1
|
Zierath JR, Brady AJ, Macgregor KA, de Zevallos JO, Stocks B. Unlocking the secrets of exercise: A pathway to enhanced insulin sensitivity and skeletal muscle health in type 2 diabetes. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100980. [PMID: 39241865 DOI: 10.1016/j.jshs.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Juleen R Zierath
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden; Section of Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Aidan J Brady
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Kirstin A Macgregor
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Joaquin Ortiz de Zevallos
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Ben Stocks
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
3
|
Czajkowska A, Czajkowski M, Szczerbinski L, Jurczuk K, Reska D, Kwedlo W, Kretowski M, Zabielski P, Kretowski A. Exploring protein relative relations in skeletal muscle proteomic analysis for insights into insulin resistance and type 2 diabetes. Sci Rep 2024; 14:17631. [PMID: 39085321 PMCID: PMC11292014 DOI: 10.1038/s41598-024-68568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The escalating prevalence of insulin resistance (IR) and type 2 diabetes mellitus (T2D) underscores the urgent need for improved early detection techniques and effective treatment strategies. In this context, our study presents a proteomic analysis of post-exercise skeletal muscle biopsies from individuals across a spectrum of glucose metabolism states: normal, prediabetes, and T2D. This enabled the identification of significant protein relationships indicative of each specific glycemic condition. Our investigation primarily leveraged the machine learning approach, employing the white-box algorithm relative evolutionary hierarchical analysis (REHA), to explore the impact of regulated, mixed mode exercise on skeletal muscle proteome in subjects with diverse glycemic status. This method aimed to advance the diagnosis of IR and T2D and elucidate the molecular pathways involved in its development and the response to exercise. Additionally, we used proteomics-specific statistical analysis to provide a comparative perspective, highlighting the nuanced differences identified by REHA. Validation of the REHA model with a comparable external dataset further demonstrated its efficacy in distinguishing between diverse proteomic profiles. Key metrics such as accuracy and the area under the ROC curve confirmed REHA's capability to uncover novel molecular pathways and significant protein interactions, offering fresh insights into the effects of exercise on IR and T2D pathophysiology of skeletal muscle. The visualizations not only underscored significant proteins and their interactions but also showcased decision trees that effectively differentiate between various glycemic states, thereby enhancing our understanding of the biomolecular landscape of T2D.
Collapse
Affiliation(s)
- Anna Czajkowska
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland.
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland.
| | - Marcin Czajkowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Krzysztof Jurczuk
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Daniel Reska
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Wojciech Kwedlo
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Marek Kretowski
- Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
4
|
Shan S, Zhang Z, Nie J, Wen Y, Wu W, Liu Y, Zhao C. Marine algae-derived oligosaccharide via protein crotonylation of key targeting for management of type 2 diabetes mellitus in the elderly. Pharmacol Res 2024; 205:107257. [PMID: 38866264 DOI: 10.1016/j.phrs.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.
Collapse
Affiliation(s)
- Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain
| | - Zijie Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianping Nie
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuning Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Nylén E. Age, Race, Sex and Cardiorespiratory Fitness: Implications for Prevention and Management of Cardiometabolic Disease in Individuals with Diabetes Mellitus. Rev Cardiovasc Med 2024; 25:263. [PMID: 39139417 PMCID: PMC11317329 DOI: 10.31083/j.rcm2507263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Physical inactivity and poor cardiorespiratory fitness (CRF) are strongly associated with type 2 diabetes (DM2) and all-cause and cardiovascular morbidity and mortality. Incorporating physical activity promotion in the management of DM2 has been a pivotal approach modulating the underlying pathophysiology of DM2 of increased insulin resistance, endothelial dysfunction, and abnormal mitochondrial function. Although CRF is considered a modifiable risk factor, certain immutable aspects such as age, race, and gender impact CRF status and is the focus of this review. Results show that diabetes has often been considered a disease of premature aging manifested by early onset of macro and microvascular deterioration with underlying negative impact on CRF and influencing next generation. Certain races such as Native Americans and African Americans show reduced baseline CRF and decreased gain in CRF in randomized trials. Moreover, multiple biological gender differences translate to lower baseline CRF and muted responsivity to exercise in women with increased morbidity and mortality. Although factors such as age, race, and sex may not have major impacts on CRF their influence should be considered with the aim of optimizing precision medicine.
Collapse
Affiliation(s)
- Eric Nylén
- Veterans Affairs Medical Center, Washington, D.C. 20422, USA
- George Washington University School of Medicine, Washington, D.C. 20037, USA
| |
Collapse
|
6
|
Niu S, Ma J, Li Y, Yue X, Shi K, Pan M, Song L, Tan Y, Gu L, Liu S, Chang J. PTPN23[Thr] variant reduces susceptibility and tumorigenesis in esophageal squamous cell carcinoma through dephosphorylation of EGFR. Cancer Lett 2024; 592:216936. [PMID: 38704135 DOI: 10.1016/j.canlet.2024.216936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Post-translational modifications (PTMs) have emerged as pivotal regulators of the development of cancers, including esophageal squamous cell carcinoma (ESCC). Here, we conducted a comprehensive analysis of PTM-related genetic variants associated with ESCC risk using large-scale genome-wide and exome-wide association datasets. We observed significant enrichment of PTM-related variants in the ESCC risk loci and identified five variants that were significantly associated with ESCC risk. Among them, rs6780013 in PTPN23 exhibited the highest level of significance in ESCC susceptibility in 9,728 ESCC cases and 10,977 controls (odds ratio [OR] = 0.85, 95 % confidence interval [CI] = 0.81- 0.89, P = 9.77 × 10-14). Further functional investigations revealed that PTPN23[Thr] variant binds to EGFR and modulates its phosphorylation at Thr699. PTPN23[Thr] variant substantially inhibited ESCC cell proliferation both in vitro and in vivo. Our findings underscore the critical role of PTPN23[Thr]-EGFR interaction in ESCC development, providing more insights into the pathogenesis of this cancer.
Collapse
Affiliation(s)
- Siyuan Niu
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jialing Ma
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yueping Li
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xinying Yue
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ke Shi
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Miaoxin Pan
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lina Song
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuqian Tan
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linglong Gu
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shasha Liu
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
8
|
Baptista Pereira P, Torrejón E, Ferreira I, Carvalho AS, Teshima A, Sousa-Lima I, Beck HC, Costa-Silva B, Matthiesen R, Macedo MP, de Oliveira RM. Proteomic Profiling of Plasma- and Gut-Derived Extracellular Vesicles in Obesity. Nutrients 2024; 16:736. [PMID: 38474865 DOI: 10.3390/nu16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.
Collapse
Affiliation(s)
- Pedro Baptista Pereira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Estefania Torrejón
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Ferreira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Akiko Teshima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Sousa-Lima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Paula Macedo
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Rita Machado de Oliveira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
9
|
Baek JG, Park DH, Vu NK, Muvva C, Hwang H, Song S, Lee HS, Kim TJ, Kwon HC, Park K, Kang KS, Kwon J. Glycolipids Derived from the Korean Endemic Plant Aruncus aethusifolius Inducing Glucose Uptake in Mouse Skeletal Muscle C2C12 Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:608. [PMID: 38475455 DOI: 10.3390/plants13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Aruncus spp. has been used as a traditional folk medicine worldwide for its anti-inflammatory, hemostatic, and detoxifying properties. The well-known species A. dioicus var. kamtschaticus has long been used for multifunctional purposes in Eastern Asia. Recently, it was reported that its extract has antioxidant and anti-diabetic effects. In this respect, it is likely that other Aruncus spp. possess various biological activities; however, little research has been conducted thus far. The present study aims to biologically identify active compounds against diabetes in the Korean endemic plant A. aethusifolius and evaluate the underlying mechanisms. A. aethusifolius extract enhanced glucose uptake without toxicity to C2C12 cells. A bioassay-guided isolation of A. aethusifolius yielded two pure compounds, and their structures were characterized as glycolipid derivatives, gingerglycolipid A, and (2S)-3-linolenoylglycerol-O-β-d-galactopyranoside by an interpretation of nuclear magnetic resonance and high-resolution mass spectrometric data. Both compounds showed glucose uptake activity, and both compounds increased the phosphorylation levels of insulin receptor substrate 1 (IRS-1) and 5'-AMP-activated protein kinase (AMPK) and protein expression of peroxisome proliferator-activated receptor γ (PPARγ). Gingerglycolipid A docked computationally into the active site of IRS-1, AMPK1, AMPK2, and PPARγ (-5.8, -6.9, -6.8, and -6.8 kcal/mol).
Collapse
Affiliation(s)
- Jong Gwon Baek
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju 26593, Republic of Korea
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ngoc Khanh Vu
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Charuvaka Muvva
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hoseong Hwang
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sungmin Song
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hyeon-Seong Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Tack-Joong Kim
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju 26593, Republic of Korea
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju 26593, Republic of Korea
| | - Keunwan Park
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| |
Collapse
|
10
|
Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS. Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports 2024; 34:e14334. [PMID: 36973869 DOI: 10.1111/sms.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
Acute exercise and chronic exercise training elicit beneficial whole-body changes in physiology that ultimately depend on profound alterations to the dynamics of tissue-specific proteins. Since the work accomplished during exercise owes predominantly to skeletal muscle, it has received the majority of interest from exercise scientists that attempt to unravel adaptive mechanisms accounting for salutary metabolic effects and performance improvements that arise from training. Contemporary scientists are also beginning to use mass spectrometry-based proteomics, which is emerging as a powerful approach to interrogate the muscle protein signature in a more comprehensive manner. Collectively, these technologies facilitate the analysis of skeletal muscle protein dynamics from several viewpoints, including changes to intracellular proteins (expression proteomics), secreted proteins (secretomics), post-translational modifications as well as fiber-, cell-, and organelle-specific changes. This review aims to highlight recent literature that has leveraged new workflows and advances in mass spectrometry-based proteomics to further our understanding of training-related changes in skeletal muscle. We call attention to untapped areas in skeletal muscle proteomics research relating to exercise training and metabolism, as well as basic points of contention when applying mass spectrometry-based analyses, particularly in the study of human biology. We further encourage researchers to couple the hypothesis-generating and descriptive nature of omics data with functional analyses that propel our understanding of the complex adaptive responses in skeletal muscle that occur with acute and chronic exercise.
Collapse
Affiliation(s)
- Daniel T Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Prats Quesada
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Hoseini Z, Behpour N, Hoseini R. Vitamin D improves the antidiabetic effectiveness of aerobic training via modulation of Akt, PEPCK, and G6Pase expression. Diabetol Metab Syndr 2023; 15:184. [PMID: 37689713 PMCID: PMC10492382 DOI: 10.1186/s13098-023-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Although the effect of Vitamin D Supplementation (Vit D) on several chronic diseases has been well conceded, its role in diabetes remains ambiguous. The present study investigated the interactive effects of Aerobic Training (AT) and different Vit D doses on Protein Kinase B (Akt), Phosphoenolpyruvate Carboxylase (PEPCK), and Glucose-6-Phosphatase (G6Pase) protein expressions in hepatocytes of type-2 diabetic rats. METHODS Fifty-six male Wistar rats were divided into 2 groups SHAM (non-diabetic control; n = 8), and diabetic (n = 48). Then, diabetic rats were divided into six groups: AT with high doses of Vit D (D + AT + HD), AT with moderate doses of Vit D (D + AT + MD), high doses of Vit D (D + HD), moderate doses of Vit D (D + MD), AT receiving vehicle (sesame oil; D + AT + oil), and control (oil-receiving). D + AT + HD and D + HD groups received 10,000 IU of Vit D; while D + AT + MD and D + MD groups receive 5000 IU of Vit D once a week by injection; D + AT + oil and SHAM groups received sesame oil. Diabetes was induced via intraperitoneal (IP) injection of streptozotocin (50 mg/kg body weight). After 2 months of intervention, serum insulin, glucose, and visceral fat were measured; protein expressions of Akt, PEPCK, and G6Pase were assessed by western blotting. The paired t-test, one-way analysis of variance (One-Way ANOVA), and the Tukey post hoc test were used at the signification level of P < 0.05. RESULTS Our data indicate that the diabeticization of rats increased the level of insulin, glucose, and PEPCK and G6Pase protein expressions and decreased the expression of the Akt (P < 0.05 for all variables). Combined AT and moderate or high Vit D significantly reduced body weight (P = 0.001; P = 0.001), body mass index (P = 0.001; P = 0.002), food intake (P = 0.001; P = 0.001) comparing the pre-test with the post-test, respectively. Also, AT and either high or moderate Vit D alone therapies lead to the improvement of the metabolic state, however, their combination had a more significant effect on the treatment of type 2 diabetes. CONCLUSIONS Findings from the present study suggested that combined Vit D supplementation and AT successfully improve liver function and attenuate insulin resistance via upregulating Akt and downregulating PEPCK and G6Pase expressions, compared with monotherapy.
Collapse
Affiliation(s)
- Zahra Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714967346, Kermanshah, Iran
| | - Nasser Behpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714967346, Kermanshah, Iran.
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714967346, Kermanshah, Iran
| |
Collapse
|
12
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
13
|
Amar D, Gay NR, Jimenez-Morales D, Beltran PMJ, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul D, Hershman SG, Xia A, Lanza I, Fernandez FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523698. [PMID: 36711881 PMCID: PMC9882193 DOI: 10.1101/2023.01.13.523698] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in the brain, lung, small intestine and testes. The colon response was characterized by non-linear dynamics that resulted in upregulation of mitochondrial function that was more prominent in females. Brown adipose and adrenal tissues were characterized by substantial downregulation of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid metabolism. The striated muscles demonstrated a highly coordinated response to increase oxidative capacity, with the majority of changes occurring in protein abundance and post-translational modifications. We identified exercise upregulated networks that are downregulated in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial response to training and identify candidates for prevention of disease-associated mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY
| | | | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Lauren M Sparks
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, FL
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS
| | | | - Bret H. Goodpaster
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, FL
| | - Paul M. Coen
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, FL
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA
| | | | | | | |
Collapse
|
14
|
Zhang K, Cao H, Ma Y, Si H, Zang J, Bai H, Yu L, Pang X, Zhou F, Xing J, Dong J. Global analysis of lysine 2-hydroxyisobutyrylation during Fusarium graminearum infection in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1000039. [PMID: 36186065 PMCID: PMC9521605 DOI: 10.3389/fpls.2022.1000039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Proteins post-translational modification (PTMs) is necessary in the whole life process of organisms. Among them, lysine 2-hydroxyisobutyrylation (Khib) plays an important role in protein synthesis, transcriptional regulation, and cell metabolism. Khib is a newly identified PTM in several plant species. However, the function of Khib in maize was unclear. In this study, western blotting results showed that Khib modification level increased significantly after Fusarium graminearum infection, and 2,066 Khib modified sites on 728 proteins were identified in maize, among which 24 Khib sites occurred on core histones. Subcellular localization results showed that these Khib modified proteins were localized in cytoplasm, chloroplast, and nucleus. Then, comparative proteomic analysis of the defense response to F. graminearum infection showed that Khib modification participated in plant resistance to pathogen infection by regulating glycolysis, TCA cycle, protein synthesis, peroxisome, and secondary metabolic processes, such as benzoxazinoid biosynthesis, phenylpropanoid biosynthesis, jasmonic acid synthesis, and tyrosine and tryptophan biosynthesis. In addition, we also demonstrated that lysine 2-hydroxyisobutyrylation sites on histones were involved in the gene expression of pathogenesis-related proteins. Our results provide a new perspective for the study of plant disease resistance, and had directive significance of maize disease resistance for molecular breeding.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongzhe Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuxin Ma
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Helong Si
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jinping Zang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Hua Bai
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Lu Yu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xi Pang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Fan Zhou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
15
|
Gonzalez-Rellan MJ, Fondevila MF, Dieguez C, Nogueiras R. O-GlcNAcylation: A Sweet Hub in the Regulation of Glucose Metabolism in Health and Disease. Front Endocrinol (Lausanne) 2022; 13:873513. [PMID: 35527999 PMCID: PMC9072661 DOI: 10.3389/fendo.2022.873513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
O-GlcNAcylation is a posttranslational modification ruled by the activity of a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). These two enzymes carry out the dynamic cycling of O-GlcNAcylation on a wide range of cytosolic, nuclear, and mitochondrial proteins in a nutrient- and stress-responsive manner. To maintain proper glucose homeostasis, a precise mechanism to sense blood glucose levels is required, to adapt cell physiology to fluctuations in nutrient intake to maintain glycemia within a narrow range. Disruptions in glucose homeostasis generates metabolic syndrome and type 2 diabetes. In this review we will discuss and summarize emerging findings that points O-GlcNAcylation as a hub in the control of systemic glucose homeostasis, and its involvement in the generation of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Maria J. Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- *Correspondence: Maria J. Gonzalez-Rellan, ; Marcos F. Fondevila,
| | - Marcos F. Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Maria J. Gonzalez-Rellan, ; Marcos F. Fondevila,
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|