1
|
Perbal B. The case of Connective Tissue Growth Factor (CTGF) and the pit of misleading and improper nomenclatures. J Cell Commun Signal 2025; 19:e12062. [PMID: 39712858 PMCID: PMC11656398 DOI: 10.1002/ccs3.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
|
2
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Garrett EC, Bielawski AM, Ruchti E, Sherer LM, Waghmare I, Hess-Homeier D, McCabe BD, Stowers RS, Certel SJ. The matricellular protein Drosophila Cellular Communication Network Factor is required for synaptic transmission and female fertility. Genetics 2023; 223:iyac190. [PMID: 36602539 PMCID: PMC9991515 DOI: 10.1093/genetics/iyac190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023] Open
Abstract
Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.
Collapse
Affiliation(s)
| | - Ashley M Bielawski
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Lewis M Sherer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Indrayani Waghmare
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Hess-Homeier
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - R Steven Stowers
- Department of Cell Biology and Microbiology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
4
|
Guo S, Gong M, Tse G, Li G, Chen KY, Liu T. The Value of IGF-1 and IGFBP-1 in Patients With Heart Failure With Reduced, Mid-range, and Preserved Ejection Fraction. Front Cardiovasc Med 2022; 8:772105. [PMID: 35127852 PMCID: PMC8814096 DOI: 10.3389/fcvm.2021.772105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have reported inconsistent results regarding the implications of deranged insulin-like growth factor 1 (IGF-1)/insulin-like growth factor-binding protein 1 (IGFBP-1) axis in patients with heart failure (HF). This study evaluates the roles of IGF1/IGFBP-1 axis in patients with HF with reduced ejection fraction (HFrEF), mid-range ejection fraction (HFmrEF), or preserved ejection fraction (HFpEF). METHODS Consecutive patients with HFrEF, HFmrEF, and HFpEF who underwent comprehensive cardiac assessment were included. The primary endpoint was the composite endpoint of all-cause death and HF rehospitalization at one year. RESULTS A total of 151 patients with HF (HFrEF: n = 51; HFmrEF: n = 30; HFpEF: n = 70) and 50 control subjects were included. The concentrations of IGFBP-1 (p < 0.001) and IGFBP-1/IGF-1 ratio (p < 0.001) were significantly lower in patients with HF compared to controls and can readily distinguish patients with and without HF (IGFBP-1: areas under the curve (AUC): 0.725, p < 0.001; IGFBP-1/IGF-1 ratio: AUC:0.755, p < 0.001; respectively). The concentrations of IGF-1, IGFBP-1, and IGFBP-1/IGF-1 ratio were similar among HFpEF, HFmrEF, and HFrEF patients. IGFBP-1 and IGFBP-1/IGF-1 ratio positively correlated with N-terminal probrain natriuretic peptide (NT-proBNP) levels (r = 0.255, p = 0.002; r = 0.224, p = 0.007, respectively). IGF-1, IGFBP-1, and IGFBP-1/IGF-1 ratio did not predict the primary endpoint at 1 year for the whole patients with HF and HF subtypes on both univariable and multivariable Cox regression. CONCLUSION The concentrations of plasma IGFBP-1 and IGFBP-1/IGF-1 ratio can distinguish patients with and without HF. In HF, IGFBP-1 and IGFBP-1/IGF-1 ratio positively correlated with NT-proBNP levels.
Collapse
Affiliation(s)
- Shaohua Guo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, United Kingdom
- Heart Failure and Structural Heart Disease Unit, Cardiovascular Analytics Group, Hong Kong, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kang-Yin Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice. Int J Mol Sci 2021; 22:ijms222413418. [PMID: 34948212 PMCID: PMC8709456 DOI: 10.3390/ijms222413418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Collapse
|
6
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
7
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
8
|
Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front Endocrinol (Lausanne) 2018; 9:117. [PMID: 29686648 PMCID: PMC5900387 DOI: 10.3389/fendo.2018.00117] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factors (IGFs) are key growth-promoting peptides that act as both endocrine hormones and autocrine/paracrine growth factors. In the bloodstream and in local tissues, most IGF molecules are bound by one of the members of the IGF-binding protein (IGFBP) family, of which six distinct types exist. These proteins bind to IGF with an equal or greater affinity than the IGF1 receptor and are thus in a key position to regulate IGF signaling globally and locally. Binding to an IGFBP increases the half-life of IGF in the circulation and blocks its potential binding to the insulin receptor. In addition to these classical roles, IGFBPs have been shown to modulate IGF signaling locally under various conditions. Although members of the IGFBP family share significant sequence homology, they each have unique structural features and play distinct roles. These IGFBP genes also have different modes of regulation and distinct expression patterns. Some IGFBPs have been found to bind to their own receptors or to translocate into the interior compartments of cells where they may execute IGF-independent actions. In spite of this functional and regulatory diversity, it has been puzzling that loss-of-function studies have yielded relatively little information about the physiological functions of IGFBPs. In this review, we suggest that evolution has tended to retain an array of IGFBPs in order to facilitate fine-tuning of IGF signaling. We explore the emerging explanation that many IGFBP functions have evolved to allow the targeted adjustment of IGF signaling under stressful or irregular conditions, which would likely not be revealed in a standard laboratory setting.
Collapse
|
9
|
Liu JL, Kaddour N, Chowdhury S, Li Q, Gao ZH. Role of CCN5 (WNT1 inducible signaling pathway protein 2) in pancreatic islets. J Diabetes 2017; 9:462-474. [PMID: 27863006 DOI: 10.1111/1753-0407.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In search of direct targets of insulin-like growth factor (IGF)-1 action, we discovered CCN5 (WNT1 inducible signaling pathway protein 2 [WISP2]) as a novel protein expressed in pancreatic β-cells. As a member of the "CCN" ( C ysteine-rich angiogenic inducer 61 [Cyr61], C onnective tissue growth factor [CTGF in humans], and N ephroblastoma overexpressed [Nov; in chickens]) family, the expression of CCN5/WISP2 is stimulated by IGF-1 together with Wnt signaling. When overexpressed in insulinoma cells, CCN5 promotes cell proliferation and cell survival against streptozotocin-induced cell death. The cell proliferation effect seems to be caused by AKT phosphorylation and increased cyclin D1 levels. These properties resemble those of CCN2/CTGF, another isoform of the CCN family, although CCN5 is the only one within the family of six proteins that lacks the C-terminal repeat. Treatment of primary mouse islets with recombinant CCN5 protein produced similar effects to those of gene transfection, indicating that either as a matricellular protein or a secreted growth factor, CCN5 stimulates β-cell proliferation and regeneration in a paracrine fashion. This review also discusses the regulation of CCN5/WISP2 by estrogen and its involvement in angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jun-Li Liu
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nancy Kaddour
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Qing Li
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
10
|
Perbal A, Perbal B. The CCN family of proteins: a 25th anniversary picture. J Cell Commun Signal 2016; 10:177-190. [PMID: 27581423 DOI: 10.1007/s12079-016-0340-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022] Open
Abstract
The CCN family of proteins is composed of six members, which are now well recognized as major players in fundamental biological processes. The first three CCN proteins discovered were designated CYR61, CTGF, and NOV because of the context in which they were identified. Both CYR61 and CTGF were discovered in normal cells, whereas NOV was identified in tumors. Soon after their discovery, it was established that they shared important and unique structural features and distinct biological properties. Based on these structural considerations, the three proteins were proposed to belong to a family that was designated CCN by P. Bork. Hence the CCN1, CCN2 and CCN3 acronyms. The family grew to six members a few years later with the description of three proteins WISP-1, WISP-2 and WISP-3 (CCN4, CCN5 and CCN6), that shared the same tetramodular and conserved structural features. With the functions of the CCN proteins being uncovered, this raised a nomenclature problem. A scientific committee convened in Saint Malo (France) proposed to apply the CCN nomenclature to the six members of the family. Although the unified nomenclature was proposed in order to avoid serious misconceptions and lack of precision associated with the use of the old acronyms, the acceptance of the new acronyms has taken time. In order to evaluate how the use of disparate nomenclatures have had an impact on the CCN protein field, we conducted a survey of the articles that have been published in this area since the discovery of the first CCN proteins and inception of the field. We report in this manuscript the confusion and serious deleterious scientific consequences that have stemmed from a disorganized usage of several unrelated acronyms. The conclusions that we have reached call for a unification that needs to overcome personal habits and feelings. Instead of allowing the CCN field to fully crystalize and gain the recognition that it deserves the usage of many different acronyms represents a danger that everyone must fight against in order to avoid its deliquescence. We hope that the considerations discussed in the present article will encourage all authors working in the CCN field to work jointly and succeed in building a strong and coherent CCN scientific community that will benefit all of us.
Collapse
Affiliation(s)
| | - Bernard Perbal
- Université Côte d'Azur, CNRS, GREDEG, France and International CCN Society, Paris, France.
| |
Collapse
|
11
|
Krupska I, Bruford EA, Chaqour B. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Hum Genomics 2015; 9:24. [PMID: 26395334 PMCID: PMC4579636 DOI: 10.1186/s40246-015-0046-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023] Open
Abstract
“CCN” is an acronym referring to the first letter of each of the first three members of this original group of mammalian functionally and phylogenetically distinct extracellular matrix (ECM) proteins [i.e., cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), and nephroblastoma-overexpressed (NOV)]. Although “CCN” genes are unlikely to have arisen from a common ancestral gene, their encoded proteins share multimodular structures in which most cysteine residues are strictly conserved in their positions within several structural motifs. The CCN genes can be subdivided into members developmentally indispensable for embryonic viability (e.g., CCN1, 2 and 5), each assuming unique tissue-specific functions, and members not essential for embryonic development (e.g., CCN3, 4 and 6), probably due to a balance of functional redundancy and specialization during evolution. The temporo-spatial regulation of the CCN genes and the structural information contained within the sequences of their encoded proteins reflect diversity in their context and tissue-specific functions. Genetic association studies and experimental anomalies, replicated in various animal models, have shown that altered CCN gene structure or expression is associated with “injury” stimuli—whether mechanical (e.g., trauma, shear stress) or chemical (e.g., ischemia, hyperglycemia, hyperlipidemia, inflammation). Consequently, increased organ-specific susceptibility to structural damages ensues. These data underscore the critical functions of CCN proteins in the dynamics of tissue repair and regeneration and in the compensatory responses preceding organ failure. A better understanding of the regulation and mode of action of each CCN member will be useful in developing specific gain- or loss-of-function strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Izabela Krupska
- Department of Cell Biology, Downstate Medical Center, Brooklyn, NY, 11203, USA.,Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Brahim Chaqour
- Department of Cell Biology, Downstate Medical Center, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA. .,State University of New York (SUNY) Eye Institute Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
12
|
Aguiar DP, de Farias GC, de Sousa EB, de Mattos Coelho-Aguiar J, Lobo JC, Casado PL, Duarte MEL, Abreu JGR. New strategy to control cell migration and metastasis regulated by CCN2/CTGF. Cancer Cell Int 2014; 14:61. [PMID: 25120383 PMCID: PMC4130434 DOI: 10.1186/1475-2867-14-61] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/21/2014] [Indexed: 12/13/2022] Open
Abstract
Connective tissue growth factor (CTGF)/CCN family member 2 (CCN2) is a CCN family member of matricellular signaling modulators. It has been shown that CCN2/CTGF mediates cell adhesion, aggregation and migration in a large variety of cell types, including vascular endothelial cells, fibroblasts, epithelial cells, aortic smooth muscle and also pluripotent stem cells. Others matricellular proteins are capable of interacting with CCN2/CTGF to mediate its function. Cell migration is a key feature for tumor cell invasion and metastasis. CCN2/CTGF seems to be a prognostic marker for cancer. In addition, here we intend to discuss recent discoveries and a new strategy to develop therapies against CCN2/CTGF, in order to treat cancer metastasis.
Collapse
Affiliation(s)
- Diego Pinheiro Aguiar
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Gabriel Correa de Farias
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Eduardo Branco de Sousa
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Juliana de Mattos Coelho-Aguiar
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julie Calixto Lobo
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | - Priscila Ladeira Casado
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro, RJ, Brazil
| | | | - José Garcia Ribeiro Abreu
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Dynkevich Y, Rother KI, Whitford I, Qureshi S, Galiveeti S, Szulc AL, Danoff A, Breen TL, Kaviani N, Shanik MH, Leroith D, Vigneri R, Koch CA, Roth J. Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive. Endocr Rev 2013; 34:798-826. [PMID: 23671155 DOI: 10.1210/er.2012-1033] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumors of mesenchymal and epithelial origin produce IGF-2, which activates pathways in the tumors. In a minority of patients, the tumors (hepatomas, fibromas, and fibrosarcomas are the most common among many) release into the circulation enough IGF-2-related peptides to mimic the fasting hypoglycemia characteristic of patients with insulin-producing islet-cell tumors. Rarely, markedly elevated IGF-2 levels produce somatic changes suggestive of acromegaly. Typically, the elevated IGF-2 levels are associated with suppressed plasma levels of insulin, IGF-1, and GH. Complicating the pathophysiology are the IGF binding proteins (IGFBPs) that can bind IGF-2 and IGF-1, modifying hormone metabolism and action. IGFBP concentrations are often altered in the presence of these tumors. At the cellular level, the 3 hormone-related ligands, IGF-2, IGF-1, and insulin, all bind to 4 (or more) types of IGF-1 receptor (IGF-1R) and insulin receptor (IR). Each receptor has its own characteristic affinity for each ligand, a tyrosine kinase, and overlapping profiles of action in the target cells. The IGF-2R, in addition to binding mannose-6-phosphate-containing proteins, provides an IGF-2 degradation pathway. Recent evidence suggests IGF-2R involvement also in signal transduction. Surgery, the treatment of choice, can produce a cure. For patients not cured by surgery, multiple therapies exist, for the tumor and for hypoglycemia. Potential future therapeutic approaches are sketched. From 1910 to 1930, hypoglycemia, insulin, insulinomas, and non-islet-cell tumors were recognized. The latter third of the century witnessed the emergence of the immunoassay for insulin; the IGFs, their binding proteins, and assays to measure them; and receptors for the insulin-related peptides as well as the intracellular pathways beyond the receptor. In closing, we replace non-islet-cell tumor hypoglycemia, an outdated and misleading label, with IGF-2-oma, self-explanatory and consistent with names of other hormone-secreting tumors.
Collapse
Affiliation(s)
- Yevgeniya Dynkevich
- MD, FACP, Investigator, Feinstein Institute for Medical Research, Laboratory of Diabetes and Diabetes-Related Research, 350 Community Drive, Manhasset, NY 11030.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Quantitative proteomic determination of diethylstilbestrol action on prostate cancer. Asian J Androl 2013; 15:413-20. [PMID: 23435471 DOI: 10.1038/aja.2012.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diethylstilbestrol (DES) has a direct cellular mechanism inhibition on prostate cancer. Its action is independent from the oestrogen receptors and is preserved after a first-line hormonal therapy. We aimed to identify proteins involved in the direct cellular inhibition effects of DES on prostate cancer. We used a clonogenic assay to establish the median lethal concentration of DES on 22RV1 cells. 22RV1 cells were exposed to standard and DES-enriched medium. After extraction, protein expression levels were obtained by two-dimensional differential in-gel electrophoresis (2D-DIGE) and isotope labelling tags for relative and absolute quantification (iTRAQ). Proteins of interest were analysed by quantitative RT-PCR and western blotting. The differentially regulated proteins (P<0.01) were interrogated against a global molecular network based on the ingenuity knowledge base. The 2D-DIGE analyses revealed DES-induced expression changes for 14 proteins (>1.3 fold; P<0.05). The iTRAQ analyses allowed the identification of 895 proteins. Among these proteins, 65 had a modified expression due to DES exposure (i.e., 23 overexpressed and 42 underexpressed). Most of these proteins were implicated in apoptosis and redox processes and had a predicted mitochondrial expression. Additionally, ingenuity pathway analysis placed the OAT and HSBP1 genes at the centre of a highly significant network. RT-PCR confirmed the overexpression of OAT (P=0.006) and HSPB1 (P=0.046).
Collapse
|
15
|
Ito Y, Goldschmeding R, Kasuga H, Claessen N, Nakayama M, Yuzawa Y, Sawai A, Matsuo S, Weening JJ, Aten J. Expression patterns of connective tissue growth factor and of TGF-beta isoforms during glomerular injury recapitulate glomerulogenesis. Am J Physiol Renal Physiol 2010; 299:F545-58. [PMID: 20576680 DOI: 10.1152/ajprenal.00120.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor (TGF)-beta(1), -beta(2), and -beta(3) are involved in control of wound repair and development of fibrosis. Connective tissue growth factor (CTGF) expression is stimulated by all TGF-beta isoforms and is abundant in glomerulosclerosis and other fibrotic disorders. CTGF is hypothesized to mediate profibrotic effects of TGF-beta(1) or to facilitate interaction of TGF-beta(1) with its receptor, but its interactions with TGF-beta isoforms in nonpathological conditions are unexplored so far. Tissue repair and remodeling may recapitulate gene transcription at play in organogenesis. To further delineate the relationship between CTGF and TGF-beta, we compared expression patterns of CTGF and TGF-beta isoforms in rat and human glomerulogenesis and in various human glomerulopathies. CTGF mRNA was present in the immediate precursors of glomerular visceral and parietal epithelial cells in the comma- and S-shaped stages, but not in earlier stages of nephron development. During the capillary loop and maturing glomerular stages and simultaneous with the presence of TGF-beta(1), -beta(2), and -beta(3) protein, CTGF mRNA expression was maximal and present only in differentiating glomerular epithelial cells. CTGF protein was also present on precursors of mesangium and glomerular endothelium, suggesting possible paracrine interaction. Concomitant with the presence of TGF-beta(2) and -beta(3) protein, and in the absence of TGF-beta(1), CTGF mRNA and protein expression was restricted to podocytes in normal adult glomeruli. However, TGF-beta(1) and CTGF were again coexpressed, often with TGF-beta(2) and -beta(3), in particular in podocytes in proliferative glomerulonephritis and also in mesangial cells in diabetic nephropathy and IgA nephropathy (IgA NP). Coordinated expression of TGF-beta isoforms and of CTGF may be involved in normal glomerulogenesis and possibly in maintenance of glomerular structure and function at adult age. Prolonged overexpression of TGF-beta(1) and CTGF is associated with development of severe glomerulonephritis and glomerulosclerosis.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dash R, Su ZZ, Lee SG, Azab B, Boukerche H, Sarkar D, Fisher PB. Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene 2010; 29:4412-23. [PMID: 20531301 DOI: 10.1038/onc.2010.194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhanced expression of the CCN family of secretory integrin-binding proteins correlates with many essential components of the cancerous state, including tumor cell adhesion, proliferation, invasion and migration. Consequently, CCN1 expression is elevated in various cancers, including breast cancer, and its expression directly correlates with poor patient prognosis. Using subtraction-hybridization, combined with induction of cancer cell terminal differentiation, we cloned SARI (suppressor of activator protein (AP)-1, regulated by interferon (IFN)), an IFN-beta-inducible, potent tumor suppressor gene that exerts cancer-selective growth inhibitory effects. Forced expression of SARI using an adenovirus (Ad.SARI) inhibits AP-1 function and downregulates CCN1 expression in multiple cancer lineages, resulting in a profound inhibition in anchorage-independent cell growth and tumor cell invasion. Overexpression of SARI reduces CCN1-promoter activity through inhibition of AP-1 binding. Accordingly, SARI selectively blocks expression of the transformed state in rat embryo fibroblast cells that stably overexpress c-Jun. These results illustrate that SARI inhibits AP-1 transactivating factor binding to the cis-element of the CCN1 promoter, possibly through its interaction with c-Jun. Overall, SARI can directly inhibit CCN1-induced transformation by inhibiting the transcription of CCN1, as well as indirectly by inhibiting the expression of c-Jun (and hence blocking AP-1 activity). In these contexts, transformed cells 'addicted' to AP-1 activity are rendered susceptible to SARI-mediated inhibition of expression of the transformed phenotype.
Collapse
Affiliation(s)
- R Dash
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Katsube KI, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ 2009; 51:55-67. [PMID: 19128405 DOI: 10.1111/j.1440-169x.2009.01077.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CCN family of genes constitutes six members of small secreted cysteine rich proteins, which exists only in vertebrates. The major members of CCN are CCN1 (Cyr61), CCN2 (CTGF), and CCN3 (Nov). CCN4, CCN5, and CCN6 were formerly reported to be in the Wisp family, but they are now integrated into CCN due to the resemblance of their four principal modules: insulin like growth factor binding protein, von Willebrand factor type C, thrombospondin type 1, and carboxy-terminal domain. CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues, but most studies have focused on their principal role in osteo/chondrogenesis and vasculo/angiogenesis from the aspect of migration, growth, and differentiation of mesenchymal cells. CCN proteins simultaneously integrate and modulate the signals of integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch by direct binding. However, the priority in the use of the signals is different depending on the cell status. Even the equivalent counterparts show a difference in signal usage among species. It may be that the evolution of the CCN family continues to keep pace with vertebrate evolution itself.
Collapse
Affiliation(s)
- Ken-ichi Katsube
- Oral Pathology, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
18
|
Di Martino E, Wild CP, Rotimi O, Darnton JS, Olliver RJ, Hardie LJ. IGFBP-3 and IGFBP-10 (CYR61) up-regulation during the development of Barrett's oesophagus and associated oesophageal adenocarcinoma: potential biomarkers of disease risk. Biomarkers 2007; 11:547-61. [PMID: 17056474 DOI: 10.1080/13547500600896791] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dys-regulation of the insulin-like growth factor (IGF) system increases the risk of a number of malignancies. The aim of this study was to investigate the role of members of the IGF binding protein (IGFBP) superfamily in the development of oesophageal adenocarcinoma (EAC) and their possible use as markers of disease risk. Expression of IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 was assessed using Real-Time-polymerase chain reaction (PCR) and immunohistochemistry in oesophageal tissues from Barrett's oesophagus (BE) patients with and without associated EAC, and in control subjects. IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 mRNA levels were up-regulated in Barrett's (n=17) and tumour tissue of EAC patients (n=18) compared with normal tissue of control subjects without BE or EAC (n=18) (p<0.001). Over-expression of IGFBP-3 and IGFBP-10/CYR61 proteins was observed in Barrett's, dysplastic and tumour tissue of EAC cases (n=47 for IGFBP-10; n=39 for IGFBP-3) compared with adjacent normal epithelium (p<0.050). Notably, IGFBP-3, IGFBP-4, and IGFBP-10/CYR61 expression in Barrett's tissue of EAC cases (n=17) was significantly (p<0.001) higher than in Barrett's tissue of BE patients with no sign of progression to cancer (n=15). Overall, the results suggest that members of the IGFBP superfamily are up-regulated during oesophageal carcinogenesis and merit further investigation as markers of EAC risk.
Collapse
Affiliation(s)
- E Di Martino
- Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Our bones mostly develop through a process called endochondral ossification. This process is initiated in the cartilage prototype of each bone and continues through embryonic and postnatal development until the end of skeletal growth. Therefore, the central regulator of endochondral ossification is the director of body construction, which is, in other words, the determinant of skeletal size and shape. We suggest that CCN2/CTGF/Hcs24 (CCN2) is a molecule that conducts all of the procedures of endochondral ossification. CCN2, a member of the CCN family of novel modulator proteins, displays multiple functions by manipulating the local information network, using its conserved modules as an interface with a variety of other biomolecules. Under a precisely designed four-dimensional genetic program, CCN2 is produced from a limited population of chondrocytes and acts on all of the mesenchymal cells inside the bone callus to promote the integrated growth of the bone. Furthermore, the utility of CCN2 as regenerative therapeutics against connective tissue disorders, such as bone and cartilage defects and osteoarthritis, has been suggested. Over the years, the pathological action of CCN2 has been suggested. Nevertheless, it can also be regarded as another aspect of the physiological and regenerative function of CCN2, which is discussed as well.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | |
Collapse
|
20
|
Yan X, Baxter RC, Perbal B, Firth SM. The aminoterminal insulin-like growth factor (IGF) binding domain of IGF binding protein-3 cannot be functionally substituted by the structurally homologous domain of CCN3. Endocrinology 2006; 147:5268-74. [PMID: 16935848 DOI: 10.1210/en.2005-1568] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF binding proteins (IGFBPs) are a family of structurally homologous proteins that bind IGFs with high affinities and can modulate IGF activity. The IGF binding site has been shown to comprise residues in both the aminoterminal and carboxyterminal domains. In recent years several proteins including members of the CCN (connective tissue growth factor, Cyr61, and nephroblastoma overexpressed) family were recognized as having structural homology in their aminoterminal domains to the IGFBPs. Despite their low or undetectable IGF binding ability, a proposal was made to rename them as IGFBP-related proteins. To test whether the aminoterminal domain of a CCN protein can fulfill the high-affinity IGF binding function of an IGFBP, we created a chimera in which the aminoterminal domain of IGFBP-3 was substituted with the aminoterminal domain of CCN3 (previously known as Nov). The CCN3-IGFBP-3 chimera bound IGFs and inhibited IGF activity very weakly, similar to CCN3 itself. Although structurally similar, the aminoterminal domain of CCN3 is unable to replace the aminoterminal domain of IGFBP-3 in forming a high-affinity IGF-binding site. These results argue against a direct role of CCN3 in the regulation of IGF bioavailability and indicate that the nomenclature of IGFBP-related proteins (which implies functional relationship to the classical IGFBPs) is inappropriate for CCN proteins.
Collapse
Affiliation(s)
- Xiaolang Yan
- Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | | | |
Collapse
|
21
|
Uddin RK, Singh SM. cis-Regulatory sequences of the genes involved in apoptosis, cell growth, and proliferation may provide a target for some of the effects of acute ethanol exposure. Brain Res 2006; 1088:31-44. [PMID: 16631145 DOI: 10.1016/j.brainres.2006.02.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 01/31/2006] [Accepted: 02/26/2006] [Indexed: 01/22/2023]
Abstract
The physiological effects of alcohol are known to include drunkenness, toxicity, and addiction leading to alcohol-related health and societal problems. Some of these effects are mediated by regulation of expression of many genes involved in alcohol response pathways. Analysis of the regulatory elements and biological interaction of the genes that show coexpression in response to alcohol may give an insight into how they are regulated. Fifty-two ethanol-responsive (ER) genes displaying differential expression in mouse brain in response to acute ethanol exposure were subjected to bioinformatics analysis to identify known or putative transcription factor binding sites and cis-regulatory modules in the promoter regions that may be involved in their responsiveness to alcohol. Functional interactions of these genes were also examined to assess their cumulative contribution to metabolomic pathways. Clustering and promoter sequence analysis of the ER genes revealed the DNA binding site for nuclear transcription factor Y (NFY) as the most significant. NFY also take part in the proposed biological association network of a number of ER genes, where these genes interact with themselves and other cellular components, and may generate a major cumulative effect on apoptosis, cell survival, and proliferation in response to alcohol. NFY has the potential to play a critical role in mediating the expression of a set of ER genes whose interactions contribute to apoptosis, cell survival, and proliferation, which in turn may affect alcohol-related behaviors.
Collapse
Affiliation(s)
- Raihan K Uddin
- Department of Biology and Division of Medical Genetics, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|
22
|
Abstract
The principal aim of this historical review- the first in a new series- is to present the basic concepts that led to the discovery of NOV and to show how our ideas evolved regarding the role and functions of this new class of proteins. It should prove particularly useful to the new comers and to students who are engaged in this exciting field. It is also a good opportunity to acknowledge the input of those who participated in the development of this scientific endeavour.
Collapse
Affiliation(s)
- Bernard Perbal
- Laboratoire d'Oncologie Virale et Moléculaire, Case 7048, UFR de Biochimie, Université Paris 7 - D, Diderot, 2 place Jussieu, 75005 Paris-France.
| |
Collapse
|
23
|
Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 2005; 65:8887-95. [PMID: 16204060 DOI: 10.1158/0008-5472.can-05-1702] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous studies have defined reactive stroma in human prostate cancer and have developed the differential reactive stroma (DRS) xenograft model to evaluate mechanisms of how reactive stroma promotes carcinoma tumorigenesis. Analysis of several normal human prostate stromal cell lines in the DRS model showed that some rapidly promoted LNCaP prostate carcinoma cell tumorigenesis and others had no effect. These differential effects were due, in part, to elevated angiogenesis and were transforming growth factor (TGF)-beta1 mediated. The present study was conducted to identify and evaluate candidate genes expressed in prostate stromal cells responsible for this differential tumor-promoting activity. Differential cDNA microarray analyses showed that connective tissue growth factor (CTGF) was expressed at low levels in nontumor-promoting prostate stromal cells and was constitutively expressed in tumor-promoting prostate stromal cells. TGF-beta1 stimulated CTGF message expression in nontumor-promoting prostate stromal cells. To evaluate the role of stromal-expressed CTGF in tumor progression, either engineered mouse prostate stromal fibroblasts expressing retroviral-introduced CTGF or 3T3 fibroblasts engineered with mifepristone-regulated CTGF were combined with LNCaP human prostate cancer cells in the DRS xenograft tumor model under different extracellular matrix conditions. Expression of CTGF in tumor-reactive stroma induced significant increases in microvessel density and xenograft tumor growth under several conditions tested. These data suggest that CTGF is a downstream mediator of TGF-beta1 action in cancer-associated reactive stroma and is likely to be one of the key regulators of angiogenesis in the tumor-reactive stromal microenvironment.
Collapse
Affiliation(s)
- Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
24
|
Pell JM, Salih DAM, Cobb LJ, Tripathi G, Drozd A. The role of insulin-like growth factor binding proteins in development. Rev Endocr Metab Disord 2005; 6:189-98. [PMID: 16151623 DOI: 10.1007/s11154-005-3050-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J M Pell
- Babraham Institute, Babraham Research Campus, Cambridge, CB2 4AT, UK
| | | | | | | | | |
Collapse
|
25
|
Schutze N, Noth U, Schneidereit J, Hendrich C, Jakob F. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation. Cell Commun Signal 2005; 3:5. [PMID: 15773998 PMCID: PMC1079906 DOI: 10.1186/1478-811x-3-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 03/17/2005] [Indexed: 12/27/2022] Open
Abstract
Background The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The decrease in CYR61/CCN1 expression during the differentiation pathways of mesenchymal stem cells into osteoblasts, adipocytes and chondrocytes suggests a specific role of CYR61/CCN1 for maintenance of the stem cell phenotype. The differential expression of CTGF/CCN2, WISP2/CCN5, WISP3/CCN6 and mainly CYR61/CCN1 indicates, that these members of the CCN-family might be important regulators for bone marrow-derived mesenchymal stem cells in the regulation of proliferation and initiation of specific differentiation pathways.
Collapse
Affiliation(s)
- Norbert Schutze
- Orthopaedic University Hospital, Molecular Orthopaedics, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Ulrich Noth
- Orthopaedic University Hospital, Molecular Orthopaedics, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Jutta Schneidereit
- Orthopaedic University Hospital, Molecular Orthopaedics, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Christian Hendrich
- Orthopaedic University Hospital, Molecular Orthopaedics, Brettreichstrasse 11, 97074 Würzburg, Germany
| | - Franz Jakob
- Orthopaedic University Hospital, Molecular Orthopaedics, Brettreichstrasse 11, 97074 Würzburg, Germany
| |
Collapse
|
26
|
Planque N, Perbal B. A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 2003; 3:15. [PMID: 12969515 PMCID: PMC194616 DOI: 10.1186/1475-2867-3-15] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 08/22/2003] [Indexed: 12/31/2022] Open
Abstract
The CCN (CYR61 [Cystein-rich61]/CTGF [connective tissue growth factor]/NOV [Nephroblastoma overexpressed]) proteins constitute a family of regulatory factors involved in many aspects of cell proliferation and differentiation. An increasing body of evidence indicates that abnormal expression of the CCN proteins is associated to tumourgenesis. The multimodular architecture of the CCN proteins, and the production of truncated isoforms in tumours, raise interesting questions regarding the participation of each individual module to the various biological properties of these proteins. In this article, we review the current data regarding the involvement of CCN proteins in tumourigenesis. We also attempt to provide structural basis for the stimulatory and inhibitory functions of the full length and truncated CCN proteins that are expressed in various tumour tissues.
Collapse
Affiliation(s)
- Nathalie Planque
- Laboratoire d'Oncologie Virale et Moléculaire, UFR de Biochimie, Université Paris 7 – D. Diderot, 2 Place Jussieu- 75 005 PARIS – France
| | - Bernard Perbal
- Laboratoire d'Oncologie Virale et Moléculaire, UFR de Biochimie, Université Paris 7 – D. Diderot, 2 Place Jussieu- 75 005 PARIS – France
| |
Collapse
|
27
|
Leask A, Holmes A, Abraham DJ. Connective tissue growth factor: a new and important player in the pathogenesis of fibrosis. Curr Rheumatol Rep 2002; 4:136-42. [PMID: 11890879 DOI: 10.1007/s11926-002-0009-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Connective tissue fibrosis is the final common pathogenic process for almost all forms of chronic tissue injury. Whether caused by vascular dysfunction, inflammation, metabolic injury, trauma, or environmental agents, once initiated the fibrogenic process results in the progressive replacement of the normal tissue architecture with fibrotic lesions that eventually lead to organ compromise and failure. Fibrosis can be considered as a dysregulation in the normal tissue repair mechanism, resulting in severe tissue scarring. Fibrosis appears to be a consequence of linked processes, including the proliferation of resident fibroblast cell types, the increased production and deposition of extracellular matrix components, and the transition of fibroblasts into cells exhibiting a myofibroblast phenotype. Although transforming growth factor-beta (TGF beta) has long been regarded as a pivotal growth factor in the formation and maintenance of connective tissues and as a major driving influence in many progressive fibrotic diseases, attention has focused recently on the role of connective tissue growth factor (CTGF) in fibrosis. CTGF is selectively and rapidly induced in mesenchymally derived cells by the action of TGF beta. CTGF expression is increased in many fibrosing diseases. In addition, increasing evidence from in vivo and in vitro models of tissue remodeling and fibrosis suggest that CTGF may represent a downstream effector molecule of the profibrotic activities of TGF beta in the maintenance and repair of connective tissues and within fibrotic disease settings.
Collapse
Affiliation(s)
- Andrew Leask
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill St., London NW3 2PF, UK.
| | | | | |
Collapse
|
28
|
Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino KI, Ikeda E, Takata S, Kobayashi KI, Okada Y. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 2002; 16:219-21. [PMID: 11744618 DOI: 10.1096/fj.01-0332fje] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a strong angiogenic mitogen and plays important roles in angiogenesis under various pathophysiological conditions. The in vivo angiogenic activity of secreted VEGF may be regulated by extracellular inhibitors, because it is also produced in avascular tissues such as the cartilage. To seek the binding inhibitors against VEGF, we screened the chondrocyte cDNA library by a yeast two-hybrid system by using VEGF165 as bait and identified connective tissue growth factor (CTGF) as a candidate. The complex formation of VEGF165 with CTGF was first established by immunoprecipitation from the cells overexpressing both binding partners. A competitive affinity-binding assay also demonstrated that CTGF binds specifically to VEGF165 with two classes of binding sites (Kd = 26 +/- 11 nM and 125 +/- 38 nM). Binding assay using deletion mutants of CTGF indicated that the thrombospondin type-1 repeat (TSP-1) domain of CTGF binds to the exon 7-coded region of VEGF165 and that the COOH-terminal domain preserves the affinity to both VEGF165 and VEGF121. The interaction of VEGF165 with CTGF inhibited the binding of VEGF165 to the endothelial cells and the immobilized KDR/IgG Fc; that is, a recombinant protein for VEGF165 receptor. By in vitro tube formation assay of endothelial cells, full-length CTGF and the deletion mutant possessing the TSP-1 domain inhibited VEGF165-induced angiogenesis significantly in the complex form. This antiangiogenic activity of CTGF was demonstrated further by in vivo angiogenesis assay by using Matrigel injection model in mice. These data demonstrate for the first time that VEGF165 binds to CTGF through a protein-to-protein interaction and suggest that the angiogenic activity of VEGF165 is regulated negatively by CTGF in the extracellular environment.
Collapse
Affiliation(s)
- Isao Inoki
- Department of Pathology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leng E, Malcolm T, Tai G, Estable M, Sadowski I. Organization and expression of the Cyr61 gene in normal human fibroblasts. J Biomed Sci 2002; 9:59-67. [PMID: 11810026 DOI: 10.1007/bf02256579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have examined the human Cyr61 gene and its expression in normal fibroblasts. The core promoter, second intron, and 3' untranslated region (UTR) are highly conserved between the human and mouse genes. Cyr61 expression was induced slightly slower but more transiently in human fibroblasts compared to Rat-2 fibroblasts. These differences may relate to the absence of a serum response element in the human Cyr61 promoter, and the presence of additional AU-rich elements within the 3' UTR. Cycloheximide causes accumulation of human Cyr61 RNA in the absence of growth factors, and EGF prevents decay of transcripts in actinomycin-D-treated cells, which suggests that induction by growth factors may partially involve mRNA stabilization. We detect an alternative RNA in serum-stimulated fibroblasts containing an in-frame deletion within exon 4 which disrupts the thrombospondin type 1 repeat. Constitutive expression of the full hCyr61 genomic DNA in rodent fibroblasts causes production of multiple protein species, whereas expression of hCyrDelta4 produces a single stable protein of the expected size. We also observed multiple hCyr61 protein species in normal fibroblasts following serum stimulation, indicating that Cyr61 may normally be produced as alternative isoforms.
Collapse
Affiliation(s)
- Esther Leng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
30
|
Vilmos P, Gaudenz K, Hegedus Z, Marsh JL. The Twisted gastrulation family of proteins, together with the IGFBP and CCN families, comprise the TIC superfamily of cysteine rich secreted factors. Mol Pathol 2001; 54:317-23. [PMID: 11577174 PMCID: PMC1187089 DOI: 10.1136/mp.54.5.317] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To analyse the similarities between the Twisted gastrulation (TSG) proteins known to date; in addition, to determine phylogenetic relations among the TSG proteins, and between the TSGs and other protein families--the CCN (for example, CCN2 (CTGF), CCN1 (CYR61), and CCN3 (NOV)) and IGFBP (insulin-like growth factor binding protein) families. METHODS TBLASTN and FASTA3 were used to identify new tsg genes and relatives of the TSG family. The sequences were aligned with ClustalW. The predictions of sites for signal peptide cleavage, post-translational modifications, and putative protein domains were carried out with software available at various databases. Unrooted phylogenetic trees were calculated using the UPGMA method. RESULTS Several tsg genes from vertebrates and invertebrates were compared. Alignment of protein sequences revealed a highly conserved family of TSG proteins present in both vertebrates and invertebrates, whereas the slightly less well conserved IGFBP and CCN proteins are apparently present only in vertebrates. The TSG proteins display strong homology among themselves and they are composed of a putative signal peptide at the N-terminus followed by a cysteine rich (CR) region, a conserved domain devoid of cysteines, a variable midregion, and a C-terminal CR region. The most striking similarity between the TSGs and the IGFBP and CCN proteins occurs in the N-terminal conserved cysteine rich domain and the characteristic 5' cysteine rich domain(s), spacer region, and 3' cysteine rich domain structure. CONCLUSION The family of highly conserved TSG proteins, together with the IGFBP and CCN families, constitute an emerging multigene superfamily of secreted cysteine rich factors. The TSG branch of the superfamily appears to pre-date the others because it is present in all species examined, whereas the CCN and IGFBP genes are found only in vertebrates.
Collapse
Affiliation(s)
- P Vilmos
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
31
|
Crean JKG, Lappin DWP, Godson C, Brady HR. Connective tissue growth factor: an attractive therapeutic target in fibrotic renal disease. Expert Opin Ther Targets 2001; 5:519-530. [PMID: 12540264 DOI: 10.1517/14728222.5.4.519] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite diverse initiating insults, glomerulosclerosis and tubulointerstitial fibrosis are pathological features common to most forms of progressive renal disease. Control of systemic hypertension and blockade of the renin-angiotensin system ameliorate the rate of progression of chronic renal disease; however they generally fail to completely arrest the scarring process. While the chain of events leading to scarring are still being defined, TGF-beta is a cytokine that plays a pivotal role in the pathogenesis of glomerulosclerosis and tubulointerstitial fibrosis [1]. Given the pleiotropic effects of TGF-beta, significant attention has focused on the potential of its downstream mediators as therapeutic targets. Connective tissue growth factor (CTGF) is a member of the CCN gene family, which includes CyR61 (cysteine rich 61), Nov (Nephroblastoma overexpressed) and the WISP family (for review see [2,3,4]). These immediate-early genes coordinate complex biologic processes during differentiation and tissue repair [5]. Increased expression of CTGF has been detected in experimental and human renal fibrosis where it correlates with glomerulosclerosis and the degree of tubulointerstitial fibrosis [6]. In these settings CTGF expression is regulated at least in part by TGF-beta. This review details the biology of CTGF with specific reference to its potential as a therapeutic target in renal fibrosis.
Collapse
|
32
|
Maillard M, Cadot B, Ball RY, Sethia K, Edwards DR, Perbal B, Tatoud R. Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol Pathol 2001; 54:275-80. [PMID: 11477145 PMCID: PMC1187081 DOI: 10.1136/mp.54.4.275] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS To investigate the expression of the human ccn3 (hccn3; nov) proto-oncogene, a member of the CCN family of proteins, in prostate epithelial cells and prostate tissue samples. METHODS Normal adult prostate luminal epithelial cells immortalised by SV40 large T (PNT1A and PNT1B), metastatic tumours (LNCaP, DU-145, and PC-3), and prostate tissue samples from patients with benign prostatic hyperplasia (BPH) and prostatic adenocarcinoma were used. hccn3 (nov) mRNA was measured by the reverse transcription polymerase chain reaction (RT-PCR) and hCCN3 (NOV) protein expression was determined by immunochemistry. RESULTS hccn3 (nov) RNA values were higher in PC-3 cells than in the other prostate cell lines. The immortalised normal cell lines either did not express hccn3 (nov) RNA (PNT1B) or expressed very low amounts (PNT1A). BPH samples expressed variable amounts of hccn3 (nov) RNA. With the use of immunocytochemistry, all cell lines except PNT1A and PNT1B were shown to contain hCCN3 (NOV) protein. hCCN3 (NOV) was localised mainly in the epithelial compartment of BPH and adenocarcinoma samples, and there was evidence of luminal secretion. CONCLUSION The overexpression of hccn3 (nov) RNA in cancer cell lines compared with other cell lines and its epithelial localisation in human prostate samples are consistent with a role for hCCN3 (NOV) in prostatic tumorigenesis.
Collapse
Affiliation(s)
- M Maillard
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol 2001; 54:180-3. [PMID: 11376132 PMCID: PMC1187059 DOI: 10.1136/mp.54.3.180] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the role of transforming growth factor beta (TGFbeta) in initiating fibrosis is well established, the role that TGFbeta plays in maintaining fibrosis is unclear. The gene encoding connective tissue growth factor (ccn2; ctgf), which promotes fibrosis, is not normally expressed in dermal fibroblasts unless TGFbeta is present. However, in dermal fibroblasts cultured from lesional areas of scleroderma, ccn2 (ctgf) is expressed constitutively. The contribution of several elements in the ccn2 (ctgf) promoter to basal and TGFbeta induced ccn2 (ctgf) expression in normal and scleroderma fibroblasts has been investigated. A functional SMAD binding site in the ccn2 (ctgf) promoter that is necessary for the TGFbeta mediated induction of this gene has been identified. The previously termed TGFbeta responsive enhancer (TGFbetaRE) in the ccn2 (ctgf) promoter has been found to be necessary for basal promoter activity in normal fibroblasts. The SMAD element is not necessary for the high ccn2 (ctgf) promoter activity seen in scleroderma fibroblasts. However, mutation of the previously termed TGFbetaRE reduces ccn2 (ctgf) promoter activity in scleroderma fibroblasts to that seen in normal fibroblasts. Thus, the maintenance of the scleroderma phenotype, as assessed by a high degree of ccn2 (ctgf) promoter activity, appears to be relatively independent of SMAD action and seems to reflect increased basal promoter activity.
Collapse
Affiliation(s)
- A Leask
- Fibrogen Inc, 225 Gateway Blvd, South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 2001; 54:57-79. [PMID: 11322167 PMCID: PMC1187006 DOI: 10.1136/mp.54.2.57] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The CCN family of genes presently consists of six distinct members encoding proteins that participate in fundamental biological processes such as cell proliferation, attachment, migration, differentiation, wound healing, angiogenesis, and several pathologies including fibrosis and tumorigenesis. Whereas CYR61 and CTGF were reported to act as positive regulators of cell growth, NOV (nephroblastoma overexpressed) provided the first example of a CCN protein with negative regulatory properties and the first example of aberrant expression being associated with tumour development. The subsequent discovery of the ELM1, rCOP1, and WISP proteins has broadened the variety of functions attributed to the CCN proteins and has extended previous observations to other biological systems. This review discusses fundamental questions regarding the regulation of CCN gene expression in normal and pathological conditions, and the structural basis for their specific biological activity. After discussing the role of nov and other CCN proteins in the development of a variety of different tissues such as kidney, nervous system, muscle, cartilage, and bone, the altered expression of the CCN proteins in various pathologies is discussed, with an emphasis on the altered expression of nov in many different tumour types such as Wilms's tumour, renal cell carcinomas, prostate carcinomas, osteosarcomas, chondrosarcomas, adrenocortical carcinomas, and neuroblastomas. The possible use of nov as a tool for molecular medicine is also discussed. The variety of biological functions attributed to the CCN proteins has led to the proposal of a model in which physical interactions between the amino and carboxy portions of the CCN proteins modulate their biological activity and ensure a proper balance of positive and negative signals through interactions with other partners. In this model, disruption of the secondary structure of the CCN proteins induced by deletions of either terminus is expected to confer on the truncated polypeptide constitutive positive or negative activities.
Collapse
Affiliation(s)
- B Perbal
- Laboratoire d'Oncologie Virale et Moléculaire, UFR de Biochimie, Université Paris 7-D, Diderot, France.
| |
Collapse
|
35
|
Abstract
Since the identification of the first histone deacetylase (Taunton et al., Science 272, 408-411), several new members have been isolated. They can loosely be separated into entities on the basis of their similarity to various yeast histone deacetylases. The first class is represented by its closeness to the yeast Rpd3-like proteins, and the second most recently discovered class has similarities to yeast Hda1-like proteins. However, due to the fact that several different research groups isolated the Hda1-like histone deacetylases independently, there have been various different nomenclatures used to describe the various members, which can lead to confusion in the interpretation of this family's functions and interactions. With the discovery of another novel murine histone deacetylase, homologous to yeast Sir2, the number of members of this family is set to increase, as 7 human homologues of this gene have been isolated. In the light of these recent discoveries, we have examined the literature data and conducted a database analysis of the isolated histone deacetylases and potential candidates. The results obtained suggest that the number of histone deacetylases within the human genome may be as high as 17 and are discussed in relation to their homology to the yeast histone deacetylases.
Collapse
Affiliation(s)
- S G Gray
- Laboratory for Molecular Development and Tumor Biology, Centre for Molecular Medicine (CMM), Stockholm, S-171 76, Sweden.
| | | |
Collapse
|
36
|
Abstract
Connective tissue growth factor (CTGF) is a member of the recently described CCN gene family which contains CTGF itself, cyr61, nov, elm1, Cop1, and WISP-3. CTGF is transcriptionally activated by several factors although its stimulation by transforming growth factor beta (TGF-beta) has attracted considerable attention. CTGF acts to promote fibroblast proliferation, migration, adhesion, and extracellular matrix formation, and its overproduction is proposed to play a major role in pathways that lead to fibrosis, especially those that are TGF-beta-dependent. This includes fibrosis of major organs, fibroproliferative diseases, and scarring. CTGF also appears to play a role in the extracellular matrix remodeling that occurs in normal physiological processes such as embryogenesis, implantation, and wound healing. However, recent advances have shown that CTGF is involved in diverse autocrine or paracrine actions in several other cell types such as vascular endothelial cells, epithelial cells, neuronal cells, vascular smooth muscle cells, and cells of supportive skeletal tissues. Moreover, in some circumstances CTGF has negative effects on cell growth in that it can be antimitotic and apoptotic. In light of these discoveries, CTGF has been implicated in a diverse variety of processes that include neovascularization, transdifferentiation, neuronal scarring, atherosclerosis, cartilage differentiation, and endochondral ossification. CTGF has thus emerged as a potential important effector molecule in both physiological and pathological processes and has provided a new target for therapeutic intervention in fibrotic diseases.
Collapse
Affiliation(s)
- E E Moussad
- Department of Surgery, Children's Hospital and Ohio State University, Columbus, Ohio 43205, USA
| | | |
Collapse
|