1
|
Zhao LH, Ma S, Sutkeviciute I, Shen DD, Zhou XE, de Waal PW, Li CY, Kang Y, Clark LJ, Jean-Alphonse FG, White AD, Yang D, Dai A, Cai X, Chen J, Li C, Jiang Y, Watanabe T, Gardella TJ, Melcher K, Wang MW, Vilardaga JP, Xu HE, Zhang Y. Structure and dynamics of the active human parathyroid hormone receptor-1. Science 2019; 364:148-153. [PMID: 30975883 PMCID: PMC6929210 DOI: 10.1126/science.aav7942] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
The parathyroid hormone receptor-1 (PTH1R) is a class B G protein-coupled receptor central to calcium homeostasis and a therapeutic target for osteoporosis and hypoparathyroidism. Here we report the cryo-electron microscopy structure of human PTH1R bound to a long-acting PTH analog and the stimulatory G protein. The bound peptide adopts an extended helix with its amino terminus inserted deeply into the receptor transmembrane domain (TMD), which leads to partial unwinding of the carboxyl terminus of transmembrane helix 6 and induces a sharp kink at the middle of this helix to allow the receptor to couple with G protein. In contrast to a single TMD structure state, the extracellular domain adopts multiple conformations. These results provide insights into the structural basis and dynamics of PTH binding and receptor activation.
Collapse
Affiliation(s)
- Li-Hua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanshan Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dan-Dan Shen
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Innovation and Integration Program, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Parker W de Waal
- Center for Cancer and Cell Biology, Innovation and Integration Program, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Chen-Yao Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyong Kang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Graduate Program in Molecular Biophysics and Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Frederic G Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Innovation and Integration Program, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- Center for Cancer and Cell Biology, Innovation and Integration Program, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yan Zhang
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Gardella TJ, Vilardaga JP. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors. Pharmacol Rev 2015; 67:310-37. [PMID: 25713287 DOI: 10.1124/pr.114.009464] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.
Collapse
Affiliation(s)
- Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| | - Jean-Pierre Vilardaga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| |
Collapse
|
3
|
Dong M, Koole C, Wootten D, Sexton PM, Miller LJ. Structural and functional insights into the juxtamembranous amino-terminal tail and extracellular loop regions of class B GPCRs. Br J Pharmacol 2014; 171:1085-101. [PMID: 23889342 DOI: 10.1111/bph.12293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Class B guanine nucleotide-binding protein GPCRs share heptahelical topology and signalling via coupling with heterotrimeric G proteins typical of the entire superfamily of GPCRs. However, they also exhibit substantial structural differences from the more extensively studied class A GPCRs. Even their helical bundle region, most conserved across the superfamily, is predicted to differ from that of class A GPCRs. Much is now known about the conserved structure of the amino-terminal domain of class B GPCRs, coming from isolated NMR and crystal structures, but the orientation of that domain relative to the helical bundle is unknown, and even less is understood about the conformations of the juxtamembranous amino-terminal tail or of the extracellular loops linking the transmembrane segments. We now review what is known about the structure and function of these regions of class B GPCRs. This comes from indirect analysis of structure-function relationships elucidated by mutagenesis and/or ligand modification and from the more direct analysis of spatial approximation coming from photoaffinity labelling and cysteine trapping studies. Also reviewed are the limited studies of structure of some of these regions. No dominant theme was recognized for the structures or functional roles of distinct regions of these juxtamembranous portions of the class B GPCRs. Therefore, it is likely that a variety of molecular strategies can be engaged for docking of agonist ligands and for initiation of conformational changes in these receptors that would be expected to converge to a common molecular mechanism for activation of intracellular signalling cascades.
Collapse
Affiliation(s)
- M Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Chen Q, Pinon DI, Miller LJ, Dong M. Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity. J Biol Chem 2010; 285:24508-18. [PMID: 20529866 DOI: 10.1074/jbc.m110.135749] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7-36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr(145), adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr(205), within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.
Collapse
Affiliation(s)
- Quan Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
6
|
Umanah GKE, Son C, Ding F, Naider F, Becker JM. Cross-linking of a DOPA-containing peptide ligand into its G protein-coupled receptor. Biochemistry 2009; 48:2033-44. [PMID: 19152328 DOI: 10.1021/bi802061z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between a 3,4-dihydroxyphenylalanine (DOPA) labeled analogue of the tridecapeptide alpha-factor (W-H-W-L-Q-L-K-P-G-Q-P-M-Y) and Ste2p, a Saccharomyces cerevisiae model G protein-coupled receptor (GPCR), has been analyzed by periodate-mediated cross-linking. Chemically synthesized alpha-factor with DOPA substituting for tyrosine at position 13 and biotin tagged onto lysine(7)([Lys(7)(BioACA),Nle(12),DOPA(13)]alpha-factor; Bio-DOPA-alpha-factor) was used for cross-linking into Ste2p. The biological activity of Bio-DOPA-alpha-factor was about one-third that of native alpha-factor as determined by growth arrest assay and exhibited about a 10-fold lower binding affinity to Ste2p. Bio-DOPA-alpha-factor cross-linked into Ste2p as demonstrated by Western blot analysis using a neutravidin-HRP conjugate to detect Bio-DOPA-alpha-factor. Cross-linking was inhibited by excess native alpha-factor and an alpha-factor antagonist. The Ste2p-ligand complex was purified using a metal ion affinity column, and after cyanogen bromide treatment, avidin affinity purification was used to capture Bio-DOPA-alpha-factor-Ste2p cross-linked peptides. MALDI-TOF spectrometric analyses of the cross-linked fragments showed that Bio-DOPA-alpha-factor reacted with the Phe(55)-Met(69) region of Ste2p. Cross-linking of Bio-DOPA-alpha-factor was reduced by 80% using a cysteine-less Ste2p (Cys59Ser). These results suggest an interaction between position 13 of alpha-factor and residue Cys(59) of Ste2p. This study is the first to report DOPA cross-linking of a peptide hormone to a GPCR and the first to identify a residue-to-residue cross-link between Ste2p and alpha-factor, thereby defining a specific contact point between the bound ligand and its receptor.
Collapse
Affiliation(s)
- George K E Umanah
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
7
|
Assil-Kishawi I, Samra TA, Mierke DF, Abou-Samra AB. Residue 17 of sauvagine cross-links to the first transmembrane domain of corticotropin-releasing factor receptor 1 (CRFR1). J Biol Chem 2008; 283:35644-51. [PMID: 18955489 DOI: 10.1074/jbc.m806351200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Corticotropin-releasing factor receptor 1 (CRFR1) mediates the physiological actions of corticotropin-releasing factor in the anterior pituitary gland and the central nervous system. Using chemical cross-linking we have previously reported that residue 16 of sauvagine (SVG) is in a close proximity to the second extracellular loop of CRFR1. Here we introduced p-benzoylphenylalanine (Bpa) at position 17 of a sauvagine analog, [Tyr0, Gln1, Bpa17]SVG, to covalently label CRFR1 and characterize the cross-linking site. Using a combination of receptor mutagenesis, peptide mapping, and N-terminal sequencing, we identified His117 within the first transmembrane domain (TM1) of CRFR1 as the cross-linking site for Bpa17 of 125I-[Tyr0, Gln1, Bpa17]SVG. These data indicate that, within the SVG-CRFR1 complex, residue 17 of the ligand lies within a 9 angstroms distance from residue 117 of the TM1 of CRFR1. The molecular proximity between residue 17 of the ligand and TM1 of CRFR1 described here and between residue 16 of the ligand and the CRFR1 second extracellular loop described previously provides useful molecular constraints for modeling ligand-receptor interaction in mammalian cells expressing CRFR1.
Collapse
Affiliation(s)
- Iman Assil-Kishawi
- Endocrine Division, Department of Internal Medicine, Wayne State University School of Medicine, University Health Center, Detroit, Mighigan 48201, USA
| | | | | | | |
Collapse
|
8
|
Vodovozova EL. Photoaffinity labeling and its application in structural biology. BIOCHEMISTRY (MOSCOW) 2007; 72:1-20. [PMID: 17309432 DOI: 10.1134/s0006297907010014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review contains a brief consideration of some theoretical aspects of photoaffinity (photoreactive) labeling (PAL), and the most widely used photoreactive groups, such as arylazide, benzophenone, and 3-(trifluoromethyl)-3-phenyldiazirine, are characterized in comparison. Experimental methodology is described, including modern approaches of mass spectrometry for analysis of cross-linking products between the photoreactive probes and biomolecules. Examples of PAL application in diverse fields of structural biology during the last five-ten years are presented. Potential drug targets, transport processes, stereochemistry of interaction of G-protein-coupled receptors with ligands, as well as structural changes in nicotinic acetylcholine receptor are considered. Applications of photoaffinity ganglioside and phospholipid probes for studying biological membranes and of nucleotide probes in investigations of replicative and transcriptional complexes, as well as photoaffinity glycoconjugates for detecting carbohydrate-binding proteins are covered. In combination with modern techniques of instrumental analysis and computer-aided modeling, PAL remains the most important approach in studies on the organization of biological systems.
Collapse
Affiliation(s)
- E L Vodovozova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
9
|
Banerjee S, Selim H, Suliman G, Geller AI, Jüppner H, Bringhurst FR, Divieti P. Synthesis and characterization of novel biotinylated carboxyl-terminal parathyroid hormone peptides that specifically crosslink to the CPTH-receptor. Peptides 2006; 27:3352-62. [PMID: 17028061 PMCID: PMC1764451 DOI: 10.1016/j.peptides.2006.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/07/2006] [Accepted: 08/07/2006] [Indexed: 11/19/2022]
Abstract
Parathyroid hormone (PTH) regulates calcium, phosphorous and skeletal homeostasis via interaction with the G protein-coupled PTH/PTHrP receptor, which is fully activated by the amino-terminal 34 amino-acid portion of the hormone. Recent evidence points to the existence of another class of receptors for PTH that recognize the carboxyl (C)-terminal region of intact PTH (1-84) (CPTHRs) and are highly expressed by osteocytes. Here we report the synthesis and characterization of two novel bifunctional CPTH ligands that include benzoylphenylalanine (Bpa) substitutions near their amino-termini and carboxyl-terminal biotin moieties, as well as a tyrosine(34) substitution to enable radioiodination. These peptides are shown to bind to CPTHRs with affinity similar to that of PTH (1-84) and to be specifically and covalently crosslinked to CPTHRs upon exposure to ultraviolet light. Crosslinking to osteocytes or osteoblastic cells generates complexes of 80 and 220 kDa, of which the larger form represents an aggregate that can be resolved into the 80 kDa. The crosslinked products can be further purified using immunoaffinity and avidin-based affinity procedures. While the molecular structure of the CPTHR(s) remains undefined, these bifunctional ligands represent powerful new tools for use in isolating and characterizing CPTHR protein(s).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paola Divieti
- *Address Correspondence to: Paola Divieti, Phone: (617) 726-6184, Fax: (617) 726-7543, E-mail:
| |
Collapse
|
10
|
Fillion D, Deraët M, Holleran BJ, Escher E. Stereospecific Synthesis of a Carbene-Generating Angiotensin II Analogue for Comparative Photoaffinity Labeling: Improved Incorporation and Absence of Methionine Selectivity. J Med Chem 2006; 49:2200-9. [PMID: 16570916 DOI: 10.1021/jm050958a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereospecific convergent synthesis of N-[(9-fluorenyl)methoxycarbonyl]-p-[3-(trifluoromethyl)-3H-diazirin-3-yl]-l-phenylalanine (Fmoc-12, Fmoc-Tdf) and its incorporation into the C-terminal position of the angiotensin II (AngII) peptide to form (125)I[Sar(1),Tdf(8)]AngII ((125)I-13) is presented. This amino acid photoprobe is a highly reactive carbene-generating diazirine phenylalanine derivative that can be used for photoaffinity labeling. Using model receptors, we compared the reactivity and the Met selectivity of 12 to that of the widely used and reputedly Met-selective p-benzoyl-l-phenylalanine (Bpa) photoprobe. Wild-type and mutant AngII type 2 receptors, a G protein-coupled receptors, were photolabeled with (125)I-13 as well as with (125)I[Sar(1),Bpa(8)]AngII ((125)I-14), and the respective incorporation yields were assessed. The carbene-generating 12 was more reactive toward inert residues and was not Met-selective compared to the biradical ketone-generating Bpa, allowing for more precise determination of ligand contact points in peptidergic receptors.
Collapse
Affiliation(s)
- Dany Fillion
- Department of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
11
|
Mason AJ, Lopez JJ, Beyermann M, Glaubitz C. A spectroscopic study of the membrane interaction of tuberoinfundibular peptide of 39 residues (TIP39). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:1-10. [PMID: 16023614 DOI: 10.1016/j.bbamem.2005.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/21/2022]
Abstract
The membrane interaction of tuberoinfundibular peptide of 39 residues (TIP39), which selectively activates the parathyroid hormone 2 (PTH2) receptor (PTH2-R), has been studied by fluorescence and NMR spectroscopic techniques. Membrane binding would be the first step of a potential membrane-bound activation pathway which has been discussed for a number of neuropeptides and G-protein coupled receptors (GPCRs). Here, the orientation of TIP39 on the surface of membrane mimicking dodecyl-phosphocholine (DPC) micelles was monitored by Photo-CIDNP (chemically-induced dynamic nuclear polarization) NMR which indicates that both Trp25 and Tyr29 face the membrane surface. However, the PTH2 receptor is located in the hypothalamus membrane, for which a more realistic model is required. Therefore, liposomes containing different mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol were used for fluorescence and solid-state NMR spectroscopy. Fluorescence spectroscopy showed that a large proportion of TIP39 added to these liposomes binds to the membrane surface. Proton-decoupled 31P-MAS NMR is used to investigate the potential role of individual lipid headgroups in peptide binding. Significant line-broadening in POPC/cholesterol and POPC/POPS liposomes upon TIP39 association supports a surface binding model and indicates an interaction which is slightly mediated by the presence of POPS and cholesterol. Furthermore, smoothed order parameter profiles obtained from 2H powder spectra of liposomes containing POPC-d31 as bulk lipid in addition to POPS and cholesterol show that TIP39 does not penetrate beyond the headgroup region. Spectra of similar bilayers with POPS-d31 show a small increase in segmental chain order parameters which is interpreted as a small but specific interaction between the peptide and POPS. Our data demonstrate that TIP39 belongs to a class of signaling peptides that associate weakly with the membrane surface but do not proceed to insert into the membrane hydrophobic compartment.
Collapse
Affiliation(s)
- A James Mason
- Centre for Biomolecular Magnetic Resonance and Institut für Biophysikalische Chemie, J.W. Goethe Universität, Marie-Curie Str. 9, D-60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
12
|
Pham V, Dong M, Wade JD, Miller LJ, Morton CJ, Ng HL, Parker MW, Sexton PM. Insights into interactions between the alpha-helical region of the salmon calcitonin antagonists and the human calcitonin receptor using photoaffinity labeling. J Biol Chem 2005; 280:28610-22. [PMID: 15929987 DOI: 10.1074/jbc.m503272200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fish-like calcitonins (CTs), such as salmon CT (sCT), are widely used clinically in the treatment of bone-related disorders; however, the molecular basis for CT binding to its receptor, a class II G protein-coupled receptor, is not well defined. In this study we have used photoaffinity labeling to identify proximity sites between CT and its receptor. Two analogues of the antagonist sCT(8-32) containing a single photolabile p-benzoyl-l-phenylalanine (Bpa) residue in position 8 or 19 were used. Both analogues retained high affinity for the CT receptor and potently inhibited agonist-induced cAMP production. The [Bpa(19)]sCT(8-32) analogue cross-linked to the receptor at or near the equivalent cross-linking site of the full-length peptide, within the fragment Cys(134)-Lys(141) (within the amino terminus of the receptor, adjacent to transmembrane 1) (Pham, V., Wade, J. D., Purdue, B. W., and Sexton, P. M. (2004) J. Biol. Chem. 279, 6720-6729). In contrast, proteolytic mapping and mutational analysis identified Met(49) as the cross-linking site for [Bpa(8)]sCT(8-32). This site differed from the previously identified cross-linking site of the agonist [Bpa(8)]human CT (Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem. 279, 31177-31182) and may provide evidence for conformational differences between interaction with active and inactive state receptors. Molecular modeling suggests that the difference in cross-linking between the two Bpa(8) analogues can be accounted for by a relatively small change in peptide orientation. The model was also consistent with cooperative interaction between the receptor amino terminus and the receptor core.
Collapse
Affiliation(s)
- Vi Pham
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ponthieux S, Cabot J, Mouillac B, Seyer R, Barberis C, Carnazzi E. Design of Benzophenone-Containing Photoactivatable Linear Vasopressin Antagonists: Pharmacological and Photoreactive Properties. J Med Chem 2005; 48:3379-88. [PMID: 15857144 DOI: 10.1021/jm040871+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed and synthesized new photoactivatable linear vasopressin analogues containing benzophenone photophores. All compounds were monitored and purified using RP-HPLC and characterized by mass spectrometry. Affinity and selectivity were determined in CHO cells expressing either human V(1a), V(1b) or V(2) receptor subtypes. Within the series, compounds 6 (PhCH(2)CO-lBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)) and 9 (PhCH(2)CO-dBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)), containing a benzoylphenylalanine residue (Bpa), were selected and their antagonistic properties determined (K(inact) = 1.87 and 0.35 nM, respectively). The dissociation constant of the most potent candidate (compound 9) was further calculated from saturation experiments using the (125)I derivative (K(d) = 0.07 +/- 0.01 nM). Photolabeling experiments using radioactive compound 9 as a probe were specific and UV-dependent and allowed the identification of two bands at molecular masses around 85-90 kDa and 46 kDa, respectively, as previously described by Phalipou et al., using two photoreactive linear azidopeptide antagonists. The results suggest therefore that compound 9 is a potent new tool for the accurate mapping of the human V(1a) receptor antagonist binding site.
Collapse
Affiliation(s)
- Sylvie Ponthieux
- CNRS UPR9023 and INSERM U469, IGF, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
14
|
Demers A, McNICOLL N, Febbraio M, Servant M, Marleau S, Silverstein R, Ong H. Identification of the growth hormone-releasing peptide binding site in CD36: a photoaffinity cross-linking study. Biochem J 2005; 382:417-24. [PMID: 15176951 PMCID: PMC1133797 DOI: 10.1042/bj20040036] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 05/14/2004] [Accepted: 06/03/2004] [Indexed: 11/17/2022]
Abstract
The GHRPs (growth hormone-releasing peptides) are a class of small synthetic peptides known to stimulate GH release through binding of a G-protein-coupled receptor (designated GHS-R). We have found that hexarelin, a hexapeptide member of the GHRPs, binds to another protein identified as CD36, a scavenger receptor that is expressed in various tissues, including monocytes/macrophages and the endothelial microvasculature. CD36 is involved in the endocytosis of oxLDL (oxidized low-density lipoprotein) by macrophages, and in the modulation of angiogenesis elicited by thrombospondin-1 through binding to endothelial cells. To define the binding domain for hexarelin on CD36, covalent photolabelling of CD36 followed by enzymic and chemical degradation of the photoligand-receptor complex was performed. A 8 kDa photolabelled fragment corresponding to the CD36-(Asn132-Glu177) sequence has been identified as the hexarelin-binding site. Chemical cleavage of this fragment with CNBr resulted in the release of the free ligand, suggesting that Met169 is the contact point for the ligand within the receptor binding pocket. We conclude that the binding domain for hexarelin on CD36 overlaps with that for oxLDL, which corresponds to residues Gln155-Lys183 of CD36. Hence hexarelin might interfere with the CD36-mediated uptake of modified lipoproteins by macrophages. This may contribute, at least in part, to the anti-atherosclerotic effect of GHRPs in apolipoprotein E-deficient mice.
Collapse
Affiliation(s)
- Annie Demers
- *Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, H3C 3J7 Canada
| | - Normand McNICOLL
- †Department of Pharmacology, Faculty of Medecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, H3C 3J7 Canada
| | - Maria Febbraio
- ‡Department of Medicine, Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, U.S.A
| | - Marc Servant
- *Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, H3C 3J7 Canada
| | - Sylvie Marleau
- *Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, H3C 3J7 Canada
| | - Roy Silverstein
- ‡Department of Medicine, Division of Hematology-Oncology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, U.S.A
| | - Huy Ong
- *Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, H3C 3J7 Canada
- †Department of Pharmacology, Faculty of Medecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, H3C 3J7 Canada
- To whom correspondence should be addressed, at Faculty of Pharmacy, Université de Montréal (email )
| |
Collapse
|
15
|
Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev 2005; 26:78-113. [PMID: 15689574 DOI: 10.1210/er.2003-0024] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of the concentrations of calcium, phosphate, and active vitamin D metabolites in blood and of cellular activity in bone. Intermittently administered PTH and amino-terminal PTH peptide fragments or analogs also augment bone mass and currently are being introduced into clinical practice as therapies for osteoporosis. The amino-terminal region of PTH is known to be both necessary and sufficient for full activity at PTH/PTHrP receptors (PTH1Rs), which mediate the classical biological actions of the hormone. It is well known that multiple carboxyl-terminal fragments of PTH are present in blood, where they comprise the major form(s) of circulating hormone, but these fragments have long been regarded as inert by-products of PTH metabolism because they neither bind to nor activate PTH1Rs. New in vitro and in vivo evidence, together with older observations extending over the past 20 yr, now points strongly to the existence of novel large carboxyl-terminal PTH fragments in blood and to receptors for these fragments that appear to mediate unique biological actions in bone. This review traces the development of this field in the context of the evolution of our understanding of the "classical" receptor for amino-terminal PTH and the now convincing evidence for these receptors for carboxyl-terminal PTH. The review summarizes current knowledge of the structure, secretion, and metabolism of PTH and its circulating fragments, details available information concerning the pharmacology and actions of carboxyl-terminal PTH receptors, and frames their likely biological and clinical significance. It seems likely that physiological parathyroid regulation of calcium and bone metabolism may involve receptors for circulating carboxy-terminal PTH ligands as well as the action of amino-terminal determinants within the PTH molecule on the classical PTH1R.
Collapse
Affiliation(s)
- Timothy M Murray
- Department of Medicine, University of Toronto, and the Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
16
|
Papasani MR, Gensure RC, Yan YL, Gunes Y, Postlethwait JH, Ponugoti B, John MR, Jüppner H, Rubin DA. Identification and characterization of the zebrafish and fugu genes encoding tuberoinfundibular peptide 39. Endocrinology 2004; 145:5294-304. [PMID: 15297442 DOI: 10.1210/en.2004-0159] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the PTH type 2 receptor (PTH2R) has been isolated from mammals and zebrafish, only its mammalian agonist, tuberoinfundibular peptide 39 (TIP39), has been characterized thus far. To determine whether zebrafish TIP39 (zTIP39) functions similarly with the zebrafish PTHR (zPTH2R) and human PTH2Rs and to determine its tissue-specific expression, fugu (Takifugu rubripes) and zebrafish (Danio rerio) genomic databases were screened with human TIP39 (hTIP39) sequences. A single TIP39 gene was identified for each fish species, which showed significant homology to mammalian TIP39. Using standard molecular techniques, we isolated cDNA sequences encoding zTIP39. The fugu TIP39 precursor was encoded by a gene comprising at least three exons. It contained a hydrophobic signal sequence and a predicted prosequence with a dibasic cleavage site, similar to that found in mammalian TIP39 ligands. Phylogenetic analyses suggested that TIP39 forms the basal group from which PTH and PTHrP have been derived. Functionally, subtle differences in potency could be discerned between hTIP39 and zTIP39. The human PTH2R and zPTH2R were stimulated slightly better by both hTIP39 and zTIP39, whereas zTIP39 had a higher potency at a previously isolated zPTH2R splice variant. Whole-mount in situ hybridization of zebrafish revealed strong zTIP39 expression in the region of the hypothalamus and in the heart of 24- and 48-h-old embryos. Similarly, zPTH2R expression was highly expressed throughout the brain of 48- and 72-h-old embryos. Because the mammalian PTH2R was also most abundantly expressed in these tissues, the TIP39-PTH2R system may serve conserved physiological roles in mammals and fishes.
Collapse
Affiliation(s)
- Madhusudhan R Papasani
- Department of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gensure RC, Shimizu N, Tsang J, Gardella TJ. Identification of a contact site for residue 19 of parathyroid hormone (PTH) and PTH-related protein analogs in transmembrane domain two of the type 1 PTH receptor. Mol Endocrinol 2003; 17:2647-58. [PMID: 12947048 DOI: 10.1210/me.2003-0275] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent functional studies have suggested that position 19 in PTH interacts with the portion of the PTH-1 receptor (P1R) that contains the extracellular loops and seven transmembrance helices (TMs) (the J domain). We tested this hypothesis using the photoaffinity cross-linking approach. A PTHrP(1-36) analog and a conformationally constrained PTH(1-21) analog, each containing para-benzoyl-l-phenylalanine (Bpa) at position 19, each cross-linked efficiently to the P1R expressed in COS-7 cells, and digestive mapping analysis localized the cross-linked site to the interval (Leu232-Lys240) at the extracellular end of TM2. Point mutation analysis identified Ala234, Val235, and Lys240 as determinants of cross-linking efficiency, and the Lys240-->Ala mutation selectively impaired the binding of PTH(1-21) and PTH(1-19) analogs, relative to that of PTH(1-15) analogs. The findings support the hypothesis that residue 19 of the receptor-bound ligand contacts, or is close to, the P1R J domain-specifically, Lys240 at the extracellular end of TM2. The findings also support a molecular model in which the 1-21 region of PTH binds to the extracellular face of the P1R J domain as an alpha-helix.
Collapse
Affiliation(s)
- Robert C Gensure
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
18
|
Dong M, Li Z, Pinon DI, Lybrand TP, Miller LJ. Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor. J Biol Chem 2003; 279:2894-903. [PMID: 14593094 DOI: 10.1074/jbc.m310407200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinct spatial approximations between residues within the secretin pharmacophore and its receptor can provide important constraints for modeling this agonist-receptor complex. We previously used a series of probes incorporating photolabile residues into positions 6, 12, 13, 14, 18, 22, and 26 of the 27-residue peptide and demonstrated that each covalently labeled a site within the receptor amino terminus. Although supporting a critical role of this domain for ligand binding, it does not explain the molecular mechanism of receptor activation. Here, we developed probes having photolabile residues at the amino terminus of secretin to explore possible approximations with a different receptor domain. The first probe incorporated a photolabile p-benzoyl-l-phenylalanine into the position of His(1) of rat secretin ([Bpa(1),Tyr(10)]secretin-27). Because His(1) is critical for function, we also positioned a photolabile Bpa as an amino-terminal extension, in positions -1 (rat [Bpa(-1),Tyr(10)]secretin-27) and -2 (rat [Bpa(-2),Gly(-1),Tyr(10)]secretin-27). Each analog was shown to be a full agonist, stimulating cAMP accumulation in receptor-bearing Chinese hamster ovary-SecR cells in a concentration-dependent manner, with the position -2 probe being most potent. They bound specifically and saturably, although the position 1 analog had lowest affinity, and all were able to label the receptor efficiently. Sequential specific cleavage, purification, and sequencing demonstrated that the sites of covalent attachment for each probe were high within the sixth transmembrane segment. This suggests that secretin binding may exert tension between the receptor amino terminus and the transmembrane domain to elicit a conformational change effecting receptor activation.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
19
|
Akal-Strader A, Khare S, Xu D, Naider F, Becker JM. Residues in the first extracellular loop of a G protein-coupled receptor play a role in signal transduction. J Biol Chem 2002; 277:30581-90. [PMID: 12058045 DOI: 10.1074/jbc.m204089200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were used as a model system to study ligand-receptor interaction. Cys-scanning mutagenesis on each residue of EL1, the first extracellular loop of Ste2p, was used to generate a library of 36 mutants with a single Cys residue substitution. Mutation of most residues of EL1 had only negligible effects on ligand affinity and biological activity of the mutant receptors. However, five mutants were identified that were either partially (L102C and T114C) or severely (N105C, S108C, and Y111C) compromised in signaling but retained binding affinities similar to those of wild-type receptor. Three-dimensional modeling, secondary structure predictions, and subsequent circular dichroism studies on a synthetic peptide with amino acid sequence corresponding to EL1 suggested the presence of a helix corresponding to EL1 residues 106 to 114 followed by two short beta-strands (residues 126 to 135). The distinctive periodicity of the five residues with a signal-deficient phenotype combined with biophysical studies suggested a functional involvement in receptor activation of a face on a 3(10) helix in this region of EL1. These studies indicate that EL1 plays an important role in the conformational switch that activates the Ste2p receptor to initiate the mating pheromone signal transduction pathway.
Collapse
Affiliation(s)
- Ayça Akal-Strader
- Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences Building, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
20
|
Usdin TB, Wang T, Hoare SR, Mezey E, Palkovits M. New members of the parathyroid hormone/parathyroid hormone receptor family: the parathyroid hormone 2 receptor and tuberoinfundibular peptide of 39 residues. Front Neuroendocrinol 2000; 21:349-83. [PMID: 11013069 DOI: 10.1006/frne.2000.0203] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parathyroid hormone (PTH) family currently includes three peptides and three receptors. PTH regulates calcium homeostasis through bone and kidney PTH1 receptors. PTH-related peptide, probably also through PTH1 receptors, regulates skeletal, pancreatic, epidermal, and mammary gland differentiation and bladder and vascular smooth muscle relaxation and has a CNS role that is under investigation. Tuberoinfundibular peptide of 39 residues (TIP39) was recently purified from bovine hypothalamus based on selective PTH2 receptor activation. PTH2 receptor expression is greatest in the CNS, where it is concentrated in limbic, hypothalamic, and sensory areas, especially hypothalamic periventricular neurons, nerve terminals in the median eminence, superficial layers of the spinal cord dorsal horn, and the caudal part of the sensory trigeminal nucleus. It is also present in a number of endocrine cells. Thus TIP39 and PTH2 receptor-influenced functions may range from pituitary and pancreatic hormone release to pain perception. A third PTH-recognizing receptor has been found in zebrafish.
Collapse
Affiliation(s)
- T B Usdin
- Laboratory of Genetics, National Institute of Mental Health, Bethesda, Maryland 20892-4094, USA.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Hoare SR, Clark JA, Usdin TB. Molecular Determinants of Tuberoinfundibular Peptide of 39 Residues (TIP39) Selectivity for the Parathyroid Hormone-2 (PTH2) Receptor. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61507-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Dong M, Asmann YW, Zang M, Pinon DI, Miller LJ. Identification of two pairs of spatially approximated residues within the carboxyl terminus of secretin and its receptor. J Biol Chem 2000; 275:26032-9. [PMID: 10859300 DOI: 10.1074/jbc.m000612200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal domains of secretin family peptides have been shown to contain key determinants for high affinity binding to their receptors. In this work, we have examined the interaction between carboxyl-terminal residues within secretin and the prototypic secretin receptor. We previously utilized photoaffinity labeling to demonstrate spatial approximation between secretin residue 22 and the receptor domain that includes the first 30 residues of the amino terminus (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). Here, we further refined the site of labeling with the p-benzoyl-phenylalanine (Bpa(22)) probe to receptor residue Leu(17) using progressive cleavage of wild type and mutant secretin receptors (V13M and V16M) and sequence analysis. We also developed a new probe incorporating a photolabile Bpa at position 26 of secretin, closer to its carboxyl terminus. This analogue was also a potent agonist (EC(50) = 72 +/- 6 pm) and bound to the secretin receptor specifically and with high affinity (K(i) = 10.3 +/- 2.4 nm). It covalently labeled the secretin receptor at a single site saturably and specifically. This was localized to the segment between residues Gly(34) and Ala(41) using chemical and enzymatic cleavage of labeled wild type and A41M mutant receptor constructs and immunoprecipitation of epitope-tagged receptor fragments. Radiochemical sequencing identified the site of covalent attachment as residue Leu(36). These new insights, along with our recent report of contact between residue 6 within the amino-terminal half of secretin and this same amino-terminal region of this receptor (Dong, M., Wang, Y., Hadac, E. M., Pinon, D. I., Holicky, E. L., and Miller, L. J. (1999) J. Biol. Chem. 274, 19161-19167), support a key role for this region, making the molecular details of this interaction of major interest.
Collapse
Affiliation(s)
- M Dong
- Center for Basic Research in Digestive Diseases, Departments of Internal Medicine and Biochemistry/Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
24
|
Han Y, Bisello A, Nakamoto C, Rosenblatt M, Chorev M. 3-(3'-fluorenyl-9'-oxo)-L-alanine: a novel photoreactive conformationally constrained amino acid. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:230-9. [PMID: 10727105 DOI: 10.1034/j.1399-3011.2000.00175.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photoaffinity scanning of the ligand-G-protein-coupled receptor bimolecular interface is a direct approach to mapping the interactions of ligands and receptors. Such studies are an important first step toward generating an experimentally based model of the ligand-receptor complex. The synthesis and spectroscopic characterization of Boc-3-(3'-fluorenyl-9'-oxo)-L-alanine and 9-fluorenone-3-carboxylic acid are described. Incorporation of these two photophores into the parathyroid hormone (PTH) molecule yields potent agonists. These photoreactive analogs cross-link specifically with the recombinant human PTH1 receptor stably expressed in human embryonic kidney cells. The availability of the 9-fluorenone (a conformationally constrained derivative of benzophenone, the abundantly used photophore) for photoaffinity scanning provides an important tool to probe the effect of conformational flexibility of the photophore on the selection of the cross-linking site in the macromolecular acceptor.
Collapse
Affiliation(s)
- Y Han
- Division of Bone and Mineral Metabolism, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|