1
|
Lăptoiu AR, Spoială EL, Stanciu GD, Hanganu E, Lupu VV, Ciongradi CI, Gavrilovici C. New Insights into the Role of INSL-3 in the Development of Cryptorchidism. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040737. [PMID: 37189986 DOI: 10.3390/children10040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Cryptorchidism, defined as the failure of at least one or both testicles to descend into the scrotal pouches, is the most frequent (1.6-9% at birth, 1/20 males at birth) congenital anomaly encountered in newborn males, resulting in one of the most frequent causes of non-obstructive azoospermia in men. Similar to other congenital malformations, cryptorchidism is thought to be caused by endocrine and genetic factors, combined with maternal and environmental influences. The etiology of cryptorchidism is unknown, as it involves complex mechanisms aiming to control the testicular development and descent from their initial intra-abdominal location in scrotal pouches. The implication of insulin-like 3 (INSL-3) associated with its receptor (LGR8) is critical. Genetic analysis discloses functionally deleterious mutations in INSL3 and GREAT/LGR8 genes. In this literature review, we discuss and analyze the implication of INSL3 and the INSL3/LGR8 mutation in the occurrence of cryptorchidism in both human and animal models.
Collapse
Affiliation(s)
- Alma-Raluca Lăptoiu
- Pediatrics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena-Lia Spoială
- Pediatrics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Elena Hanganu
- Department of Biomedical Sciences, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pediatric and Orthopaedic Surgery, "Sfânta Maria" Emergency Children Hospital, 700309 Iași, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Carmen-Iulia Ciongradi
- Department of Pediatric and Orthopaedic Surgery, "Sfânta Maria" Emergency Children Hospital, 700309 Iași, Romania
- 2nd Department of Surgery and Ortophedics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Gavrilovici
- Pediatrics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Ivanova E, Vincel B, Verkauskas G, Hadziselimovic F. Gubernaculum and Epididymo-Testicular Descent: Review of the Literature. Acta Med Litu 2022; 29:201-210. [PMID: 37733393 PMCID: PMC9799001 DOI: 10.15388/amed.2022.29.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Cryptorchidism is a common disorder in boys that has been widely studied both experimentally and clinically. The role of the gubernaculum, a mesenchymal tissue extending from the fetal testis and epididymis to the developing scrotum, is still unclear. Even the name is debated: 'gubernaculum epididymis' or 'gubernaculum testis'. This review does not aim to provide a global overview of competing theories on testicular descent, but focuses on the role of the gubernaculum in epididymo-testicular descent. We identified four major pitfalls of gubernaculum research: the role of the gubernaculum, of insulin-like peptide 3, anti-Müllerian hormone, and androgens. The major critical issues were that the gubernaculum plays a guiding role for the epididymis, descending prior to the testis and expanding the inguinal canal; insulin-like peptide 3 is not as important for the process of descent in humans as the rate of insulin-like peptide 3 mutations is low; anti-Müllerian hormone plays no significant role in epididymo-testicular descent; androgens and gonadotropins play a crucial role in epididymo-testicular descent. The role of the epididymis in the complex process of gubernaculum, epididymis, and testis migration is underestimated and should be included in future research.
Collapse
Affiliation(s)
| | - Beata Vincel
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gilvydas Verkauskas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Faruk Hadziselimovic
- Institute for Cryptorchidism Research, Kindermedizinisches Zentrum, Liestal, Switzerland
| |
Collapse
|
3
|
Ivell R, Mamsen LS, Andersen CY, Anand-Ivell R. Expression and Role of INSL3 in the Fetal Testis. Front Endocrinol (Lausanne) 2022; 13:868313. [PMID: 35464060 PMCID: PMC9019166 DOI: 10.3389/fendo.2022.868313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
4
|
Chai S, Huang X, Wu T, Xu S, Ren W, Yang G. Comparative genomics reveals molecular mechanisms underlying health and reproduction in cryptorchid mammals. BMC Genomics 2021; 22:763. [PMID: 34702182 PMCID: PMC8547080 DOI: 10.1186/s12864-021-08084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammals have wide variations in testicular position, with scrotal testes in some species and ascrotal testes in others. Although cryptorchidism is hazardous to human health, some mammalian taxa are natural cryptorchids. However, the evolution of testicular position and the molecular mechanisms underlying the maintenance of health, including reproductive health, in ascrotal mammals are not clear. RESULTS In the present study, comparative genomics and evolutionary analyses revealed that genes associated with the extracellular matrix and muscle, contributing to the development of the gubernaculum, were involved in the evolution of testicular position in mammals. Moreover, genes related to testicular position were significantly associated with spermatogenesis and sperm fertility. These genes showed rapid evolution and the signature of positive selection, with specific substitutions in ascrotal mammals. Genes associated with testicular position were significantly enriched in functions and pathways related to cancer, DNA repair, DNA replication, and autophagy. CONCLUSIONS Our results revealed that alterations in gubernaculum development contributed to the evolution of testicular position in mammals and provided the first support for two hypotheses for variation in testicular position in mammals, the "cooling hypothesis", which proposes that the scrotum provides a cool environment for acutely heat-sensitive sperm and the "training hypothesis", which proposes that the scrotum develops the sperm by exposing them to an exterior environment. Further, we identified cancer resistance and DNA repair as potential protective mechanisms in natural cryptorchids. These findings provide general insights into cryptorchidism and have implications for health and infertility both in humans and domestic mammals.
Collapse
Affiliation(s)
- Simin Chai
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xin Huang
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Tianzhen Wu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shixia Xu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Wenhua Ren
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Guang Yang
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
5
|
Tan H, Wu G, Wang S, Lawless J, Sinn A, Chen D, Zheng Z. Prenatal exposure to atrazine induces cryptorchidism and hypospadias in F1 male mouse offspring. Birth Defects Res 2021; 113:469-484. [PMID: 33463082 PMCID: PMC7986601 DOI: 10.1002/bdr2.1865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
The main objective of the present study was to determine whether prenatal exposure to atrazine could affect testicle descent and penile masculinization. Atrazine has been demonstrated with a variety of endocrine disrupting activities and reproductive toxicities. However, the effects of prenatal atrazine exposure on male offspring's genital malformation, such as hypospadias and cryptorchidism, remain poorly understood. In this study, pregnant ICR mice were gavaged from gestational day 12.5-16.5 with different doses of atrazine. Although no sign of systemic toxicity was observed in F1 male pups, prenatal exposure to 100 mg/kg/day atrazine affected penile morphology, urethral meatus position and descent of testis, and reduced anogenital distance and penile size in postnatal day 21 F1 male pups. The comparative study with an androgen receptor (AR) antagonist vinclozolin suggested that these effects of atrazine on male genital development may not be through antagonism of AR. The results also revealed that atrazine exposure significantly reduced maternal serum testosterone levels, decreased AR nuclear translocation, and altered the expression levels of developmental gene networks in developing penis of mice. Atrazine exposure also affected the expression of insulin-like 3 (Insl3) and steroidogenic gene expression in developing reproductive tract. Therefore, our data indicate that prenatal atrazine exposure can induce hypospadias in F1 mice, likely through disruption of testosterone production, decreasing genomic androgen action, and then altering expression of developmental genes during sexual differentiation. Our data also suggest that prenatal atrazine exposure can induce cryptorchidism in F1 mice, possibly through down regulation of Insl3.
Collapse
Affiliation(s)
- Hongli Tan
- Department of PhysiologySchool of Medicine, Southern Illinois University CarbondaleCarbondaleIllinoisUSA
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
| | - Guohui Wu
- Department of PhysiologySchool of Medicine, Southern Illinois University CarbondaleCarbondaleIllinoisUSA
- Jiangxi Key Laboratory of Maxillofacial Plastic Surgery and ReconstructionJiangxi Provincial People's HospitalNanchangChina
| | - Shanshan Wang
- Department of PhysiologySchool of Medicine, Southern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - John Lawless
- Department of PhysiologySchool of Medicine, Southern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Austin Sinn
- Department of PhysiologySchool of Medicine, Southern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
| | - Zhengui Zheng
- Department of PhysiologySchool of Medicine, Southern Illinois University CarbondaleCarbondaleIllinoisUSA
| |
Collapse
|
6
|
Chai S, Tian R, Bi J, Xu S, Yang G, Ren W. Rapid evolution and molecular convergence in cryptorchidism-related genes associated with inherently undescended testes in mammals. BMC Ecol Evol 2021; 21:22. [PMID: 33568072 PMCID: PMC7877101 DOI: 10.1186/s12862-021-01753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The mammalian testis is an important male exocrine gland and spermatozoa-producing organ that usually lies in extra-abdominal scrotums to provide a cooler environment for spermatogenesis and sperm storage. Testicles sometimes fail to descend, leading to cryptorchidism. However, certain groups of mammals possess inherently ascrotal testes (i.e. testes that do not descend completely or at all) that have the same physiological functions as completely descended scrotal testes. Although several anatomical and hormonal factors involved in testicular descent have been studied, there is still a paucity of comprehensive research on the genetic mechanisms underlying the evolution of testicular descent in mammals and how mammals with ascrotal testes maintain their reproductive health. RESULTS We performed integrative phenotypic and comparative genomic analyses of 380 cryptorchidism-related genes and found that the mammalian ascrotal testes trait is derived from an ancestral scrotal state. Rapidly evolving genes in ascrotal mammals were enriched in the Hedgehog pathway-which regulates Leydig cell differentiation and testosterone secretion-and muscle development. Moreover, some cryptorchidism-related genes in ascrotal mammals had undergone positive selection and contained specific mutations and indels. Genes harboring convergent/parallel amino acid substitutions between ascrotal mammals were enriched in GTPase functions. CONCLUSIONS Our results suggest that the scrotal testis is an ancestral state in mammals, and the ascrotal phenotype was derived multiple times in independent lineages. In addition, the adaptive evolution of genes involved in testicular descent and the development of the gubernaculum contributed to the evolution of ascrotal testes. Accurate DNA replication, the proper segregation of genetic material, and appropriate autophagy are the potential mechanisms for maintaining physiological normality during spermatogenesis in ascrotal mammals. Furthermore, the molecular convergence of GTPases is probably a mechanism in the ascrotal testes of different mammals. This study provides novel insights into the evolution of the testis and scrotum in mammals and contributes to a better understanding of the pathogenesis of cryptorchidism in humans.
Collapse
Affiliation(s)
- Simin Chai
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ran Tian
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Juanjuan Bi
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shixia Xu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Guang Yang
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Wenhua Ren
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
7
|
GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiation. PLoS Genet 2020; 16:e1008810. [PMID: 32497091 PMCID: PMC7297385 DOI: 10.1371/journal.pgen.1008810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/16/2020] [Accepted: 04/28/2020] [Indexed: 01/23/2023] Open
Abstract
Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency. Fetal Leydig cells, the sole source of these hormones in developing testis, were reduced in numbers in Gli3XtJ testes, and their functional identity diminished over time. Androgen supplementation partially rescued testicular descent but not hypospadias in Gli3XtJ mutants, decoupling local effects of GLI3 loss from systemic effects of androgen insufficiency. Reintroduction of GLI3 activator (GLI3A) into Gli3XtJ testes restored expression of Hedgehog pathway and steroidogenic genes. Together, our results show a novel function for the activated form of GLI3 that translates Hedgehog signals to reinforce fetal Leydig cell identity and stimulate timely INSL3 and testosterone synthesis in the developing testis. In turn, exquisite timing and concentrations of testosterone are required to work alongside local GLI3 activity to control development of a functionally integrated male urogenital tract. Disorders in male sex differentiation (DSD) are among the most common defects in all live births, yet in many cases, pediatric patient families are reluctant to address the issue and endure lifelong consequences. Urogenital tract development, as in many organ systems, depends on exquisite timing among layers of a number of signaling pathways. Here, we show that interactions between the hedgehog and androgen signaling pathways are required for the development of internal and external male sex characteristics, but results for each tissue is distinct. This new knowledge will aid in discovering the means by which congenital malformations might occur, identify potential developmental targets that might be vulnerable to environmental exposures, and promote new ideas for how they might be prevented.
Collapse
|
8
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Miller, Jr WB, Torday JS. Reappraising the exteriorization of the mammalian testes through evolutionary physiology. Commun Integr Biol 2019; 12:38-54. [PMID: 31143362 PMCID: PMC6527184 DOI: 10.1080/19420889.2019.1586047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
A number of theories have been proposed to explain the exteriorization of the testicles in most mammalian species. None of these provide a consistent account for the wide variety of testicular locations found across the animal kingdom. It is proposed that testicular location is the result of coordinate action of testicular tissue ecologies to sustain preferential states of homeostatic equipoise throughout evolutionary development in response to the advent of endothermy.
Collapse
Affiliation(s)
| | - John S. Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
10
|
Özdamar MY, Şahin S, Zengin K, Seçkin S, Gürdal M. Detection of insulin-like growth factor receptor-1 in the human cremaster muscle and its role in the etiology of the undescended testis. Asian J Surg 2019; 42:290-296. [DOI: 10.1016/j.asjsur.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
|
11
|
Sharma V, Lehmann T, Stuckas H, Funke L, Hiller M. Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLoS Biol 2018; 16:e2005293. [PMID: 29953435 PMCID: PMC6023123 DOI: 10.1371/journal.pbio.2005293] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These “molecular vestiges” provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters. While fossils of whales with legs demonstrate that these species evolved from legged ancestors, the ancestral state of nonfossilizing soft-tissue structures can only be indirectly inferred. This difficulty is also confounded by uncertainties in the phylogenetic relationships between the animals concerned. A prime example is the case of testicular descent, a developmental process that determines the final position of testes, which occurs in most placental mammals but is absent from several afrotherian lineages. Here, we discovered that afrotherians possess remnants of genes known to be required for testicular descent. These “molecular vestiges” show that testicular descent was already present in the placental ancestor and was subsequently lost in Afrotheria. Our study highlights the potential of molecular vestiges in resolving contradictory ancestral states of soft-tissue characters.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
| | - Thomas Lehmann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | | | - Liane Funke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
- * E-mail:
| |
Collapse
|
12
|
Morgan JT, Robbins AK, Mateson AB, Sawamoto K, Tomatsu S, Gray DR, Gleghorn JP, Barthold JS. Regional Variation in Androgen Receptor Expression and Biomechanical Properties May Contribute to Cryptorchidism Susceptibility in the LE/orl Rat. Front Endocrinol (Lausanne) 2018; 9:738. [PMID: 30568634 PMCID: PMC6290328 DOI: 10.3389/fendo.2018.00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The process of testicular descent requires androgen and insulin-like 3, hormones secreted by fetal Leydig cells. Knowledge concerning distinct and common functions of these hormones in regulating development of the fetal gubernaculum remains limited and/or conflicting. The current studies were designed to better define characteristics of androgen receptor (AR) expression, function and regulation, as well as the biomechanical properties of normal and cryptorchid gubernaculum during fetal development. Methods: We studied fetal gubernacula from Long Evans outbred (LE/wt) rats and an inbred (LE/orl) strain with an inherited form of cryptorchidism associated with an AR signaling defect. Gubernacular cells or whole organs obtained from LE/wt and LE/orl fetal gubernacula underwent AR immunostaining and quantitative image analysis. The effects of dihydrotestosterone (DHT) on AR expression, muscle fiber morphology, hyaluronan (HA) levels and glycosaminoglycan (GAG) content were measured in LE/wt gubernacula. Finally, the spatial mechanics of freshly harvested LE/wt and LE/orl fetal gubernacula were compared using micropipette aspiration. Results: AR is expressed in the nucleus of mesenchymal core, tip and cord cells of the embryonic (E) day 17 and 21 fetal gubernaculum, and is enhanced by DHT in primary cultures of gubernacular mesenchymal cells. Enhanced AR expression at the tip was observed in LE/wt but not LE/orl gubernacula. In in vitro studies of whole mount fetal gubernaculum, DHT did not alter muscle fiber morphology, HA content or GAG production. Progressive swelling with reduced cellular density of the LE/wt gubernaculum at E19-21 was associated with increased central stiffness in LE/wt but not in LE/orl fetuses. Conclusions: These data confirm nuclear AR expression in gubernacular mesenchyme with distal enhancement at the tip/cord region in LE/wt but not LE/orl rat fetuses. DHT enhanced cellular AR expression but had no major effects on muscle morphology or matrix composition in the rat fetal gubernaculum in vitro. Regional increased stiffness and decreased cell density between E19 and E21 were observed in LE/wt but not LE/orl fetal gubernacula. Developmental differences in cell-specific AR expression in LE/orl fetal gubernacula may contribute to the dysmorphism and aberrant function that underlies cryptorchidism susceptibility in this strain.
Collapse
Affiliation(s)
- Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Joshua T. Morgan
| | - Alan K. Robbins
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Abigail B. Mateson
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Kazuki Sawamoto
- Department of Orthopedics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Shunji Tomatsu
- Department of Orthopedics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Dione R. Gray
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Julia Spencer Barthold
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
13
|
Fénichel P, Chevalier N, Lahlou N, Coquillard P, Wagner-Mahler K, Pugeat M, Panaïa-Ferrari P, Brucker-Davis F. Endocrine Disrupting Chemicals Interfere With Leydig Cell Hormone Pathways During Testicular Descent in Idiopathic Cryptorchidism. Front Endocrinol (Lausanne) 2018; 9:786. [PMID: 30687232 PMCID: PMC6335363 DOI: 10.3389/fendo.2018.00786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cryptorchidism, a frequent genital malformation in male newborn, remains in most cases idiopathic. On the basis of experimental, epidemiological, and clinical data, it has been included in the testicular dysgenesis syndrome and believed to be influenced, together with genetic and anatomic factors, by maternal exposure to endocrine disrupting chemicals (EDCs). Here, we analyze how EDCs may interfere with the control of testicular descent, which is regulated by two Leydig cell hormones, testosterone, and insulin like peptide 3 (INSL3).
Collapse
Affiliation(s)
- Patrick Fénichel
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
- *Correspondence: Patrick Fénichel
| | - Nicolas Chevalier
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| | - Najiba Lahlou
- Department of Hormonology and Metabolic Disorders, Hôpital Cochin, APHP, Paris-Descartes University, Paris, France
| | | | | | - Michel Pugeat
- Institut National de la Recherche Médicale, U1060 CaRMen, Fédération d'Endocrinologie, Hospices Civils de Lyon-1, Bron, France
| | | | - Françoise Brucker-Davis
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
14
|
Hadziselimovic F. On the descent of the epididymo-testicular unit, cryptorchidism, and prevention of infertility. Basic Clin Androl 2017; 27:21. [PMID: 29163975 PMCID: PMC5686796 DOI: 10.1186/s12610-017-0065-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
This comprehensive review provides in-depth coverage of progress made in understanding the molecular mechanisms underlying cryptorchidism, a frequent pathology first described in about 1786 by John Hunter. The first part focuses on the physiology, embryology, and histology of epididymo-testicular descent. In the last 20 years epididymo-testicular descent has become the victim of schematic drawings with an unjustified rejection of valid histological data. This part also includes discussion on the roles of gonadotropin-releasing hormone, fibroblast growth factors, Müllerian inhibiting substance, androgens, inhibin B, and insulin-like 3 in epididymo-testicular descent. The second part addresses the etiology and histology of cryptorchidism as well as the importance of mini-puberty for normal fertility development. A critical view is presented on current clinical guidelines that recommend early orchidopexy alone as the best possible treatment. Finally, by combining classical physiological information and the output of cutting-edge genomics data into a complete picture the importance of hormonal treatment in preventing cryptorchidism-induced infertility is underscored.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Cryptorchidism Research Institute, Kindermedizinisches Zentrum Liestal, Liestal, Switzerland
- Pediatrics at the University of Basel and Director of Cryptorchidism Research Institfigute, Kindermedizinisches Zentrum, Bahnhofplatz 11, 4410 Liestal, Switzerland
| |
Collapse
|
15
|
Shima Y, Morohashi KI. Leydig progenitor cells in fetal testis. Mol Cell Endocrinol 2017; 445:55-64. [PMID: 27940302 DOI: 10.1016/j.mce.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells play pivotal roles in masculinization of organisms by producing androgens. At least two distinct Leydig cell populations sequentially emerge in the mammalian testis. Leydig cells in the fetal testis (fetal Leydig cells) appear just after initial sex differentiation and induce masculinization of male fetuses. Although there has been a debate on the fate of fetal Leydig cells in the postnatal testis, it has been generally believed that fetal Leydig cells regress and are completely replaced by another Leydig cell population, adult Leydig cells. Recent studies revealed that gene expression patterns are different between fetal and adult Leydig cells and that the androgens produced in fetal Leydig cells are different from those in adult Leydig cells in mice. Although these results suggested that fetal and adult Leydig cells have distinct origins, several recent studies of mouse models support the hypothesis that fetal and adult Leydig cells arise from a common progenitor pool. In this review, we first provide an overview of previous knowledge, mainly from mouse studies, focusing on the cellular origins of fetal Leydig cells and the regulatory mechanisms underlying fetal Leydig cell differentiation. In addition, we will briefly discuss the functional differences of fetal Leydig cells between human and rodents. We will also discuss recent studies with mouse models that give clues for understanding how the progenitor cells in the fetal testis are subsequently destined to become fetal or adult Leydig cells.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
David RM. Proposed Mode of Action for In Utero Effects of Some Phthalate Esters on the Developing Male Reproductive Tract. Toxicol Pathol 2016; 34:209-19. [PMID: 16698716 DOI: 10.1080/01926230600642625] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phthalate esters containing a straight-chain backbone of 4–6 carbons have demonstrated testicular toxicity and infertility in adult and pre-adolescent rats, mice, hamsters, and ferrets. In recent years, these same phthalates have been shown to interfere with the normal development of the male reproductive tract in rodents and rabbits. The review presented here summarizes studies that provide evidence of a mode of action for these effects. The data indicate that C4–C6 phthalate esters inhibit processes in the Leydig cell, such as the synthesis of testosterone (T) and production of insulin-like factor 3 (insl3), both of which are required for normal development of male genitalia. A proposed secondary effect of reduced androgen production is on Sertoli cells, resulting in failure to proliferate and interference with cell-cell communication (gap-junction intracellular communication) leading to the development of large multinucleate gonocytes. The possibility that phthalates act directly on the Sertoli cells to interfere with intracellular communication is not excluded. The strength, consistency, and plausibility of the proposed mode of action and alternate modes of action are discussed.
Collapse
Affiliation(s)
- Raymond M David
- K&D Scientific Consulting, Inc., Pittsford, New York 14534, USA.
| |
Collapse
|
17
|
Abstract
SummaryThe objective of the present study was to describe the frequency of the main racial traits of Morada Nova sheep and simulate the impact of this culling on the response to selection for birth weight. The data from sex, coat colour, hoof pigmentation, muzzle pigmentation, polled and cryptorchidism were collected individually at weaning from 385 Morada Nova sheep of the red variety, born between 2010 and 2012, which belonged to four different flocks in the state of Ceará, Brazil. To estimate the impact of culling of animals due to racial pattern on the genetic improvement of the Morada Nova population, the genetic gains in birth weight per generation were calculated considering the following different scenarios of culling due to racial pattern in a simulated population. The present results indicate that the most urgent step is flexibilization of the requirement of dark muzzles and hooves. The selection of Morada Nova sheep based on racial pattern has caused losses in the genetic gain for productive traits such as birth weight. Readaptation of the official racial pattern established for Morada Nova sheep is necessary so that the racial pattern is achieved and an adequate number of animals will be available for selection.
Collapse
|
18
|
Hadziselimovic F. Involvement of Fibroblast Growth Factors and Their Receptors in Epididymo-Testicular Descent and Maldescent. Mol Syndromol 2016; 6:261-7. [PMID: 27022326 DOI: 10.1159/000444033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Maldescent of the epididymo-testicular unit can occur as an isolated event or as a component of various syndromes. When part of a syndrome, crypto-epididymis is usually accompanied by other genital and/or extragenital features. Epididymis development is primarily regulated by androgens, and successful epididymo-testicular unit development and descent requires an intact hypothalamic-pituitary-gonadal axis. The developing gonadotropin-releasing hormone system is essential for epididymo-testicular descent and is highly sensitive to reduced fibroblast growth factor (FGF) signaling. Our understanding of the impact of FGFR1 in the process of epididymo-testicular descent has recently improved. At later stages of embryonic development, the undifferentiated epididymal mesenchyme is a specific domain for FGFR1 expression. The majority of individuals with syndromic crypto-epididymis, as well as individuals with isolated maldescent of the epididymo-testicular unit, exhibit some disturbance of FGF, FGFR1 and/or genes involved in hypothalamic-pituitary-gonadal axis regulation. However, the mechanisms underlying FGF dysregulation may differ between various syndromes.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Institute for Cryptorchidism Research, Kindermedizinisches Zentrum Liestal, Liestal, Switzerland
| |
Collapse
|
19
|
Barthold JS, Wang Y, Kolon TF, Kollin C, Nordenskjöld A, Olivant Fisher A, Figueroa TE, BaniHani AH, Hagerty JA, Gonzaléz R, Noh PH, Chiavacci RM, Harden KR, Abrams DJ, Kim CE, Li J, Hakonarson H, Devoto M. Pathway analysis supports association of nonsyndromic cryptorchidism with genetic loci linked to cytoskeleton-dependent functions. Hum Reprod 2015; 30:2439-51. [PMID: 26209787 PMCID: PMC4573451 DOI: 10.1093/humrep/dev180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION What are the genetic loci that increase susceptibility to nonsyndromic cryptorchidism, or undescended testis? SUMMARY ANSWER A genome-wide association study (GWAS) suggests that susceptibility to cryptorchidism is heterogeneous, with a subset of suggestive signals linked to cytoskeleton-dependent functions and syndromic forms of the disease. WHAT IS KNOWN ALREADY Population studies suggest moderate genetic risk of cryptorchidism and possible maternal and environmental contributions to risk. Previous candidate gene analyses have failed to identify a major associated locus, although variants in insulin-like 3 (INSL3), relaxin/insulin-like family peptide receptor 2 (RXFP2) and other hormonal pathway genes may increase risk in a small percentage of patients. STUDY DESIGN, SIZE, DURATION This is a case-control GWAS of 844 boys with nonsyndromic cryptorchidism and 2718 control subjects without syndromes or genital anomalies, all of European ancestry. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys with cryptorchidism were diagnosed and treated by a pediatric specialist. In the discovery phase, DNA was extracted from tissue or blood samples and genotyping performed using the Illumina HumanHap550 and Human610-Quad (Group 1) or OmniExpress (Group 2) platform. We imputed genotypes genome-wide, and combined single marker association results in meta-analyses for all cases and for secondary subphenotype analyses based on testis position, laterality and age, and defined genome-wide significance as P = 7 × 10(-9) to correct for multiple testing. Selected markers were genotyped in an independent replication group of European cases (n = 298) and controls (n = 324). We used several bioinformatics tools to analyze top (P < 10(-5)) and suggestive (P < 10(-3)) signals for significant enrichment of signaling pathways, cellular functions and custom gene lists after multiple testing correction. MAIN RESULTS AND THE ROLE OF CHANCE In the full analysis, we identified 20 top loci, none reaching genome-wide significance, but one passing this threshold in a subphenotype analysis of proximal testis position (rs55867206, near SH3PXD2B, odds ratio = 2.2 (95% confidence interval 1.7, 2.9), P = 2 × 10(-9)). An additional 127 top loci emerged in at least one secondary analysis, particularly of more severe phenotypes. Cytoskeleton-dependent molecular and cellular functions were prevalent in pathway analysis of suggestive signals, and may implicate loci encoding cytoskeletal proteins that participate in androgen receptor signaling. Genes linked to human syndromic cryptorchidism, including hypogonadotropic hypogonadism, and to hormone-responsive and/or differentially expressed genes in normal and cryptorchid rat gubernaculum, were also significantly overrepresented. No tested marker showed significant replication in an independent population. The results suggest heterogeneous, multilocus and potentially multifactorial susceptibility to nonsyndromic cryptorchidism. LIMITATIONS, REASONS FOR CAUTION The present study failed to identify genome-wide significant markers associated with cryptorchidism that could be replicated in an independent population, so further studies are required to define true positive signals among suggestive loci. WIDER IMPLICATIONS OF THE FINDINGS As the only GWAS to date of nonsyndromic cryptorchidism, these data will provide a basis for future efforts to understand genetic susceptibility to this common reproductive anomaly and the potential for additive risk from environmental exposures. STUDY FUNDING/COMPETING INTERESTS This work was supported by R01HD060769 (the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD)), P20RR20173 (the National Center for Research Resources (NCRR), currently P20GM103464 from the National Institute of General Medical Sciences (NIGMS)), an Institute Development Fund to the Center for Applied Genomics at The Children's Hospital of Philadelphia, and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Yanping Wang
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas F Kolon
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Claude Kollin
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Alicia Olivant Fisher
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - T Ernesto Figueroa
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ahmad H BaniHani
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jennifer A Hagerty
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ricardo Gonzaléz
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Present address: Auf der Bult Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Paul H Noh
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Present address: Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kisha R Harden
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Debra J Abrams
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cecilia E Kim
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jin Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
20
|
Affiliation(s)
- F Hadziselimovic
- Institute for Cryptorchidism Research, Kindermedizinisches Zentrum, Bahnhofplatz 11, 4410, Liestal, Switzerland,
| |
Collapse
|
21
|
Duan S, Zhang X, Jiang X, Xie L, Sun Z, Ma S, Li J. An insight into insulin-like factor 3 regulate its receptor RXFP2 in mouse gubernaculum testis cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14806-11. [PMID: 26823808 PMCID: PMC4713594 DOI: pmid/26823808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 02/05/2023]
Abstract
The etiology of testicular dysgenesis syndrome is multifactorial and involves abnormalities in the anatomical structures and endocrine factors. Several studies have shown that the abnormal development of the gubernaculum may affect testicular descent, and the insulin-like factor 3 (INSL3) appears to play an important role in development of the gubernaculum have been proved. INSL3 binds its specific receptor (Relaxin family peptide 2, RXFP2), which was highly expressed in gubernaculum, to produce a crucial effect in the first transabdominal descent stage, but its mechanism still remain unclear. In this study, in order to explore how does INSL3 regulate its receptor RXFP2, we cultured mouse gubernaculum testis cells in vitro, which was treated by INSL3, and examined the expression of RXFP2 in mouse gubernaculum testis cells. The results displayed that INSL3 changed RXFP2 expression, and we found that low dose INSL3 can increase RXFP2 expression, the mechanism of above-mentioned might be related with the hormesis of INSL3.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong, China
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong, China
- Guangdong Key Laboratory of Medical Molecular ImagingShantou, Guangdong, China
| | - Xuan Zhang
- Department of Pediatric Surgery, The Affiliated Maternal and Child Health Hospital of Shenzhen University Medical CollegeShenzhen, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, The Affiliated Maternal and Child Health Hospital of Shenzhen University Medical CollegeShenzhen, Guangdong, China
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong, China
- Guangdong Key Laboratory of Medical Molecular ImagingShantou, Guangdong, China
| | - Zongbo Sun
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong, China
- Guangdong Key Laboratory of Medical Molecular ImagingShantou, Guangdong, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong, China
- Guangdong Key Laboratory of Medical Molecular ImagingShantou, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong, China
| |
Collapse
|
22
|
Barthold JS, Wang Y, Robbins A, Pike J, McDowell E, Johnson KJ, McCahan SM. Transcriptome analysis of the dihydrotestosterone-exposed fetal rat gubernaculum identifies common androgen and insulin-like 3 targets. Biol Reprod 2013; 89:143. [PMID: 24174575 DOI: 10.1095/biolreprod.113.112953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Androgens and insulin-like 3 (INSL3) are required for development of the fetal gubernaculum and testicular descent. Previous studies suggested that the INSL3-exposed fetal gubernacular transcriptome is enriched for genes involved in neural pathways. In the present study, we profiled the transcriptome of fetal gubernaculum explants exposed to dihydrotestosterone (DHT) and compared this response to that with INSL3. We exposed fetal (Embryonic Day 17) rat gubernacula to DHT for 24 h (10 and 30 nM) or 6 h (1 and 10 nM) in organ culture and analyzed gene expression relative to that of vehicle-treated controls using Affymetrix arrays. Results were annotated using functional, pathway, and promoter analyses and independently validated for selected transcripts using quantitative RT-PCR (qRT-PCR). Transcripts were differentially expressed after 24 h but not 6 h. Most highly overrepresented functional categories included those related to gene expression, skeletal and muscular development and function, and Wnt signaling. Promoter response elements enriched in the DHT-specific transcriptome included consensus sequences for c-ETS1, ELK1, CREB, CRE-BP1/c-June, NRF2, and USF. We observed that 55% of DHT probe sets were also differentially expressed after INSL3 exposure and that the direction of change was the same in 96%. The qRT-PCR results confirmed that DHT increased expression of the INSL3-responsive genes Crlf1 and Chrdl2 but reduced expression of Wnt4. We also validated reduced Tgfb2 and Cxcl12 and increased Slit3 expression following DHT exposure. These data suggest a robust overlap in the DHT- and INSL3-regulated transcriptome that may be mediated in part by CREB signaling and a common Wnt pathway response for both hormones in the fetal gubernaculum.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | | | | | | | | | | |
Collapse
|
23
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Acién P, Sánchez del Campo F, Mayol MJ, Acién M. The female gubernaculum: role in the embryology and development of the genital tract and in the possible genesis of malformations. Eur J Obstet Gynecol Reprod Biol 2011; 159:426-32. [DOI: 10.1016/j.ejogrb.2011.07.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/01/2011] [Accepted: 07/14/2011] [Indexed: 01/14/2023]
|
25
|
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Perinatal and Child Health, CHUQ Research Centre, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
26
|
Johnson KJ, Robbins AK, Wang Y, McCahan SM, Chacko JK, Barthold JS. Insulin-like 3 exposure of the fetal rat gubernaculum modulates expression of genes involved in neural pathways. Biol Reprod 2010; 83:774-82. [PMID: 20631401 DOI: 10.1095/biolreprod.110.085175] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Insulin-like 3 (INSL3) signaling directs fetal gubernacular development and testis descent, but the actions of INSL3 in the gubernaculum are poorly understood. Using microarray gene expression profiling of fetal male rat gubernaculum explants exposed to 10 or 100 nM INSL3, significant changes in expression were identified for approximately 900 genes. Several of the genes showing the largest inductions regulate neuronal development or activity, including Pnoc (34-fold), Nptx2 (9-fold), Nfasc (4-fold), Gfra3 (3-fold), Unc5d (3-fold), and Crlf1 (3-fold). Bioinformatics analysis revealed BMP and WNT signaling pathways and several gene ontologies related to neurogenesis were altered by INSL3. Promoter response elements significantly enriched in the INSL3-regulated gene list included consensus sequences for MYB, REL, ATF2, and TEF transcription factors. Comparing in vivo gene expression profiles of male and female rat fetal gubernaculum showed expression of the Bmp, Wnt, and neurodevelopmental genes induced by INSL3 was higher in males. Using quantitative RT-PCR, the microarray data were confirmed, and the induction of Bmp3, Chrdl2, Crlf1, Nptx2, Pnoc, Wnt4, and Wnt5a mRNA levels were examined over a range of INSL3 concentrations (0.1-100 nM) in male and female gubernaculum. In both sexes, an increasing gene expression response was observed between 0.1 and 10 nM INSL3. These data suggest that INSL3 signaling in the fetal gubernaculum induces morphogenetic programs, including BMP and WNT signaling, and support other rodent data suggesting a role for these pathways in development of the gubernaculum.
Collapse
Affiliation(s)
- Kamin J Johnson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cryptorchidism is a common genital anomaly diagnosed at birth or during childhood. Genetic and/or environmental factors that alter expression or function of hormones crucial for testicular descent, insulin-like 3, and testosterone, may contribute to cryptorchidism. When identified at birth, surgical treatment is indicated by 6 months of age if testes fail to descend, or at the time of diagnosis in older children. A laparoscopic approach is preferred for abdominal testes. Early surgical therapy may reduce the risk of subfertility and/or malignancy.
Collapse
|
28
|
Arrighi S, Bosi G, Groppetti D, Aralla M, Cremonesi F. An insight into testis and gubernaculum dynamics of INSL3 - RXFP2 signalling during testicular descent in the dog. Reprod Fertil Dev 2010; 22:751-60. [DOI: 10.1071/rd09260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/24/2009] [Indexed: 11/23/2022] Open
Abstract
Insulin-like 3 (INSL3) plays a prominent role in male development and is supposed to induce the growth of the gubernaculum testis (g.t.), thus being directly involved in testicular descent in humans and rodents. This happens through activation of the RXFP2 receptor (GREAT or LGR8). The INSL3–RXFP2 complex is reputed to play an additional paracrine role in the testis, possibly acting as part of an autocrine feedback loop. The present work provides evidence of the immunolocalisation of INSL3 in the Leydig cells of canine fetuses and of the expression of RXFP2 receptor in different tissues of the g.t. of the same specimens. RXFP2 was localised at the cell membrane of g.t. muscle and connective cells, as well as in the epithelial cells of the developing excurrent ducts. Notably, RXFP2 immunoreactivity of the g.t. was limited to fetuses at ~35–45 days of gestation, which is also the fetal period when the endocrine compartment of the dog testis is active endocrinologically, as confirmed by the anti-P450c17 and anti-INSL3 immunoreactivities of the fetal Leydig cells, and by anti-Müllerian hormone immunoreactivity of the Sertoli cells. The same immunoreactivities were also evaluated in the testes of cryptorchid dogs of different ages. RXFP2 immunoreactivity was absent from genital tracts of cryptorchid testes and g.t. remnants.
Collapse
|
29
|
Griswold SL, Behringer RR. Fetal Leydig cell origin and development. Sex Dev 2009; 3:1-15. [PMID: 19339813 DOI: 10.1159/000200077] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022] Open
Abstract
Male sexual differentiation is a complex process requiring the hormone-producing function of somatic cells in the gonad, including Sertoli cells and fetal Leydig cells (FLCs). FLCs are essential for virilization of the male embryo, but despite their crucial function, relatively little is known about their origins or development. Adult Leydig cells (ALCs), which arise at puberty, have been studied extensively and much of what has been learned about this cell population has been extrapolated to FLCs. This approach is problematic in that prevailing dogma in the field asserts that these 2 populations are distinct in origin. As such, it is imprudent to assume that FLCs arise and develop in a similar manner to ALCs. This review provides a critical assessment of studies performed on FLC populations, rather than those extrapolated from ALC studies to assemble a model for FLC origins and development. Furthermore, we underscore the need for conclusive identification of the source population of fetal Leydig cells.
Collapse
Affiliation(s)
- S L Griswold
- Program in Developmental Biology, Baylor College of Medicine, Houston, Tex., USA
| | | |
Collapse
|
30
|
Agoulnik AI. Relaxin and related peptides in male reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 612:49-64. [PMID: 18161481 DOI: 10.1007/978-0-387-74672-2_5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The relaxin hormone is renowned for its function in pregnancy, parturition and other aspects of female reproduction. At the same time, the role of relaxin in male reproduction is still debated. Relaxin is prominently expressed in prostate and its receptors are found in several male reproductive organs; however, the data indicative of its contribution to differentiation and functioning of prostate or testis are contradictory. Prostate relaxin is a main source of this peptide in the seminal plasma. The relaxin effects on sperm motility and fertilization have been reported. The expression of other relaxin related peptides, such as INSL5 and INSL6 was described in testis; yet, currently there are no experimental data to pinpoint their biological functions. The other member of relaxin peptide family, insulin-like 3 peptide (INSL3), is a major player in male development. The INSL3 peptide is expressed in testicular fetal and adult Leydig cells and is directly responsible for the process of abdominal testicular descent (migration of the testes towards the scrotum during male development). Genetic targeting of the Insl3 gene or INSL3 GPCR receptor Lgr8/Rxfp2 causes high intra-abdominal cryptorchidism due to a differentiation failure of testicular ligaments, the gubernacula. Several mutations of these two genes rendering nonfunctional proteins have been described in human patients with testicular maldescent. Thus, in this chapter we review the data related to the expression and function of relaxin and related peptides in male reproduction.
Collapse
Affiliation(s)
- Alexander I Agoulnik
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Nonsyndromic cryptorchidism or undescended testis is a structural defect of infants and children whose etiology is unknown but likely related to a combination of genetic susceptibility and environmental factors. This review will focus on factors that may contribute to the etiology of this common and complex disease. RECENT FINDINGS The incidence of cryptorchidism is estimated to be 2-4% or higher in some populations. Data suggesting increasing prevalence are conflicting, possibly related to problems with diagnostic accuracy. Increased risk of cryptorchidism in first-degree relatives suggests a significant genetic contribution to susceptibility. Sequence variants within key candidate genes, such as insulin-like 3 and relaxin/insulin-like family peptide receptor 2, in cases of nonsyndromic cryptorchidism are infrequent and of unclear significance. Epidemiological data suggest that fetal growth restriction, maternal factors such as smoking, alcohol use and gestational diabetes, and exposure to environmental chemicals may contribute to risk, although data are inconsistent. SUMMARY The available evidence suggests a significant genetic contribution to cryptorchidism susceptibility that may be modulated by environmental risk factors. Additional studies are needed to define these factors, their complex interaction and their effects on testicular development and descent.
Collapse
|
32
|
Foresta C, Zuccarello D, Garolla A, Ferlin A. Role of hormones, genes, and environment in human cryptorchidism. Endocr Rev 2008; 29:560-80. [PMID: 18436703 DOI: 10.1210/er.2007-0042] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptorchidism is the most frequent congenital birth defect in male children (2-4% in full-term male births), and it has the potential to impact the health of the human male. In fact, although it is often considered a mild malformation, it represents the best-characterized risk factor for reduced fertility and testicular cancer. Furthermore, some reports have highlighted a significant increase in the prevalence of cryptorchidism over the last few decades. Etiology of cryptorchidism remains for the most part unknown, and cryptorchidism itself might be considered a complex disease. Major regulators of testicular descent from intraabdominal location into the bottom of the scrotum are the Leydig-cell-derived hormones testosterone and insulin-like factor 3. Research on possible genetic causes of cryptorchidism has increased recently. Abundant animal evidence supports a genetic cause, whereas the genetic contribution to human cryptorchidism is being elucidated only recently. Mutations in the gene for insulin-like factor 3 and its receptor and in the androgen receptor gene have been recognized as causes of cryptorchidism in some cases, but some chromosomal alterations, above all the Klinefelter syndrome, are also frequently involved. Environmental factors acting as endocrine disruptors of testicular descent might also contribute to the etiology of cryptorchidism and its increased incidence in recent years. Furthermore, polymorphisms in different genes have recently been investigated as contributing risk factors for cryptorchidism, alone or by influencing susceptibility to endocrine disruptors. Obviously, the interaction of environmental and genetic factors is fundamental, and many aspects have been clarified only recently.
Collapse
Affiliation(s)
- Carlo Foresta
- University of Padova, Department of Histology, Microbiology and Medical Biotechnologies, Section of Clinical Pathology and Centre for Male Gamete Cryopreservation, Via Gabelli 63, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
33
|
Song XF, Wei GH, Liu X, Zhang DY, Chen X, Deng YJ. Effects of diethylhexyl phthalate (DEHP) on INSL3 mRNA expression by Leydig cells derived from mouse embryos and in newborn mice. J Int Med Res 2008; 36:512-21. [PMID: 18534133 DOI: 10.1177/147323000803600316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insulin-like factor 3 (INSL3) regulates testicular descent during fetal life, and Insl3 gene inactivation results in cryptorchidism. Little is known, however, about whether the plasticizer diethylhexyl phthalate (DEHP), a contaminant found widely in the environment, influences INSL3 expression. In this study, primary cultures of Leydig cells from mouse embryos were treated in vitro with DEHP. We also treated pregnant mice with DEHP from gestation day 12 to postnatal day 3 in order to study the effect of DEHP in vivo. INSL3 mRNA expression levels in primary Leydig cell cultures and in the testes of newborn mice were significantly lower following DEHP treatment. DEHP also caused detrimental morphological changes in both primary cultures of Leydig cells and the testes of newborn mice. These results suggest that the downregulation of INSL3 mRNA by DEHP might cause abnormalities of gubernacular development, which might be one of the mechanisms for development of cryptorchidism.
Collapse
Affiliation(s)
- X F Song
- Department of Urology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing, China
| | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Barthold J, Figueroa E, González R, Noh PH, Wang M, Manson J. Analysis of five single nucleotide polymorphisms in the ESR1 gene in cryptorchidism. ACTA ACUST UNITED AC 2008; 82:482-5. [PMID: 18452179 DOI: 10.1002/bdra.20458] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent findings suggest that a specific haplotype, including five single nucleotide polymorphisms (SNPs) in the 3'-terminal region of the estrogen receptor alpha gene (ESR1), is associated with the risk for cryptorchidism, but results have been conflicting in different populations. The goal of this study was to further define the association between this specific ESR1 haplotype and the risk for nonsyndromic cryptorchidism in a multiracial American population including Caucasian, African American, and Asian American subjects. METHODS Applied Biosystems TaqMan SNP Genotyping Assays were used to identify the genotypes of the five SNPs in ESR1 in 152 nonsyndromic cryptorchidism cases and 160 healthy controls. RESULTS For the five SNPs, there were no significant differences in genotype frequencies between cases and controls. The four estimated haplotypes at the 3' region of ESR1 gene were also not associated with the occurrence of cryptorchidism, but the haplotype AGATC was associated with the severity of cryptorchidism. SNP12 (rs6932902) in ESR1 was not associated with cryptorchidism per se, but was associated with increasing severity of cryptorchidism. Severe cases were more likely to have GG genotype (93%) than moderate (54%) cases (p = .04), and this association was in recessive mode (p = .02). The allele distribution of this SNP was also significantly different between moderate and severe cases: 97% of severe cases had the G allele while only 76% of moderate cases had the G allele (p = .03). CONCLUSIONS SNP12 in ESR1 is not associated with the occurrence of cryptorchidism but is associated with the severity of cryptorchidism.
Collapse
Affiliation(s)
- Yanping Wang
- Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, Andersson AM, Toppari J. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab 2007; 92:4020-7. [PMID: 17666478 DOI: 10.1210/jc.2007-0974] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The Leydig cell hormone insulin-like factor 3 (INSL3) is important for testicular descent. Currently INSL3 levels in cord blood, in serum throughout childhood, and in relation to congenital cryptorchidism are unknown. OBJECTIVE The objective of the study was to characterize INSL3 levels in cord blood during the postnatal activation of the hypothalamic-pituitary-gonadal axis and in later childhood in normal boys and girls and cryptorchid boys. DESIGN AND PARTICIPANTS Serum from 267 3-month-old boys of a prospective study with standardized cryptorchidism classification was analyzed for INSL3 (of these, 99 also had cord blood samples). Testicular position was known in 151 controls and 54 transiently cryptorchid and 62 persistently cryptorchid subjects. Eight infant girls, 26 boys (4.1-10.1 yr), and 13 girls (3.7-8.7 yr) were also included. OUTCOME MEASURE INSL3, age, testicular position, LH, and testosterone were measured. RESULTS INSL3 levels were significantly higher (P < 0.001) in cord blood and 3-month-old boys as compared with older prepubertal boys. At 3 months of age, INSL3 correlated significantly with LH in healthy boys. Cord blood INSL3 was significantly reduced in persistently cryptorchid boys (P = 0.001), and 3-month-old persistently cryptorchid boys had a significantly increased LH to INSL3 ratio (P = 0.014). INSL3 was unmeasurable in girls at all ages. CONCLUSIONS In boys, early postnatal INSL3 is markedly higher as compared with later childhood, presumably because it is stimulated by the transient postnatal LH peak. INSL3 was unmeasurable in girls at all ages. Reduced cord blood INSL3 and an increased LH to INSL3 ratio at 3 months of age in persistently cryptorchid boys suggest impaired Leydig cell function in cryptorchid boys already in the perinatal period.
Collapse
Affiliation(s)
- Katrine Bay
- University Department of Growth and Reproduction, Rigshospitalet, GR 5064, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The possession of a scrotum to contain the male gonads is a characteristic feature of almost all mammals, and appears to have evolved to allow the testes and epididymis to be exposed to a temperature a few degrees below that of core body temperature. Analysis of cryptorchid patients, and those with varicocele suggest that mild scrotal warming can be detrimental to sperm production, partly by effects on the stem cell population, and partly by effects on later stages of spermatogenesis and sperm maturation. Recent studies on the effects of clothing and lifestyle emphasize that these can also lead to chronically elevated scrotal temperatures. In particular, the wearing of nappies by infants is a cause for concern in this regard. Together all of the evidence indirectly supports the view that lifestyle factors in addition to other genetic and environmental influences could be contributing to the secular trend in declining male reproductive parameters. The challenge will be to provide relevant and targeted experimental results to support or refute the currently circumstantial evidence.
Collapse
Affiliation(s)
- Richard Ivell
- Research Centre for Reproductive Health, and School of Molecular and Biomedical Science, University of Adelaide, SA, Australia.
| |
Collapse
|
37
|
Toppari J, Kaleva M, Virtanen HE, Main KM, Skakkebaek NE. Luteinizing hormone in testicular descent. Mol Cell Endocrinol 2007; 269:34-7. [PMID: 17363139 DOI: 10.1016/j.mce.2006.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/03/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022]
Abstract
A proper hypothalamus-pituitary-testis axis with normal androgen synthesis and action is a prerequisite for normal testicular descent. Various defects in this axis may result in cryptorchidism but endocrine abnormalities are rarely detected. Androgens regulate testicular descent but androgen action alone is not sufficient for normal testicular descent. The regulation of androgen production is influenced both by placental human chorionic gonadotropin (hCG) and pituitary luteinizing hormone (LH). There is evidence that the longer pregnancy continues, the more important role pituitary LH may have. Insulin-like hormone-3 (INSL3) is suggested to be the main regulator of gubernacular development and therefore an apparent regulator of testicular descent. INSL3 production is also related to LH, and reduced INSL3 action is a possible cause for cryptorchidism. Cryptorchid boys have normal testosterone levels with slightly but significantly elevated LH levels as compared to healthy boys. This high gonadotropin drive may compensate for mild Leydig cell dysfunction in cryptorchidism.
Collapse
Affiliation(s)
- Jorma Toppari
- Department of Physiology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
38
|
Wang Y, Barthold J, Kanetsky PA, Casalunovo T, Pearson E, Manson J. Allelic variants inHOX genes in cryptorchidism. ACTA ACUST UNITED AC 2007; 79:269-75. [PMID: 17216618 DOI: 10.1002/bdra.20343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cryptorchidism is one of the most common congenital anomalies and is associated with increased risk for infertility and testicular cancer later in life. Findings from animal models and small clinical studies suggest that the posterior HOX genes (paralogs 9-13) could be potential candidate genes for cryptorchidism and that the HOX genes are functionally redundant within paralogous groups. METHODS The coding regions and exon-intron boundaries of the 16 posterior HOX genes were sequenced and analyzed in group 1 (44 nonsyndromic cryptorchidism cases and 46 healthy controls). Those specific variants found to be significantly different between cases and controls in group 1 were examined in DNA from group 2 (108 cases and 114 controls). RESULTS A total of 57 variants was found in group 1, among which the allele frequency of 180A>G (A60A) in HOXD13 alone was significantly elevated in cases versus controls (P = 0.02). In the combined 1 + 2 group, cases were also more likely than controls to have the G allele (P = 0.002). As predicted by an exonic splicing enhancer finder program, the 180A>G (A60A) variant is expected to have an influence on the splicing of transcripts from HOXD13. In group 1, case subjects were more likely to carry multiple variants in HOXA13 and HOXD13 (P = 0.02) than controls. CONCLUSIONS The variant 180A>G (A60A) in HOXD13 is a risk factor for cryptorchidism, and a dynamic equilibrium of genes in HOX paralog 13 is involved in the pathogenesis of cryptorchidism.
Collapse
Affiliation(s)
- Yanping Wang
- Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Ferlin A, Arredi B, Zuccarello D, Garolla A, Selice R, Foresta C. Paracrine and endocrine roles of insulin-like factor 3. J Endocrinol Invest 2006; 29:657-64. [PMID: 16957417 DOI: 10.1007/bf03344168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Insulin-like factor 3 (INSL3) is expressed in Leydig cells of the testis and theca cells of the ovary. This peptide affects testicular descent by acting on gubernaculum via its specific receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8). From initial animal data showing the cryptorchid phenotype of Insl3/Lgr8 mutants, an extensive search for mutations in INSL3 and LGR8 genes was undertaken in human patients with cryptorchidism, and a frequency of mutation of 4-5% has been detected. However, definitive proofs of a causative role for some of these mutations are still lacking. More recent data suggest additional paracrine (in the testis and ovary) and endocrine actions of INSL3 in adults. INSL3 circulates at high concentrations in serum of adult males and its production is dependent on the differentiation effect of LH. Therefore, INSL3 is increasingly used as a specific marker of Leydig cell differentiation and function.
Collapse
Affiliation(s)
- A Ferlin
- University of Padova, Department of Histology, Microbiology and Medical Biotechnologies, Center for Male Gamete Cryopreservation, Padua, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Robert NM, Martin LJ, Tremblay JJ. The orphan nuclear receptor NR4A1 regulates insulin-like 3 gene transcription in Leydig cells. Biol Reprod 2005; 74:322-30. [PMID: 16237153 DOI: 10.1095/biolreprod.105.044560] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Insulin-like 3 (INSL3) is a hormone produced by fetal and adult Leydig cells of the testis and by theca and luteal cells of the adult ovary. In males, INSL3 regulates testicular descent during fetal life, whereas in adults, it acts as a germ cell survival factor. In the ovary, INSL3 regulates oocyte maturation. Despite its importance for male sex differentiation and reproductive function in both sexes, very little is known regarding the molecular mechanisms that regulate Insl3 expression. So far, the nuclear receptor NR5A1 is the only transcription factor known to regulate the mouse Insl3 promoter in Leydig cells. NR5A1 by itself, however, cannot explain the spatiotemporal expression pattern of the Insl3 gene. In the present study, we have identified the orphan nuclear receptor NR4A1 as a novel regulator of INSL3 transcription in Leydig cells. Using RT-PCR, we found that Nr4a1 is coexpressed with Insl3 in purified Leydig cells and in several Leydig cell lines. Through detailed analyses of the mouse and human INSL3 promoter in Leydig cells, we have mapped a novel regulatory element located at -100 bp that is essential and sufficient to confer NR4A1 responsiveness. Consistent with a role for NR4A1 in Insl3 transcription, chromatin immunoprecipitation assays revealed that endogenous NR4A1 binds to the proximal Insl3 promoter in vivo. Finally, we found that NR4A1 is also implicated in cAMP-induced Insl3 transcription in Leydig cells. Taken together, our identification of NR4A1 as an important regulator of mouse and human INSL3 promoter activity helps us to better define the tissue-specific regulation of the INSL3 gene in gonadal cells.
Collapse
Affiliation(s)
- Nicholas M Robert
- Ontogeny-Reproduction Research Unit, CHUL Research Centre, Ste-Foy, Québec, Canada G1V 4G2
| | | | | |
Collapse
|
41
|
McKinnell C, Sharpe RM, Mahood K, Hallmark N, Scott H, Ivell R, Staub C, Jégou B, Haag F, Koch-Nolte F, Hartung S. Expression of insulin-like factor 3 protein in the rat testis during fetal and postnatal development and in relation to cryptorchidism induced by in utero exposure to di (n-Butyl) phthalate. Endocrinology 2005; 146:4536-44. [PMID: 16037377 DOI: 10.1210/en.2005-0676] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptorchidism is a common reproductive abnormality, possibly resulting from abnormal hormone production/action by the fetal testis. Insulin-like factor 3 (Insl3) is thought to be involved in gubernaculum development and transabdominal testicular descent, but its importance is unclear, due partly to lack of suitable Insl3 antibodies. We generated (by genetic immunization) and validated a novel antirat Insl3 antibody, which we used to characterize immunoexpression of Insl3 in rat Leydig cells (LCs) from fetal life until adulthood and its relationship to cryptorchidism. Immunoexpression was strong on embryonic day (E) 17.5 and E19.5 and from 35 d of age onward but weak from E21.5 until puberty. Because in utero exposure to di (n-butyl) phthalate (DBP) induces cryptorchidism and suppresses Insl3 gene expression, we investigated Insl3 protein expression in fetal and adult rats exposed to 500 mg/kg.d DBP from E13.5 to E21.5. Expression on E17.5 and E19.5 decreased dramatically after DBP exposure, but there was no consistent correlation between this suppression and abnormal testis position. We also compared expression of Insl3 and P450 side-chain cleavage enzyme in fetal testes from rats exposed in utero to DBP or flutamide (50 mg/kg.d). DBP treatment suppressed expression of both P450 side-chain cleavage enzyme and Insl3 at E19.5, but flutamide exposure had no effect on either protein, demonstrating that Insl3 expression in fetal rat LCs is not androgen regulated. In adult rats, Insl3 expression was suppressed in 80% of cryptorchid and 50% of scrotal testes from rats exposed to DBP, suggesting that prenatal DBP exposure also leads to maldevelopment/malfunction of the adult LC population in some animals.
Collapse
Affiliation(s)
- Chris McKinnell
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Academic Centre, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hutson JM, Hasthorpe S. Abnormalities of testicular descent. Cell Tissue Res 2005; 322:155-8. [PMID: 15965656 DOI: 10.1007/s00441-005-1126-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 03/30/2005] [Indexed: 11/24/2022]
Abstract
Testicular descent occurs in two stages. The transabdominal phase (8-15 weeks) is controlled by enlargement of the caudal genito-inguinal ligament (gubernaculum) and regression of the cranial ligament. Insulin-like 3 from the Leydig cell appears to be the prime stimulator of gubernacular growth, augmented by Müllerian inhibiting substance/anti-Müllerian hormone. Testosterone causes regression of the cranial ligament. The inguinoscrotal phase (25-35 weeks) requires the migration of the gubernaculum from the groin to the scrotum; this migration is guided by the genito-femoral nerve releasing calcitonin gene-related peptide under the influence of androgen. The neonatal gonocyte transforms into a type A spermatogonium at 3-12 months of age, a step that is now known to be crucial for subsequent fertility, as the stem cells for spermatogenesis are created in this structure. This step is blocked in undescended testis and, hence, orchidopexy is currently recommended at 6-12 months of age. Congenital cryptorchidism is caused by the failure of gubernacular migration to the scrotum (1%-2%) but we now recognise that another 1%-2% of boys have acquired cryptorchidism, secondary to the failure of spermatic cord elongation with growth of the boy. These latter cases come to operation at 5-10 years of age. Surgery remains the mainstay of treatment, as hormonal therapy has not been proven to be effective, presumably because testicular descent is a complex anatomical mechanism.
Collapse
Affiliation(s)
- John M Hutson
- Douglas Stephens Laboratory, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | | |
Collapse
|
43
|
Staub C, Rauch M, Ferrière F, Trépos M, Dorval-Coiffec I, Saunders PT, Cobellis G, Flouriot G, Saligaut C, Jégou B. Expression of estrogen receptor ESR1 and its 46-kDa variant in the gubernaculum testis. Biol Reprod 2005; 73:703-12. [PMID: 15944240 DOI: 10.1095/biolreprod.105.042796] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Testicular descent corresponds to migration of the testis from the abdominal cavity to the scrotum and is essential for proper functioning of the testis. Recent advances in the characterization of estrogen receptor (ESR) subtypes and isoforms in various tissues prompted us to study ESRs within the gubernaculum testis, a structure involved in testicular descent. In the rat gubernaculum, we searched for ESR alpha (Esr1) and beta (Esr2) and for the androgen receptor (Ar), androgens being known to regulate testicular descent. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that Esr1, Esr2, and Ar mRNAs were all expressed in the gubernaculum. Using PEETA (Primer extension, Electrophoresis, Elution, Tailing, and Amplification), we established that all Esr1 leader exons, previously identified in other organs, such as the uterus and pituitary, were transcribed in the gubernaculum, with the major form being O/B. The RNA protection assays, RT-PCR, and Western blot experiments revealed that isoform-specific mRNA transcripts generated by alternative splicing of the C-leader sequence on coding exons 1 and 2 of the Esr1 gene gave the 46- and 66-kDa ESR1 proteins. The ESR1 and AR proteins were found to colocalize in the parenchymal cells of the gubernaculum early in development, whereas AR also was strongly expressed in the muscular cells, both during fetal and postnatal life. The ESR2 protein was weakly expressed, principally in the muscular cells, but only once testicular descent had occurred. The levels of the 46-kDa ESR1 variant (ER46) exceeded those of the 66-kDa ESR1 form (ER66) at periods when the gubernaculum developed. Conversely, the 66-kDa form appears to predominate clearly when the gubernaculum growth was low or completed. The possible role of estrogens on the modulation of the androgen-dependent growth of the gubernaculum and, more widely, on testicular descent is discussed.
Collapse
Affiliation(s)
- Christophe Staub
- INSERM, U625, GERHM, IFR 140, Campus de Beaulieu, Univ Rennes I, Bretagne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Verma-Kurvari S, Parada LF. Identification of tyrosine kinases expressed in the male mouse gubernaculum during development. Dev Dyn 2004; 230:660-5. [PMID: 15254900 DOI: 10.1002/dvdy.20090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gubernaculum is a mesenchymal tissue that connects the gonads to the inguinal abdominal wall in the mammalian embryo. During gestation in the male, differential development of the gubernaculum and regression of the cranial suspensory ligament coordinate the first phase of testicular descent. As many as 1-3% newborn boys show impaired testicular descent, in part due to problems in gubernacular development. Little is known about the signaling molecules and cascades that are required for the development and differentiation of the gubernaculum. Protein tyrosine kinases comprise a large class of proteins that play important roles in proliferation, differentiation, and many aspects of cell-cell signaling in tissues. To date, no information on the existence of members of tyrosine kinase family in gubernaculum is available. We used a reverse transcription-polymerase chain reaction approach to identify 25 individual members of cytoplasmic and receptor tyrosine kinase classes in the developing male gubernaculum. The analysis of cellular distribution suggests that each tyrosine kinase examined may play a unique role in gubernacular development and differentiation.
Collapse
Affiliation(s)
- Sunita Verma-Kurvari
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 73590, USA
| | | |
Collapse
|
45
|
Li X, Strauss L, Mäkelä S, Streng T, Huhtaniemi I, Santti R, Poutanen M. Multiple structural and functional abnormalities in the p450 aromatase expressing transgenic male mice are ameliorated by a p450 aromatase inhibitor. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1039-48. [PMID: 14982857 PMCID: PMC1614717 DOI: 10.1016/s0002-9440(10)63191-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study was undertaken to analyze the effect of a P450 aromatase inhibitor (finrozole) on 4-month-old transgenic mice expressing human P450 aromatase (P450arom) under the human ubiquitin C promoter (AROM+). AROM+ mice present several dysfunctions, such as adrenal and pituitary hyperplasia, cryptorchidism, Leydig cell hypertrophy and hyperplasia, and gynecomastia. The present study demonstrates that these abnormalities were efficiently treated by administration of a P450arom inhibitor, finrozole. The treatment normalized the reduced intratesticular and serum testosterone levels, while those of estradiol were decreased. The body weight and several affected organ weights were normalized with the treatment. Histological analysis revealed that both the pituitary and adrenal hyperplasia were diminished. Furthermore, the cryptorchid testes present in the untreated AROM+ males descended to scrotum, 4 to 15 days after inhibitor treatment. In addition, the disrupted spermatogenesis was recovered and qualitatively complete spermatogenesis appeared with the inhibitor treatment. This was associated with normalized structure of the interstitial tissue, as analyzed by immunohistochemical staining for Leydig cells and macrophages. One of the features was that the Leydig cell hypertrophy was markedly diminished in the treated mice. AROM+ mice also present with severe gynecomastia, while the development and differentiation of the mammary gland in AROM+ males was markedly diminished with the inhibitor treatment. Interestingly, the mammary gland involution was associated with the induction of androgen receptor in the epithelial cells, while estrogen receptors were still detectable in the epithelium. The data show that AROM+ mouse model is a novel tool to further analyze the use of P450arom inhibitors in the treatment of the dysfunctions in males associated with misbalanced estrogen to androgen ratio, such as pituitary adenoma, testicular dysfunction, and gynecomastia.
Collapse
Affiliation(s)
- Xiangdong Li
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
46
|
Tyl RW, Myers CB, Marr MC, Fail PA, Seely JC, Brine DR, Barter RA, Butala JH. Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reprod Toxicol 2004; 18:241-64. [PMID: 15019722 DOI: 10.1016/j.reprotox.2003.10.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 10/02/2003] [Accepted: 10/15/2003] [Indexed: 11/22/2022]
Abstract
Butyl benzyl phthalate (BBP) was administered in the diet at 0, 750, 3750, and 11,250 ppm ad libitum to 30 rats per sex per dose for two offspring generations, one litter/breeding pair/generation, through weaning of F2 litters. Adult F0 systemic toxicity and adult F1 systemic and reproductive toxicity were present at 11,250 ppm (750 mg/kg per day). At 11,250 ppm, there were reduced F1 and F2 male anogenital distance (AGD) and body weights/litter during lactation, delayed acquisition of puberty in F1 males and females, retention of nipples and areolae in F1 and F2 males, and male reproductive system malformations. At 3750 ppm (250 mg/kg per day), only reduced F1 and F2 offspring male AGD was present. There were no effects on parents or offspring at 750 ppm (50 mg/kg per day). The F1 parental systemic and reproductive toxicity no observable adverse effect level (NOAEL) was 3750 ppm. The offspring toxicity NOAEL was 3750 ppm. The offspring toxicity no observable effect level (NOEL) was 750 ppm, based on the presence of reduced AGD in F1 and F2 males at birth at 3750 ppm, but no effects on reproductive development, structures, or functions.
Collapse
Affiliation(s)
- Rochelle W Tyl
- RTI International, 245 HLB/MCB, P.O. Box 12194, 3040 Cornwallis Road, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Umar A, Ooms MP, Luider TM, Grootegoed JA, Brinkmann AO. Proteomic profiling of epididymis and vas deferens: identification of proteins regulated during rat genital tract development. Endocrinology 2003; 144:4637-47. [PMID: 12960072 DOI: 10.1210/en.2003-0404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epididymis and vas deferens form part of the male internal genital tract and are dependent on androgens for their growth and development. To better understand the molecular action of androgens during male genital tract development, protein expression profiles were generated using two-dimensional gels, for rat epididymides and vasa deferentia isolated on embryonic days (E) 17-21. Proteins that were differentially expressed between E17 and E21 were cut from the gels, digested into tryptic peptides and analyzed on a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. Using this approach, 20 proteins could be identified that were regulated in time and were categorized into cytoskeletal proteins, nuclear proteins, transport proteins, chaperones, and enzymes (mainly glycolytic). Furthermore, epididymides and vasa deferentia isolated on E19 were cultured in vitro in the absence or presence of 10 nm of the synthetic androgen R1881, for 9, 24, and 48 h. Under these conditions, regulation and posttranslational modification were observed for glyceraldehyde 3-phosphate dehydrogenase, triosephosphate isomerase, heterogeneous nuclear ribonucleoprotein A2/B1 and heterogeneous nuclear ribonucleoprotein A3, similar to the observed changes in vivo. In addition, posttranslational modification of RhoGDI1 (also named RhoGDIalpha) was found in response to androgen. Androgen-induced posttranslational modification of RhoGDI1 and glycolytic enzymes may be an important functional link between signaling pathways and cytoskeletal rearrangements in control of growth and development of the male internal genital tract.
Collapse
Affiliation(s)
- Arzu Umar
- Department of Reproduction and Development, Erasmus MC, P.O. Box 1738, Rotterdam 3000 DR, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Durlinger ALL, Gruijters MJG, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JTJ, Grootegoed JA, Themmen APN. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 2002; 143:1076-84. [PMID: 11861535 DOI: 10.1210/endo.143.3.8691] [Citation(s) in RCA: 471] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recruitment of primordial follicles is essential for female fertility; however, the exact mechanisms regulating this process are largely unknown. Earlier studies using anti-Müllerian hormone (AMH)-deficient mice suggested that AMH is involved in the regulation of primordial follicle recruitment. We tested this hypothesis in a neonatal ovary culture system, in which ovaries from 2-d-old C57Bl/6J mice were cultured for 2 or 4 d in the absence or presence of AMH. Ovaries from 2-d-old mice contain multiple primordial follicles, some naked oocytes, and no follicles at later stages of development. We observed that in the cultured ovaries, either nontreated or AMH-treated, follicular development progressed to the same extent as in in vivo ovaries of comparable age, confirming the validity of our culture system. However, in the presence of AMH, cultured ovaries contained 40% fewer growing follicles compared with control ovaries. A similar reduction was found after 4 d of culture. Consistent with these findings, we noted lower inhibin alpha-subunit expression in AMH-treated ovaries compared with untreated ovaries. In contrast, expression of AMH ligand type II receptor and the expression of oocyte markers growth and differentiation factor 9 and zona pellucida protein 3 were not influenced by AMH. Based on the results, we suggest that AMH inhibits initiation of primordial follicle growth and therefore functions as an inhibitory growth factor in the ovary during these early stages of folliculogenesis.
Collapse
Affiliation(s)
- Alexandra L L Durlinger
- Department of Endocrinology and Reproduction, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Smith KJ, Wade JD, Claasz AA, Otvos L, Temelcos C, Kubota Y, Hutson JM, Tregear GW, Bathgate RA. Chemical synthesis and biological activity of rat INSL3. J Pept Sci 2001; 7:495-501. [PMID: 11587188 DOI: 10.1002/psc.344] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recently identified protein, insulin 3 (INSL3), has structural features that make it a bona fide member of the insulin superfamily. Its predicted amino acid sequence contains the classic two-peptide chain (A- and B-) structure with conserved cysteine residues that results in a disulphide bond disposition identical to that of insulin. Recently, the generation of insl3 knockout mice has demonstrated that testicular descent is blocked due to the failure of a specific ligament, the gubernaculum, to develop. The mechanism by which INSL3 exerts its action on the gubernaculum is currently unknown. The purpose of this study was to, for the first time, synthesize rat INSL3 and test its action on organ cultures of foetal rat gubernaculum. INSL3 also contains a cassette of residues Arg-X-X-X-Arg within the B-chain, a motif that is essential for characteristic activity of another related member of the superfamily, relaxin. Hence, the relaxin activity of rat INSL3 was also tested in two different relaxin bioassays. The primary structure of rat INSL3 was determined by deduction from its cDNA sequence and successfully prepared by solid phase peptide synthesis of the two constituent chains followed by their combination in solution. Following confirmation of its chemical integrity by a variety of analytical techniques, circular dichroism spectroscopy confirmed the presence of high beta-turn and alpha-helical content, with a remarkable spectral similarity to the synthetic ovine INSL3 peptide and to synthetic rat relaxin. The synthetic rat INSL3 bound with very low affinity to rat relaxin receptors and had no activity in a relaxin bioassay. Furthermore, it did not augment or antagonize relaxin activity. The rat INSL3 did however induce growth of foetal rat gubernaculum in whole organ cultures demonstrating that INSL3 has a direct action on this structure.
Collapse
Affiliation(s)
- K J Smith
- The Howard Florey Institute, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|