1
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
2
|
Duran-Ortiz S, Brittain AL, Kopchick JJ. The impact of growth hormone on proteomic profiles: a review of mouse and adult human studies. Clin Proteomics 2017; 14:24. [PMID: 28670222 PMCID: PMC5492507 DOI: 10.1186/s12014-017-9160-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022] Open
Abstract
Growth hormone (GH) is a protein that is known to stimulate postnatal growth, counter regulate insulin's action and induce expression of insulin-like growth factor-1. GH exerts anabolic or catabolic effects depending upon on the targeted tissue. For instance, GH increases skeletal muscle and decreases adipose tissue mass. Our laboratory has spent the past two decades studying these effects, including the effects of GH excess and depletion, on the proteome of several mouse and human tissues. This review first discusses proteomic techniques that are commonly used for these types of studies. We then examine the proteomic differences found in mice with excess circulating GH (bGH mice) or mice with disruption of the GH receptor gene (GHR-/-). We also describe the effects of increased and decreased GH action on the proteome of adult patients with either acromegaly, GH deficiency or patients after short-term GH treatment. Finally, we explain how these proteomic studies resulted in the discovery of potential biomarkers for GH action, particularly those related with the effects of GH on aging, glucose metabolism and body composition.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
3
|
López-Villar E, Martos-Moreno GÁ, Chowen JA, Okada S, Kopchick JJ, Argente J. A proteomic approach to obesity and type 2 diabetes. J Cell Mol Med 2015; 19:1455-70. [PMID: 25960181 PMCID: PMC4511345 DOI: 10.1111/jcmm.12600] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
The incidence of obesity and type diabetes 2 has increased dramatically resulting in an increased interest in its biomedical relevance. However, the mechanisms that trigger the development of diabetes type 2 in obese patients remain largely unknown. Scientific, clinical and pharmaceutical communities are dedicating vast resources to unravel this issue by applying different omics tools. During the last decade, the advances in proteomic approaches and the Human Proteome Organization have opened and are opening a new door that may be helpful in the identification of patients at risk and to improve current therapies. Here, we briefly review some of the advances in our understanding of type 2 diabetes that have occurred through the application of proteomics. We also review, in detail, the current improvements in proteomic methodologies and new strategies that could be employed to further advance our understanding of this pathology. By applying these new proteomic advances, novel therapeutic and/or diagnostic protein targets will be discovered in the obesity/Type 2 diabetes area.
Collapse
Affiliation(s)
- Elena López-Villar
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Konneker Research Laboratories, Athens, OH, USA.,Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Konneker Research Laboratories, Athens, OH, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jesús Argente
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Sparre T, Bergholdt R, Nerup J, Pociot F. Application of genomics and proteomics in Type 1 diabetes pathogenesis research. Expert Rev Mol Diagn 2014; 3:743-57. [PMID: 14628902 DOI: 10.1586/14737159.3.6.743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Type 1 diabetes is a polygenic, multifactorial autoimmune disease characterized by selective and irreversible destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. An exogenous supply of insulin is required to sustain life after the onset of Type 1 diabetes. Despite decades of intensive research into its pathogenesis, no single gene or protein has been found to be responsible for Type 1 diabetes. This review will describe the use of large-scale genomics and proteomics in studying the pathogenesis of Type 1 diabetes, and will discuss future directions of research in the field.
Collapse
|
5
|
Ding J, Sackmann-Sala L, Kopchick JJ. Mouse models of growth hormone action and aging: a proteomic perspective. Proteomics 2012; 13:674-85. [PMID: 23019135 DOI: 10.1002/pmic.201200271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is a protein secreted by the anterior pituitary and circulates throughout the body to exert important actions on growth and metabolism. GH stimulates the secretion of insulin-like growth factor-I (IGF-I) that mediates some of the growth promoting actions of GH. The GH/IGF-I axis has recently been recognized as important in terms of longevity in organisms ranging from Caenorhabditis elegans to mice. For example, GH transgenic mice possess short lifespans while GH receptor null (GHR-/-) mice have extended longevity. Thus, the actions of GH (or IGF-I) or lack thereof impact the aging process. In this review, we summarize the proteomic analyses of plasma and white adipose tissue in these two mouse models of GH action, i.e. GH transgenic and GHR-/- mice. At the protein level, we wanted to establish novel plasma biomarkers of GH action as a function of age and to determine differences in adipose tissue depots. We have shown that these proteomic approaches have not only confirmed several known physiological actions of GH, but also resulted in novel protein biomarkers and targets that may be indicative of the aging process and/or new functions of GH. These results may generate new directions for GH and/or aging research.
Collapse
Affiliation(s)
- Juan Ding
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
6
|
Burgos-Ramos E, Sackmann-Sala L, Baquedano E, Cruz-Topete D, Barrios V, Argente J, Kopchick JJ. Central leptin and insulin administration modulates serum cytokine- and lipoprotein-related markers. Metabolism 2012; 61:1646-57. [PMID: 22658937 DOI: 10.1016/j.metabol.2012.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/12/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED In most obese patients there is an inflammatory state characterized by lipid abnormalities, hyperleptinemia and hyperinsulinemia. OBJECTIVE The objective was to identify mechanisms involved in leptin's role in the attenuation of the response to insulin using a proteomic approach. MATERIAL/METHODS We studied the serum proteomic profile of rats treated by central leptin infusion followed by an injection of insulin. We analyzed the relationship between these proteins and serum cytokine and apolipoprotein levels. RESULTS Out of 81 protein spots, intensity differences were found in 11, corresponding to 5 proteins: three isoforms of α1 macroglobulin; three of haptoglobin and serum amyloid P component-precursor. All of these are acute-phase proteins involved in inflammation and are correlated with cytokine levels. Additionally, two apolipoprotein E and two apolipoprotein A1 isoforms were identified and were found to correlate with LDL and HDL. CONCLUSIONS Our results indicate that increased leptin and insulin levels change these circulating proteins, thus promoting systemic inflammation and changing lipid metabolism.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto Investigación Sanitaria Princesa, Madrid, E-28009 Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Okada S, List EO, Sankaran S, Kopchick JJ. Plasma Protein Biomarkers Correlated with the Development of Diet-Induced Type 2 Diabetes in Mice. Clin Proteomics 2010; 6:6-17. [PMID: 20625478 DOI: 10.1007/s12014-009-9040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION: Early detection, assessment of disease progression, and application of an appropriate therapeutic intervention are all important for the care of patients with type 2 diabetes. Currently, however, there is no simple test for early detection of type 2 diabetes. Established diagnostic tests for the disease including oral glucose tolerance, fasting blood glucose, and hemoglobin A1c are relatively late markers where the disease has already progressed. Since blood is in direct contact with many tissues, we hypothesized that pathological tissue changes are likely to be reflected in proteomic profiles of plasma. METHODS: Mice were reared either on regular chow or a high-fat diet at weaning and several physiological responses (i.e., weight, fasting plasma glucose and insulin, and glucose tolerance) were monitored at regular time intervals. Plasma was collected at regular intervals for proteomic analysis by two-dimensional gel electrophoresis and subsequent mass spectrometry. RESULTS: Onset of hyperinsulinemia with corresponding glucose intolerance was observed in 2 weeks and fasting blood glucose levels rose significantly after 4 weeks on the high-fat diet. Many proteins were found to exist in multiple forms (isoforms). Levels of some isoforms including plasma retinol binding protein, transthyretin, Apolipoprotein A1, and kininogen showed significant changes as early as 4 weeks which coincided with the very early development of glucose intolerance. CONCLUSIONS: These results show that a proteomic approach to study the development of type 2 diabetes may uncover unknown early post-translationally modified diagnostic and/or therapeutic protein targets.
Collapse
Affiliation(s)
- Shigeru Okada
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University, The Ridges, Bldg. 25, Athens, OH 45701-2979, USA, Department of Pediatrics, College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | | | | | | |
Collapse
|
8
|
Sackmann-Sala L, Ding J, Frohman LA, Kopchick JJ. Activation of the GH/IGF-1 axis by CJC-1295, a long-acting GHRH analog, results in serum protein profile changes in normal adult subjects. Growth Horm IGF Res 2009; 19:471-7. [PMID: 19386527 PMCID: PMC2787983 DOI: 10.1016/j.ghir.2009.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/03/2009] [Accepted: 03/09/2009] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To identify biomarkers of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) action in human serum. BACKGROUND The search for new markers of GH activity has received extensive attention given that the current biomarkers (IGF-1, IGFBP-3 and collagen peptides) show substantial variability in the population, and are not reliably predictive of either the physiologic effects of GH therapy or the detection of GH abuse by athletes. GH releasing hormone (GHRH) is a polypeptide synthesized in the hypothalamus that binds to receptors on pituitary somatotropes to promote the synthesis and release of GH. Serum GH and IGF-1 levels have been shown to increase with administration of GHRH or CJC-1295, a long-acting GHRH analog. DESIGN Sera from 11 healthy young adult men before and one week after CJC-1295 injection were analyzed by two-dimensional gel electrophoresis for proteomic changes. Serum proteins displaying significant changes before and after treatment were subsequently identified using mass spectrometry. In addition, correlations between these proteins and GH or IGF-1 levels were evaluated. RESULTS Two protein spots that displayed decreased intensities after treatment were identified as an apolipoprotein A1 isoform and a transthyretin isoform. Three protein spots upregulated by CJC-1295 treatment included beta-hemoglobin, a C-terminal fragment of albumin, and a mix of an immunoglobulin fragment and another C-terminal albumin fragment. A linear relationship was found between the spot containing immunoglobulin and albumin fragments and IGF-1 levels. CONCLUSIONS Although the molecular mechanisms linking the identified proteins to GH and IGF-1 biological activity remain to be clarified, the results suggest that they represent potential biomarkers of GH and/or IGF-1 action.
Collapse
Affiliation(s)
- Lucila Sackmann-Sala
- Department of Biological Sciences, Ohio University, Athens, Ohio 45701, United States
| | | | | | | |
Collapse
|
9
|
Ding J, List EO, Okada S, Kopchick JJ. Perspective: proteomic approach to detect biomarkers of human growth hormone. Growth Horm IGF Res 2009; 19:399-407. [PMID: 19501004 PMCID: PMC2760539 DOI: 10.1016/j.ghir.2009.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Several serum biomarkers for recombinant human growth hormone (rhGH) have been established, however, none alone or in combination have generate a specific, sensitive, and reproducible 'kit' for the detection of rhGH abuse. Thus, the search for additional GH specific biomarkers continues. In this review, we focus on the use of proteomics in general and two-dimensional electrophoresis (2-DE) in particular for the discovery of new GH induced serum biomarkers. Also, we review some of the protocols involved in 2-DE. Finally, the possibility of tissues other than blood for biomarker discovery is discussed.
Collapse
Affiliation(s)
- Juan Ding
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Edward O. List
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
10
|
Baudet ML, Hassanali Z, Sawicki G, List EO, Kopchick JJ, Harvey S. Growth hormone action in the developing neural retina: A proteomic analysis. Proteomics 2008; 8:389-401. [DOI: 10.1002/pmic.200700952] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
List EO, Berryman DE, Palmer AJ, Qiu L, Sankaran S, Kohn DT, Kelder B, Okada S, Kopchick JJ. Analysis of mouse skin reveals proteins that are altered in a diet-induced diabetic state: a new method for detection of type 2 diabetes. Proteomics 2007; 7:1140-9. [PMID: 17390296 DOI: 10.1002/pmic.200600641] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, proteomic analysis was performed on the skin of C57BL/6J mice with type 2 diabetes and compared to nondiabetic controls. To induce obesity and subsequent diabetes, mice were placed on a high-fat diet for 16 wk. After 16 wk, both diabetic and nondiabetic control mice were sacrificed and their skin removed for analysis. Following 2-DE, proteomic profiles from the skin samples were quantified using PDQuest software. Out of more than 1000 distinct protein spots, 28 were shown to be significantly altered with 6 being decreased and 22 increased in the diabetic state compared to controls. The 28 protein spots were removed from the gels and analyzed by MALDI-TOF and MS/MS analyses. Protein identifications revealed that 17 of the 28 proteins were involved in energy metabolism (60.7% of changes observed). Collectively, none of the significantly altered proteins had been shown previously to be altered in diabetic skin. This study not only helps to identify proteins found in skin samples of obese mice with type 2 diabetes, but also shows that skin biopsies coupled with proteomic analysis may be useful as a noninvasive method for the diagnosis of hyperinsulinemia and diabetes.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kopchick JJ, Sackmann-Sala L, Ding J. Primer: molecular tools used for the understanding of endocrinology. ACTA ACUST UNITED AC 2007; 3:355-68. [PMID: 17377618 DOI: 10.1038/ncpendmet0446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 11/27/2006] [Indexed: 12/16/2022]
Abstract
Molecular techniques have had and are continuing to have a strong effect on clinical research and on diagnosis and screening of many endocrine disorders. To undertake research and interpret the results of others, it is important to know how and when to use molecular techniques such as Southern, northern and western blotting and the polymerase chain reaction. Knowledge of the human genome and how genes translate into proteins is required for a full understanding of the burgeoning fields of genomics and proteomics. Genetic manipulation of experimental species, which uses transgenic and gene-knockout technology, has led to important advances in determining the relationship between genes and their encoded proteins' function in the intact organism. This article describes these aspects of molecular biology, and gives specific examples of how they can be applied to clinical endocrinology and metabolism.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, OH 45701, USA.
| | | | | |
Collapse
|
13
|
Cayatte C, Pons C, Guigonis JM, Pizzol J, Elies L, Kennel P, Rouquié D, Bars R, Rossi B, Samson M. Protein Profiling of Rat Ventral Prostate following Chronic Finasteride Administration. Mol Cell Proteomics 2006; 5:2031-43. [PMID: 16837577 DOI: 10.1074/mcp.m600165-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the effects of antiandrogens on the prostate, we investigated the changes in the proteome of rat ventral prostate (VP) following treatment with a well characterized 5alpha-reductase inhibitor, finasteride. Sprague-Dawley rats were treated daily by gavage with finasteride at 0, 1, 5, 25, and 125 mg/kg/day. Changes in plasma hormone levels as well as the weight and histology of sex accessory tissues were determined after 28 days of treatment and showed a dose-related decrease of VP weights together with a marked atrophy of the tissue visible at the macroscopic and microscopic levels. In addition, significant reductions in seminal vesicle and epididymis weights were noted. VP proteins were analyzed by two-dimensional gel electrophoresis: 37 proteins, mainly involved in protein synthesis, processing, and cellular trafficking and in metabolism, detoxification, and oxidative stress, were identified as modulated by finasteride. The prominent feature of this study is the demonstration of finasteride dose-dependent up-regulation of a protein similar to l-amino-acid oxidase 1 (Lao1). An up-regulation of this protein was also observed with the antiandrogen flutamide. Lao1 expression occurred as early as 48 h after antiandrogen administration and persisted throughout the treatment duration. Immunohistochemistry showed that this protein was only detectable in epithelial cells and secretory vesicles. Altogether these data point to a potential use of Lao1 to reveal antiandrogen-induced prostate injury.
Collapse
|
14
|
Qiu L, List EO, Kopchick JJ. Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol Cell Proteomics 2005; 4:1311-8. [PMID: 15961380 DOI: 10.1074/mcp.m500016-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pancreas is a heterogeneous organ mixed with both exocrine and endocrine cells. The pancreas is involved in metabolic activities with the endocrine cells participating in the regulation of blood glucose, while the exocrine portion provides a compatible environment for the pancreatic islets and is responsible for secretion of digestive enzymes. The purpose of this study was to identify pancreatic proteins that are differentially expressed in normal mice and those with diet-induced type 2 diabetes (T2DM). In this study, C57BL/6J male mice fed a high fat diet became obese and developed T2DM. The pancreatic protein profiles were compared between control and diabetic mice using two-dimensional gel electrophoresis. Differentially expressed protein "spots" were identified by mass spectrometry. REG1 and REG2 proteins, which may be involved in the proliferation of pancreatic beta cells, were up-regulated very early in the progression of obese mice to T2DM. Glutathione peroxidase, which functions in the clearance of reactive oxidative species, was found to be down-regulated in the diabetic mice at later stages. The RNA levels encoding REG2 and glutathione peroxidase were compared by Northern blot analysis and were consistent to the changes in protein levels between diabetic and control mice. The up-regulation of REG1 and REG2 suggests the effort of the pancreas in trying to ameliorate the hyperglycemic condition by stimulating the proliferation of pancreatic beta cells and enhancing the subsequent insulin secretion. The down-regulation of glutathione peroxidase in pancreas could contribute to the progressive deterioration of beta cell function due to the hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Linghua Qiu
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens 45701, USA
| | | | | |
Collapse
|
15
|
Casey TM, Arthur PG, Bogoyevitch MA. Proteomic Analysis Reveals Different Protein Changes during Endothelin-1- or Leukemic Inhibitory Factor-induced Hypertrophy of Cardiomyocytes in Vitro. Mol Cell Proteomics 2005; 4:651-61. [PMID: 15708983 DOI: 10.1074/mcp.m400155-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteomic analyses are being increasingly used to identify protein changes accompanying changes in cellular function. An advantage of this approach is that it is largely unbiased by prior assumptions on the importance of each protein in the process under investigation. Here we have evaluated the protein changes that accompany the enlargement, or hypertrophy, of cardiomyocytes in culture. We have taken the additional step of comparing the changes that accompany a concentric hypertrophic phenotype stimulated by endothelin-1 exposure and an eccentric hypertrophic phenotype stimulated by leukemic inhibitory factor exposure. Following separation of the protein extracts by two-dimensional gel electrophoresis and staining with colloidal Coomassie Brilliant Blue, we identified 15 protein spots representing 12 proteins that changed in response to endothelin-1. In comparison, 17 protein spots representing 17 proteins changed in response to leukemic inhibitory factor, and 35 protein spots representing 28 proteins did not change under these conditions. Importantly the well established marker of cardiac pathology, atrial natriuretic factor, was identified as a protein up-regulated by both endothelin-1 and leukemic inhibitory factor (2.4+/-0.8- and 2.2+/-0.3-fold, respectively). However, nine of the observed protein changes occurred for only endothelin-1, whereas 11 of the changes occurred only with leukemic inhibitory factor exposure. These two different stimuli are therefore able to elicit unique changes in the protein expression profile of cardiac myocytes. This is consistent with the differences in morphologies noted as well as the different signaling pathways utilized by these different stimuli.
Collapse
Affiliation(s)
- Tammy M Casey
- Department of Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | |
Collapse
|
16
|
Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F. Unraveling the Pathogenesis of Type 1 Diabetes with Proteomics: Present And Future Directions. Mol Cell Proteomics 2005; 4:441-57. [PMID: 15699484 DOI: 10.1074/mcp.r500002-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.
Collapse
|
17
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2448418 DOI: 10.1002/cfg.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|