the mechanism is independent of circulating cytokines. Though hCG binding was moderately reduced by icv IL-1beta in these preparations, the extent of this inhibition did not explain our observations. As the first acutely and hormonally regulated step in the biosynthesis of testosterone is the transfer of cholesterol into the inner mitochondrial membrane, which is mediated by steroidogenic acute regulatory (StAR) protein, we hypothesized that the rapid effects of icv IL-1beta on testicular responsiveness to hCG might be due to reduced levels of StAR. We report here that StAR protein was indeed reduced in Leydig cells isolated from rats treated in vivo with IL-1beta. Furthermore, treatment with a water-permeable form of cholesterol that bypasses the requirement for StAR partially restored hCG-stimulated testosterone secretion from testes isolated from rats treated icv with IL-1beta. Taken together, our data indicate that StAR plays a role in the suppression of testicular function evoked by central administration of IL-1beta.
Collapse
Affiliation(s)
- K M Ogilvie
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|