1
|
Ali A, Zhang Z, Gao T, Aleksic S, Gavathiotis E, Barzilai N, Milman S. Identification of functional rare coding variants in IGF-1 gene in humans with exceptional longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617885. [PMID: 39416202 PMCID: PMC11482895 DOI: 10.1101/2024.10.11.617885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Diminished signaling via insulin/insulin-like growth factor-1 (IGF-1) axis is associated with longevity in different model organisms. IGF-1 gene is highly conserved across species, with only few evolutionary changes identified in it. Despite its potential role in regulating lifespan, no coding variants in IGF-1 have been reported in human longevity cohorts to date. This study investigated the whole exome sequencing data from 2,487 individuals in a cohort of Ashkenazi Jewish centenarians, their offspring, and controls without familial longevity to identify functional IGF-1 coding variants. We identified two likely functional coding variants IGF-1:p.Ile91Leu and IGF-1:p.Ala118Thr in our longevity cohort. Notably, a centenarian specific novel variant IGF-1:p.Ile91Leu was located at the binding interface of IGF-1 - IGF-1R, whereas IGF-1:p.Ala118Thr was significantly associated with lower circulating levels of IGF-1. We performed extended all-atom molecular dynamics simulations to evaluate the impact of Ile91Leu on stability, binding dynamics and energetics of IGF-1 bound to IGF-1R. The IGF-1:p.Ile91Leu formed less stable interactions with IGF-1R's critical binding pocket residues and demonstrated lower binding affinity at the extracellular binding site compared to wild-type IGF-1. Our findings suggest that IGF-1:p.Ile91Leu and IGF-1:p.Ala118Thr variants attenuate IGF-1R activity by impairing IGF-1 binding and diminishing the circulatory levels of IGF-1, respectively. Consequently, diminished IGF-1 signaling resulting from these variants may contribute to exceptional longevity in humans.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Sandra Aleksic
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Evripidis Gavathiotis
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Department of Biochemistry, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Department of Genetics, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, NY, USA, 10461
- Department of Genetics, Albert Einstein College of Medicine, NY, USA, 10461
- Institute for Aging Research and the Einstein-NSC, Albert Einstein College of Medicine, NY, USA, 10461
| |
Collapse
|
2
|
Huang R, Shi J, Wei R, Li J. Challenges of insulin-like growth factor-1 testing. Crit Rev Clin Lab Sci 2024; 61:388-403. [PMID: 38323343 DOI: 10.1080/10408363.2024.2306804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
Insulin-like growth factor 1 (IGF-1), primarily synthesized in the liver, was initially discovered due to its capacity to replicate the metabolic effects of insulin. Subsequently, it emerged as a key regulator of the actions of growth hormone (GH), managing critical processes like cell proliferation, differentiation, and apoptosis. Notably, IGF-1 displays a longer half-life compared to GH, making it less susceptible to factors that may affect GH concentrations. Consequently, the measurement of IGF-1 proves to be more specific and sensitive when diagnosing conditions such as acromegaly or GH deficiency. The recognition of the existence of IGFBPs and their potential to interfere with IGF-1 immunoassays urged the implementation of various techniques to moderate this issue and provide accurate IGF-1 results. Additionally, in response to the limitations associated with IGF-1 immunoassays and the occurrence of discordant IGF-1 results, modern mass spectrometric methods were developed to facilitate the quantification of IGF-1 levels. Taking advantage of their ability to minimize the interference caused by IGF-1 variants, mass spectrometric methods offer the capacity to deliver robust, reliable, and accurate IGF-1 results, relying on the precision of mass measurements. This also enables the potential detection of pathogenic mutations through protein sequence analysis. However, despite the analytical challenges, the discordance in IGF-1 reference intervals can be attributed to a multitude of factors, potentially leading to distinct interpretations of results. The establishment of reference intervals for each assay is a demanding task, and it requires nationwide multicenter collaboration among laboratorians, clinicians, and assay manufacturers to achieve this common goal in a cost-effective and resource-efficient manner. In this comprehensive review, we examine the challenges associated with the standardization of IGF-1 measurement methods, the minimization of pre-analytical factors, and the harmonization of reference intervals. Particular emphasis will be placed on the development of IGF-1 measurement techniques using "top-down" or "bottom-up" mass spectrometric methods.
Collapse
Affiliation(s)
- Rongrong Huang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Harris Health System Ben Taub Hospital, Houston, TX, USA
| | - Junyan Shi
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver Coastal Health, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruhan Wei
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jieli Li
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Punt LD, van der Kaay DCM, van Setten PA, de Groote K, Kruijsen AR, Bocca G, de Munnik SA, Renes JS, de Bruin C, Losekoot M, van Duyvenvoorde HA, Wit JM, Joustra SD. IGF1 Haploinsufficiency: Phenotype and Response to Growth Hormone Treatment in 9 Patients. Horm Res Paediatr 2024:1-11. [PMID: 38952118 DOI: 10.1159/000540053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION The clinical features of bi-allelic IGF1 defects are well established, i.e., severe growth failure and microcephaly, delayed psychomotor development, and sensorineural deafness. However, information on clinical and endocrine consequences of heterozygous IGF1 variants and treatment options is scarce. We aimed at extending the knowledge base of the clinical presentation and growth response to recombinant human growth hormone (rhGH) of patients carrying such variants. METHODS Retrospective case series of patients with pathogenic heterozygous IGF1 variants. RESULTS Nine patients from six families were included, harbouring five whole or partial gene deletions and one frameshift variant resulting in a premature stop codon (three de novo, one unknown inheritance). In the other two families, variants segregated with short stature. Mean (SD) birth length was -1.9 (1.3) SDS (n = 7), height -3.8 (0.6) SDS, head circumference -2.5 (0.6) SDS, serum IGF-I -1.9 (0.7) SDS, serum IGFBP-3 1.1 (0.4) SDS (n = 7), and GH peak range 5-31 μg/L (n = 4). Five patients showed feeding problems in infancy. Average height increased after 1 and 2 years of rhGH treatment by 0.8 SDS (range 0.3-1.3 SDS) and 1.3 SDS (range 0.5-2.0 SDS), respectively. Adult height in 2 patients was -2.8 and -1.3 SDS, which was, respectively, 1.3 and 2.9 SDS taller than predicted before start of treatment. CONCLUSION Haploinsufficiency of IGF1 causes a variable phenotype of prenatal and postnatal growth failure, microcephaly, feeding difficulties, low/low-normal serum IGF-I values in contrast to serum IGFBP-3 in the upper-normal range. Treatment with rhGH increased growth in the first 2 years of treatment, and in 2 patients adult height after treatment was higher than predicted at treatment initiation.
Collapse
Affiliation(s)
- Lauren D Punt
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Daniëlle C M van der Kaay
- Division of Paediatric Endocrinology, Department of Paediatrics, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Petra A van Setten
- Department of Paediatrics, Amalia Childrens Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kirsten de Groote
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anne R Kruijsen
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gianni Bocca
- Division of Paediatric Endocrinology, Department of Paediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sonja A de Munnik
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith S Renes
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Paediatrics, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Christiaan de Bruin
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Jan M Wit
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd D Joustra
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
4
|
Motorykin I, Mu J, Miller BS, Li A, Clarke NJ, McPhaul MJ, Wu Z. Detection rate of IGF-1 variants and their implication to protein binding: study of over 240,000 patients. Clin Chem Lab Med 2024; 62:484-492. [PMID: 37811857 DOI: 10.1515/cclm-2023-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To determine the detection rate of IGF-1 variants in a clinical population and assess their implications. METHODS IGF-1 variants were detected based on their predicted mass-to-charge ratios. Most variants were distinguished by their isotopic distribution and relative retention times. A67T and A70T were distinguished with MS/MS. Patient specimens with a detected variant were de-identified for DNA sequencing to confirm the polymorphism. RESULTS Of the 243,808 patients screened, 1,099 patients containing IGF-1 variants were identified (0.45 %, or 4,508 occurrences per million). Seven patients were identified as homozygous or double heterozygous. Majority of variants (98 %) had amino acid substitutions located at the C-terminus (A62T, P66A, A67S, A67V, A67T, A70T). Isobaric variants A38V and A67V were detected more frequently in children than in adults. Six previously unreported variants were identified: Y31H, S33P, T41I, R50Q, R56K, and A62T. Compared with the overall population, z-score distribution of patients with IGF-1 variants was shifted toward negative levels (median z-score -1.4); however, it resembled the overall population when corrected for heterozygosity. Chromatographic peak area of some variants differed from that of the WT IGF-1 present in the same patient. CONCLUSIONS In the IGF-1 test reports by LC-MS, the concentrations only account for half the total IGF-1 for patients with heterozygous IGF-1 variants. An IGF-1 variant may change the binding to its receptor and/or its binding proteins, affecting its activity and half-life in circulation. Variants located in or close to the C-domain may be pathogenic. Cross-species sequence comparison indicates that A38V and A70T may have some degree of pathogenicity.
Collapse
Affiliation(s)
- Ievgen Motorykin
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Jianying Mu
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Bradley S Miller
- University of Minnesota Medical School, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN, USA
| | - Allison Li
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Nigel J Clarke
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | | | - Zengru Wu
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| |
Collapse
|
5
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
6
|
Funcke JB, Moepps B, Roos J, von Schnurbein J, Verstraete K, Fröhlich-Reiterer E, Kohlsdorf K, Nunziata A, Brandt S, Tsirigotaki A, Dansercoer A, Suppan E, Haris B, Debatin KM, Savvides SN, Farooqi IS, Hussain K, Gierschik P, Fischer-Posovszky P, Wabitsch M. Rare Antagonistic Leptin Variants and Severe, Early-Onset Obesity. N Engl J Med 2023; 388:2253-2261. [PMID: 37314706 DOI: 10.1056/nejmoa2204041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Barbara Moepps
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Julian Roos
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Julia von Schnurbein
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Kenneth Verstraete
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Elke Fröhlich-Reiterer
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Katja Kohlsdorf
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Adriana Nunziata
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Stephanie Brandt
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Alexandra Tsirigotaki
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Ann Dansercoer
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Elisabeth Suppan
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Basma Haris
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Klaus-Michael Debatin
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Savvas N Savvides
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - I Sadaf Farooqi
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Khalid Hussain
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Peter Gierschik
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Pamela Fischer-Posovszky
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Martin Wabitsch
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| |
Collapse
|
7
|
Ruiz-Cruz M, Torres-Granados C, Tena-Sempere M, Roa J. Central and peripheral mechanisms involved in the control of GnRH neuronal function by metabolic factors. Curr Opin Pharmacol 2023; 71:102382. [PMID: 37307655 DOI: 10.1016/j.coph.2023.102382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.
Collapse
Affiliation(s)
- Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
8
|
Bertagnoli LE, Seist R, Batts S, Stankovic KM. Potential Ototoxicity of Insulin-like Growth Factor 1 Receptor Signaling Inhibitors: An In Silico Drug Repurposing Study of the Regenerating Cochlear Neuron Transcriptome. J Clin Med 2023; 12:jcm12103485. [PMID: 37240591 DOI: 10.3390/jcm12103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spiral ganglion neurons (SGNs) connect cochlear hair cells with higher auditory pathways and their degeneration due to drug toxicity (ototoxicity) contributes to hearing loss. This study aimed to identify drug classes that are negatively correlated with the transcriptome of regenerating SGNs. Human orthologs of differentially expressed genes within the regenerating neonatal mouse SGN transcriptome were entered into CMap and the LINCS unified environment and perturbation-driven gene expression was analyzed. The CMap connectivity scores ranged from 100 (positive correlation) to -100 (negative correlation). Insulin-like growth factor 1/receptor (IGF-1/R) inhibitors were highly negatively correlated with the regenerating SGN transcriptome (connectivity score: -98.87). A systematic literature review of clinical trials and observational studies reporting otologic adverse events (AEs) with IGF-1/R inhibitors identified 108 reports (6141 treated patients). Overall, 16.9% of the treated patients experienced any otologic AE; the rate was highest for teprotumumab (42.9%). In a meta-analysis of two randomized placebo-controlled trials of teprotumumab, there was a significantly higher risk of hearing-related (pooled Peto OR [95% CI]: 7.95 [1.57, 40.17]) and of any otologic AEs (3.56 [1.35, 9.43]) with teprotumumab vs. a placebo, whether or not dizziness/vertigo AEs were included. These results call for close audiological monitoring during IGF-1-targeted treatment, with prompt referral to an otolaryngologist should otologic AEs develop.
Collapse
Affiliation(s)
- Lino E Bertagnoli
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Paracelsus Medical University, 5020 Salzburg, Austria
| | - Richard Seist
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Paracelsus Medical University, 5020 Salzburg, Austria
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Hokken-Koelega ACS, van der Steen M, Boguszewski MCS, Cianfarani S, Dahlgren J, Horikawa R, Mericq V, Rapaport R, Alherbish A, Braslavsky D, Charmandari E, Chernausek SD, Cutfield WS, Dauber A, Deeb A, Goedegebuure WJ, Hofman PL, Isganatis E, Jorge AA, Kanaka-Gantenbein C, Kashimada K, Khadilkar V, Luo XP, Mathai S, Nakano Y, Yau M. International Consensus Guideline on Small for Gestational Age (SGA): Etiology and Management from Infancy to Early Adulthood. Endocr Rev 2023; 44:539-565. [PMID: 36635911 PMCID: PMC10166266 DOI: 10.1210/endrev/bnad002] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033-0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle.
Collapse
Affiliation(s)
- Anita C S Hokken-Koelega
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome 'Tor Vergata', Children's Hospital, Rome, Italy.,Diabetology and Growth Disorders Unit, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Jovanna Dahlgren
- Department of Pediatrics, the Sahlgrenska Academy, the University of Gothenburg and Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Veronica Mericq
- Institute of Maternal and Child Research, faculty of Medicine, University of Chile
| | - Robert Rapaport
- Icahn School of Medicine, Division of Pediatric Endocrinology, Mount Sinai Kravis Children's Hospital, New York, NY, USA
| | | | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergadá" (CEDIE), División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Steven D Chernausek
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC 20012, USA
| | - Asma Deeb
- Paediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Wesley J Goedegebuure
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul L Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Alexander A Jorge
- Unidade de Endocrinologia Genética (LIM25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, 11527, Athens, Greece
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarah Mathai
- Department of Pediatrics, Christian Medical College, Vellore, India
| | - Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Mabel Yau
- Icahn School of Medicine, Division of Pediatric Endocrinology, Mount Sinai Kravis Children's Hospital, New York, NY, USA
| |
Collapse
|
10
|
Giacomozzi C, Martin A, Fernández MC, Gutiérrez M, Iascone M, Domené HM, Dominici FP, Bergadá I, Cangiano B, Persani L, Pennisi PA. Novel Insulin-Like Growth Factor 1 Gene Mutation: Broadening of the Phenotype and Implications for Insulin Resistance. J Clin Endocrinol Metab 2022; 108:1355-1369. [PMID: 36546343 DOI: 10.1210/clinem/dgac738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Insulin-like Growth Factor (IGF)1 gene mutations are extremely rare causes of pre- and post-natal growth retardation. Phenotype can be heterogenous with varying degrees of neurosensory deafness, cognitive defects, glucose metabolism impairment and short stature. This study describes a 12.6-year-old girl presenting severe short stature and insulin resistance, but with normal hearing and neurological development at the lower limit of normal. METHODS DNA was obtained from the proband and both parents for whole exome sequencing (WES). In silico analysis was performed to predict the impact of the IGF1 variant on IGF1 and insulin receptors (IGF1R and IR) signalling. Phosphorylation of the IGF1R at activating Tyr residues and cell proliferation analyses were used to assess the ability of each subject's IGF1 to bind and activate IGF1R. RESULTS The proband had low immunoreactive IGF1 in serum and WES revealed a novel homozygous IGF1 missense variant (c.247A > T), causing a change of serine 83 for cysteine (p.Ser83Cys; p.Ser35Cys in mature peptide). The proband's parents were heterozygous for this mutation. In silico analyses indicated the pathogenic potential of the variant with electrostatic variations with the potential of hampering the interaction with the IGF1R but strengthening the binding to IR. The mutant IGF1 protein had a significantly reduced activity on in vitro bioassays. MAIN CONCLUSIONS We describe a novel IGF1 mutation leading to severe loss of circulating IGF1 immunoreactivity and bioactivity, In silico modelling predicts that the mutant IGF1 could interfere with IR signalling, providing a possible explanation for the severe insulin resistance observed in the patient. The absence of significant hearing and neurodevelopmental involvement in the present case is unusual and broadens the clinical spectrum of IGF1 mutations.
Collapse
Affiliation(s)
- Claudio Giacomozzi
- Unit of Pediatrics, Department of Maternal and Child Health, Carlo Poma Hospital, ASST-Mantova, Mantua, Italy
| | - Ayelen Martin
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Celia Fernández
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Fernando P Dominici
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica (IQUIFIB-CONICET), Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Biagio Cangiano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Patricia A Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
11
|
Alekseenkova EN, Selkov SA, Kapustin RV. Fetal growth regulation via insulin-like growth factor axis in normal and diabetic pregnancy. J Perinat Med 2022; 50:947-960. [PMID: 35363447 DOI: 10.1515/jpm-2021-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Diabetes mellitus (DM) in pregnancy and gestational diabetes remain a considerable cause of pregnancy complications, and fetal macrosomia is among them. Insulin, insulin-like growth factors (IGFs), and components of their signal-transduction axes belong to the predominant growth regulators and are implicated in glucose homeostasis. This study aimed to evaluate the available evidence on the association between the IGF axis and fetal anthropometric parameters in human diabetic pregnancy. METHODS PubMed, Medline, Web of Science, and CNKI databases (1981-2021) were searched. RESULTS Maternal and cord serum IGF-I levels are suggested to be positively associated with weight and length of neonates born to mothers with type 1 DM. The results concerning IGF-II and IGFBPs in type 1 DM or any of the IGF axis components in type 2 DM remain controversial. The alterations of maternal serum IGFs concentrations throughout diabetic and non-diabetic pregnancy do not appear to be the same. Maternal 1st trimester IGF-I level is positively associated with fetal birth weight in DM. CONCLUSIONS Research on the IGF axis should take gestational age of sampling, presence of DM, and insulin administration into account. Maternal 1st trimester IGF-I level might become a predictor for macrosomia development in diabetic pregnancy.
Collapse
Affiliation(s)
- Elena N Alekseenkova
- D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St Petersburg, Russian Federation
| | - Sergey A Selkov
- D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St Petersburg, Russian Federation
| | - Roman V Kapustin
- D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St Petersburg, Russian Federation.,Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, St Petersburg State University, St Petersburg, Russian Federation
| |
Collapse
|
12
|
Larkey NE, Fatica EM, Singh RJ. Differentiation of Common IGF-1 Variants Using HRMS COM Determination with Follow-Up MS/MS Verification. Methods Mol Biol 2022; 2546:227-237. [PMID: 36127593 DOI: 10.1007/978-1-0716-2565-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor 1 (IGF-1), a peptide hormone regulator of growth hormone (GH), has common variants with differing functionality. These variants are a result of single amino acid changes in the peptide that can lead to significant changes in the resulting protein. The standard method of evaluating any of these variants is by using tandem mass spectrometry (MS/MS) methods. A novel method has been developed to evaluate some variants solely by high-resolution mass spectrometry (HRMS) of the intact peptide by calculating the center of mass (COM) of the [M + 7H]+7 isotopic distribution. This has allowed differentiation between the nonfunctional V44M variant and the A67T/A70T functional variants without the need for MS/MS. However, MS/MS is still needed to differentiate between the A67T and A70T variants. In this chapter we outline the LC-HRMS method for IGF-1 analysis with the inclusion of COM calculations and subsequent MS/MS differentiation.
Collapse
Affiliation(s)
- Nicholas E Larkey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erica M Fatica
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Motorykin I, Li A, Wu Z. Monitoring and Identifying Insulin-Like Growth Factor 1 Variants by Liquid Chromatography-High-Resolution Mass Spectrometry in a Clinical Laboratory. Methods Mol Biol 2022; 2546:239-251. [PMID: 36127594 DOI: 10.1007/978-1-0716-2565-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein and peptide hormones often exist as sequence variants with different molecular mass. Monitoring these variants of different molecular mass by mass spectrometry using mass-to-charge (m/z) ratio that is indicative of the wild type may lead to inaccurate quantitative results. However, liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based techniques can capture these differences and provide an opportunity to resolve, or partially resolve, variant complexity. In this chapter, we describe a general approach for monitoring a set of peptide variants with similar m/z ratios and isotopic envelopes, but different in amino acid sequences. As an example, we use insulin-like growth factor-1 (IGF-1) to demonstrate a DNA database-guided approach to monitor protein variants by LC-HRMS in a clinical laboratory. The workflow is automated and therefore avoids manual calculations that are prone to human error. The method can also monitor multiple IGF-1 variants and discover new ones. It can also provide a profile of a patient's IGF-1 status and be used to explore genotype-phenotype relationships in IGF-1 variants.
Collapse
Affiliation(s)
| | - Allison Li
- Quest Diagnostics, San Juan Capistrano, CA, USA
| | - Zengru Wu
- Quest Diagnostics, San Juan Capistrano, CA, USA.
| |
Collapse
|
14
|
Kim H, Fu Y, Hong HJ, Lee SG, Lee DS, Kim HM. Structural basis for assembly and disassembly of the IGF/IGFBP/ALS ternary complex. Nat Commun 2022; 13:4434. [PMID: 35907924 PMCID: PMC9338993 DOI: 10.1038/s41467-022-32214-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factors (IGFs) have pleiotropic roles in embryonic and postnatal growth and differentiation. Most serum IGFs are bound in a ternary complex with IGF-binding protein 3 (IGFBP3) and acid-labile subunit (ALS), extending the serum half-life of IGFs and regulating their availability. Here, we report cryo-EM structure of the human IGF1/IGFBP3/ALS ternary complex, revealing the detailed architecture of a parachute-like ternary complex and crucial determinants for their sequential and specific assembly. In vitro biochemical studies show that proteolysis at the central linker domain of IGFBP3 induces release of its C-terminal domain rather than IGF1 release from the ternary complex, yielding an intermediate complex that enhances IGF1 bioavailability. Our results provide mechanistic insight into IGF/IGFBP3/ALS ternary complex assembly and its disassembly upon proteolysis for IGF bioavailability, suggesting a structural basis for human diseases associated with IGF1 and IGFALS gene mutations such as complete ALS deficiency (ACLSD) and IGF1 deficiency. Insulin-like growth factor 1 (IGF1) regulates growth and differentiation. Here, authors report the atomic structure of the ternary complex (IGF1/IGF-binding protein3/acid labile subunit) and its assembly/disassembly mechanism for IGF bioavailability.
Collapse
Affiliation(s)
- Hyojin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yaoyao Fu
- Center for Biomolecular & Cellular Structure, IBS, Daejeon, 34126, Republic of Korea
| | - Ho Jeong Hong
- Center for Biomolecular & Cellular Structure, IBS, Daejeon, 34126, Republic of Korea
| | - Seong-Gyu Lee
- Center for Biomolecular & Cellular Structure, IBS, Daejeon, 34126, Republic of Korea
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, IBS, Daejeon, 34126, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Center for Biomolecular & Cellular Structure, IBS, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
15
|
Horvath A, Quinlan P, Eckerström C, Åberg ND, Wallin A, Svensson J. Low Serum Insulin-like Growth Factor-I Is Associated with Decline in Hippocampal Volume in Stable Mild Cognitive Impairment but not in Alzheimer's Disease. J Alzheimers Dis 2022; 88:1007-1016. [PMID: 35723105 PMCID: PMC9484094 DOI: 10.3233/jad-220292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Serum insulin-like growth factor-I (IGF-I) has shown some association with hippocampal volume in healthy subjects, but this relation has not been investigated in stable mild cognitive impairment (sMCI) or Alzheimer’s disease (AD). Objective: At a single memory clinic, we investigated whether serum IGF-I was associated with baseline magnetic resonance imaging (MRI)-estimated brain volumes and longitudinal alterations, defined as annualized changes, up to 6 years of follow-up. Methods: A prospective study of patients with sMCI (n = 110) and AD (n = 60). Brain regions included the hippocampus and amygdala as well as the temporal, parietal, frontal, and occipital lobes, respectively. Results: Serum IGF-I was statistically similar in sMCI and AD patients (112 versus 123 ng/mL, p = 0.31). In sMCI, serum IGF-I correlated positively with all baseline MRI variables except for the occipital lobe, and there was also a positive correlation between serum IGF-I and the annualized change in hippocampal volume (rs = 0.32, p = 0.02). Furthermore, sMCI patients having serum IGF-I above the median had lower annual loss of hippocampal volume than those with IGF-I below the median (p = 0.02). In contrast, in AD patients, IGF-I did not associate with baseline levels or annualized changes in brain volumes. Conclusion: In sMCI patients, our results suggest that IGF-I exerted neuroprotective effects on the brain, thereby maintaining hippocampal volume. In AD, serum IGF-I did not associate with brain volumes, indicating that IGF-I could not induce neuroprotection in this disease. This supports the notion of IGF-I resistance in AD.
Collapse
Affiliation(s)
- Alexandra Horvath
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Patrick Quinlan
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carl Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Acute Medicine and Geriatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine, Region Västra Götaland, Skaraborg Central Hospital, Skövde, Sweden
| |
Collapse
|
16
|
Wit JM, Joustra SD, Losekoot M, van Duyvenvoorde HA, de Bruin C. Differential Diagnosis of the Short IGF-I-Deficient Child with Apparently Normal Growth Hormone Secretion. Horm Res Paediatr 2022; 94:81-104. [PMID: 34091447 DOI: 10.1159/000516407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak ("GH neurosecretory dysfunction," GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0-3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to GH1 variants) but less on the role of GHSR variants. Several genetic causes of (partial) GHI are known (GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.
Collapse
Affiliation(s)
- Jan M Wit
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd D Joustra
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Christiaan de Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
17
|
Mastromauro C, Chiarelli F. Novel Insights Into the Genetic Causes of Short Stature in Children. Endocrinology 2022; 18:49-57. [PMID: 35949366 PMCID: PMC9354945 DOI: 10.17925/ee.2022.18.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
Short stature is a common reason for consulting a growth specialist during childhood. Normal height is a polygenic trait involving a complex interaction between hormonal, nutritional and psychosocial components. Genetic factors are becoming very important in the understanding of short stature. After exclusion of the most frequent causes of growth failure, clinicians need to evaluate whether a genetic cause might be taken into consideration. In fact, genetic causes of short stature are probably misdiagnosed during clinical practice and the underlying cause of short stature frequently remains unknown, thus classifying children as having idiopathic short stature (ISS). However, over the past decade, novel genetic techniques have led to the discovery of novel genes associated with linear growth and thus to the ability to define new possible aetiologies of short stature. In fact, thanks to the newer genetic advances, it is possible to properly re-classify about 25–40% of children previously diagnosed with ISS. The purpose of this article is to describe the main monogenic causes of short stature, which, thanks to advances in molecular genetics, are assuming an increasingly important role in the clinical approach to short children.
Collapse
|
18
|
Teo HM, Smith TJ, Joseph SS. Efficacy and Safety of Teprotumumab in Thyroid Eye Disease. Ther Clin Risk Manag 2021; 17:1219-1230. [PMID: 34858025 PMCID: PMC8630371 DOI: 10.2147/tcrm.s303057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022] Open
Abstract
Thyroid eye disease (TED; also known as thyroid-associated ophthalmopathy) is an autoimmune condition with disabling and disfiguring consequences. Teprotumumab is the first and only medication approved by the United States Food and Drug Administration for the treatment of TED. We review the efficacy and safety of teprotumumab in TED, highlighting results from the 2 randomized, double-masked, placebo-controlled trials. Post-approval case reports of teprotumumab use in patients with compressive optic neuropathy (CON) and inactive TED were similarly favorable to those from the trials. The preliminarily results of teprotumumab for CON and inactive TED should be investigated in formal clinical trials. Teprotumumab should be avoided in pregnancy. Evidence also suggests that teprotumumab may exacerbate pre-existing inflammatory bowel disease, worsen hyperglycemia, and be associated with hearing impairment. Patients at risk for these adverse events need to be closely monitored with baseline and periodic assessments.
Collapse
Affiliation(s)
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon S Joseph
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
19
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
20
|
Motorykin I, Li H, Clarke NJ, McPhaul MJ, Wu Z. Isotopic Peak Index, Relative Retention Time, and Tandem MS for Automated High Throughput IGF-1 Variants Identification in a Clinical Laboratory. Anal Chem 2021; 93:11836-11842. [PMID: 34461729 DOI: 10.1021/acs.analchem.1c02566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring insulin-like growth factor-1 (IGF-1) is useful for assessing and managing growth-related disorders, such as acromegaly and growth hormone deficiency. High-resolution liquid chromatography-mass spectrometry (LC-MS) is used for measuring IGF-1 due to its molecular specificity, quantitative performance, well-characterized reference materials, and detailed age/sex-specific reference intervals. However, polymorphisms in the IGF1 gene may cause mass shifts in the polypeptide, which can impede quantitation and cause errors in clinical interpretation. We (1) developed a concept of "isotopic peak index", which allows simultaneous monitoring of 15 IGF-1 variants by using only four m/z ratios; (2) developed a "relative retention time" parameter that allows distinction of previously unresolved variants; and (3) utilized tandem mass spectrometry (MS/MS) to distinguish between the most common pair of variants: isobaric A67T and A70T. All methods were validated with DNA sequencing. This approach identified six variants from the ExAC database, P66A, A67S, S34N, A38 V, A67T, and A70T; two previously reported V44M and A67V variants; and discovered six unreported variants, Y31H, S33P, R50Q, R56K, T41I, and A62T. Major improvements in our workflow include enhanced automation, avoiding detailed manual calculations that are prone to human error, and the ability to monitor more, and discover new, IGF-1 variants. The workflow provides a profile of a patient's IGF-1 status and can be used to explore genotype-phenotype relationships in IGF-1 variants.
Collapse
Affiliation(s)
- Ievgen Motorykin
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Hua Li
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Nigel J Clarke
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Michael J McPhaul
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| | - Zengru Wu
- Quest Diagnostics, 33608 Ortega Highway, San Juan Capistrano, California 92690, United States
| |
Collapse
|
21
|
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development. Cells 2021; 10:cells10082063. [PMID: 34440832 PMCID: PMC8392544 DOI: 10.3390/cells10082063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.
Collapse
|
22
|
Sheldon T. Marie-José Walenkamp: paediatric endocrinologist whose research focused on genetics in growth. Assoc Med J 2021. [DOI: 10.1136/bmj.n1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
24
|
Actis Dato V, Sánchez MC, Chiabrando GA. LRP1 mediates the IGF-1-induced GLUT1 expression on the cell surface and glucose uptake in Müller glial cells. Sci Rep 2021; 11:4742. [PMID: 33637845 PMCID: PMC7910306 DOI: 10.1038/s41598-021-84090-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 11/09/2022] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) is involved in the normal development and survival of retinal cells. Low-density lipoprotein Receptor-related Protein-1 (LRP1) plays a key role on the regulation of several membrane proteins, such as the IGF-1 receptor (IGF-1R). In brain astrocytes, LRP1 interact with IGF-1R and the glucose transporter type 1 (GLUT1), regulating the glucose uptake in these cells. Although GLUT1 is expressed in retinal Müller Glial Cells (MGCs), its regulation is not clear yet. Here, we investigated whether IGF-1 modulates GLUT1 traffic to plasma membrane (PM) and glucose uptake, as well as the involvement of LRP1 in this process in the human Müller glial-derived cell line (MIO-M1). We found that IGF-1 produced GLUT1 translocation to the PM, in a time-dependent manner involving the intracellular signaling activation of MAPK/ERK and PI3K/Akt pathways, and generated a significant glucose uptake. Moreover, we found a molecular association between LRP1 and GLUT1, which was significantly reduced by IGF-1. Finally, cells treated with specific siRNA for LRP1 showed an impaired GLUT1 expression on PM and decreased glucose uptake induced by IGF-1. We conclude that IGF-1 regulates glucose homeostasis in MGCs involving the expression of LRP1.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Cecilia Sánchez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gustavo Alberto Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina. .,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
25
|
Guevara-Aguirre J, Torres C, Peña G, Palacios M, Bautista C, Guevara A, Gavilanes AW. IGF-I deficiency and enhanced insulin sensitivity due to a mutated growth hormone receptor gene in humans. Mol Cell Endocrinol 2021; 519:111044. [PMID: 33053393 DOI: 10.1016/j.mce.2020.111044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Human size is achieved by the coordinated expression of many genes. From conception to adulthood, a given genomic endowment is modified by highly variable environmental circumstances. During each stage of a person's life, distinct nutritional and hormonal influences continuously shape growing physical features until mature characteristics are attained. Underlying processes depend on precise provision of substrates and energy extracted by insulin action from nutrients, which allows cell proliferation, differentiation, and survival, under the concerted actions of growth hormone and insulin-like growth factor-I (IGF-I). It should be noted that growth and metabolic signaling pathways are interdependent and superimposed at multiple levels. Attainment of a fully developed human phenotype should be considered as a harmonious increment in body size rather than a simple increase in height. From this perspective we herein analyze adult features of individuals with an inactive growth hormone receptor, who consequently have severely diminished concentrations of serum insulin and endocrine IGF-I.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador; Maastricht University, Maastricht, the Netherlands; Instituto de Endocrinología IEMYR, Quito, Ecuador.
| | - Carlos Torres
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Gabriela Peña
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - María Palacios
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | - Camila Bautista
- Colegio de Ciencias de La Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbayá, Quito, Ecuador
| | | | | |
Collapse
|
26
|
Bálint F, Csillag V, Vastagh C, Liposits Z, Farkas I. Insulin-Like Growth Factor 1 Increases GABAergic Neurotransmission to GnRH Neurons via Suppressing the Retrograde Tonic Endocannabinoid Signaling Pathway in Mice. Neuroendocrinology 2021; 111:1219-1230. [PMID: 33361699 DOI: 10.1159/000514043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Flóra Bálint
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Veronika Csillag
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Zsolt Liposits
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary,
| |
Collapse
|
27
|
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol 2020; 518:111035. [PMID: 32941924 DOI: 10.1016/j.mce.2020.111035] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The insulin-like growth factor (IGF) system comprises two ligands, IGF-I and IGF-II, that regulate multiple physiological processes, including mammalian development, metabolism and growth, through the type 1 IGF receptor (IGF-1R). The growth hormone (GH)-IGF-I axis is the major regulator of longitudinal growth. IGF-II is expressed in many tissues, notably the placenta, to regulate human pre- and post-natal growth and development. This review provides a brief introduction to the IGF system and summarizes findings from reports arising from recent larger genomic sequencing studies of human genetic mutations in IGF1 and IGF2 and genes of proteins regulating IGF action, namely the IGF-1R, IGF-1R signaling pathway components and the IGF binding proteins (IGFBPs). A perspective on the effect of homozygous mutations on structure and function of the IGFs and IGF-1R is also given and this is related to the effects on growth.
Collapse
Affiliation(s)
- Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - Andrew J Blyth
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Moonesi M, Zaka Khosravi S, Molaei Ramshe S, Allahbakhshian Farsani M, Solali S, Mohammadi MH, Farshdousti Hagh M, Mehdizadeh H. IGF family effects on development, stability, and treatment of hematological malignancies. J Cell Physiol 2020; 236:4097-4105. [PMID: 33184857 DOI: 10.1002/jcp.30156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Multiple factors, including growth factors, are shown to be culprits of cancer outset and persistence. Among growth factors, insulin-like growth factors (IGFs) family are of more importance in the prognosis of blood malignancies. After binding to their corresponding receptor, IGFs initiate PI3K/AKT signaling pathway and increase the translation of intracellular proteins, such as cell division-related proteins. They also stimulate the transcription of cell division-related genes using the Ras-GTP pathway. In addition to organs such as the liver, IGFs are secreted by tumor cells and can cause growth and proliferation of self or tumor cells via autocrine and paracrine methods. Current studies indicate that decreasing the effects of IGF by blocking them, their receptors, or PI3K/AKT pathway using various drugs could help to suppress the division of tumor cells. Here, we delineate the role of the IGF family in hematologic malignancies and their potential mechanisms.
Collapse
Affiliation(s)
- Mohammadreza Moonesi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Zaka Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Molaei Ramshe
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Solali
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Mehdizadeh
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Tenuta M, Carlomagno F, Cangiano B, Kanakis G, Pozza C, Sbardella E, Isidori AM, Krausz C, Gianfrilli D. Somatotropic-Testicular Axis: A crosstalk between GH/IGF-I and gonadal hormones during development, transition, and adult age. Andrology 2020; 9:168-184. [PMID: 33021069 DOI: 10.1111/andr.12918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatotropic (HPS) axes are strongly interconnected. Interactions between these axes are complex and poorly understood. These interactions are characterized by redundancies in reciprocal influences at each level of regulation and the combination of endocrine and paracrine effects that change during development. OBJECTIVES To comprehensively review the crosstalk between the HPG and HPS axes and related pathological and clinical aspects during various life stages of male subjects. MATERIALS AND METHODS A thorough search of publications available in PubMed was performed using proper keywords. RESULTS Molecular studies confirmed the expressions of growth hormone (GH) and insulin-like growth factor-I (IGF-I) receptors on the HPG axis and reproductive organs, indicating a possible interaction between HPS and HPG axes at various levels. Insulin growth factors participate in sexual differentiation during fetal development, indicating that normal HPS axis activity is required for proper testicular development. IGF-I contributes to correct testicular position during minipuberty, determines linear growth during childhood, and promotes puberty onset and pace through gonadotropin-releasing hormone activation. IGF-I levels are high during transition age, even when linear growth is almost complete, suggesting its role in reproductive tract maturation. Patients with GH deficiency (GHD) and insensitivity (GHI) exhibit delayed puberty and impaired genital development; replacement therapy in such patients induces proper pubertal development. In adults, few studies have suggested that lower IGF-I levels are associated with impaired sperm parameters. DISCUSSION AND CONCLUSION The role of GH-IGF-I in testicular development remains largely unexplored. However, it is important to evaluate gonadic development in children with GHD. Additionally, HPS axis function should be evaluated in children with urogenital malformation or gonadal development alterations. Correct diagnosis and prompt therapeutic intervention are needed for healthy puberty, attainment of complete gonadal development during transition age, and fertility potential in adulthood.
Collapse
Affiliation(s)
- Marta Tenuta
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - George Kanakis
- Athens Naval and Veterans Affairs Hospital, Athens, Greece
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | |
Collapse
|
30
|
Gkourogianni A, Andrade AC, Jonsson B, Segerlund E, Werner‐Sperker A, Horemuzova E, Dahlgren J, Burstedt M, Nilsson O. Pre- and postnatal growth failure with microcephaly due to two novel heterozygous IGF1R mutations and response to growth hormone treatment. Acta Paediatr 2020; 109:2067-2074. [PMID: 32037650 DOI: 10.1111/apa.15218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
AIM To explore the phenotype and response to growth hormone in patients with heterozygous mutations in the insulin-like growth factor I receptor gene (IGF1R). METHODS Children with short stature, microcephaly, born SGA combined with biochemical sign of IGF-I insensitivity were analysed for IGF1R mutations or deletions using Sanger sequencing and Multiple ligation-dependent probe amplification analysis. RESULTS In two families, a novel heterozygous non-synonymous missense IGF1R variant was identified. In family 1, c.3364G > T, p.(Gly1122Cys) was found in the proband and co-segregated perfectly with the phenotype in three generations. In family 2, a de novo variant c.3530G > A, p.(Arg1177His) was detected. Both variants were rare, not present in the GnomAD database. Three individuals carrying IGF1R mutations have received rhGH treatment. The average gain in height SDS during treatment was 0.42 (range: 0.26-0.60) and 0.64 (range: 0.32-0.86) after 1 and 2 years of treatment, respectively. CONCLUSION Our study presents two heterozygous IGF1R mutations causing pre- and postnatal growth failure and microcephaly and also indicates that individuals with heterozygous IGF1R mutations can respond to rhGH treatment. The findings highlight that sequencing of the IGF1R should be considered in children with microcephaly and short stature due to pre- and postnatal growth failure.
Collapse
Affiliation(s)
- Alexandra Gkourogianni
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
- Center for Molecular Medicine Karolinska Institutet and University Hospital Stockholm Sweden
| | - Anenisia C. Andrade
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
- Center for Molecular Medicine Karolinska Institutet and University Hospital Stockholm Sweden
| | - Björn‐Anders Jonsson
- Department of Medical Biosciences Medical and Clinical Genetics Umeå University Umeå Sweden
| | - Emma Segerlund
- Department of Pediatrics Sunderby Hospital Sunderby Sweden
| | | | - Eva Horemuzova
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
| | - Jovanna Dahlgren
- Göteborg Pediatric Growth Research Center Department of Pediatrics Institute of Clinical Sciences Sahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| | - Magnus Burstedt
- Department of Medical Biosciences Medical and Clinical Genetics Umeå University Umeå Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
- Center for Molecular Medicine Karolinska Institutet and University Hospital Stockholm Sweden
- School of Medical Sciences Örebro University and University Hospital Örebro Sweden
| |
Collapse
|
31
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
32
|
Bright GM, Fierro-Renoy JF. A rationale for the treatment of short stature in children with the combination of recombinant human growth hormone (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I). Growth Horm IGF Res 2020; 52:101318. [PMID: 32252003 DOI: 10.1016/j.ghir.2020.101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Both rhGH and rhIGF-I are signaling molecules with the capacity to restore the rate of growth in certain subsets of slowly growing children. In some instances, heights attained at or near the time of cessation of linear growth are indistinguishable from the height distribution of the community as a whole or from the height distribution expected based on the heights of biological parents. The GH: IGF-I signaling system is sequential, forming a continuous loop wherein GH will stimulate production of IGF-I and IGF-I will inhibit production of GH. This feature suggests that a deficiency of GH will be accompanied by a deficiency of IGF-I and that treatment of GH deficiency with rhGH will restore IGF-I and the subnormal growth of combined GH: IGF-I deficiency. Although logical, this proposition is not always true. rhGH and rhIGF-I are distinct polypeptides, with distinct cell surface receptors and distinct intracellular signaling pathways both capable of amplifying distinct, yet overlapping, patterns of gene replication, protein synthesis and metabolic activities. These features suggest that neither treatment with rhGH nor rhIGF-I alone will invariably recapitulate the combined activities of the GH: IGF-I system, At the present time, this proposition appears both logical and true. The possibility that combined rhGH and rhIGF-I treatment can accomplish that which neither monotherapy can has been examined in gene knock-out experiments in animals and direct comparisons of GH, IGF-I and combined GH: IGF- treatments in animals and in children with short stature, normal GH and low IGF-I (primary IGF-I deficiency). In these experimental models, the growth rates with combined rhGH and rhIGF-I treatment exceed those of either monotherapy. The extent to which this proposition can be generalized to various short stature populations remains to be determined.
Collapse
|
33
|
Kocyigit M, Bezgin SU, Cakabay T, Ortekin SG, Yıldız M, Ozkaya G, Aydın B. An Investigation of Hearing (250-20,000 Hz) in Children with Endocrine Diseases and Evaluation of Tinnitus and Vertigo Symptoms. Int Arch Otorhinolaryngol 2020; 24:e198-e205. [PMID: 32256841 PMCID: PMC6986949 DOI: 10.1055/s-0039-1698775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/18/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction
Despite much advancement in medicine, endocrine and metabolic diseases remain an important cause of morbidity and even mortality in children.
Objective
The present study was planned to investigate the evaluation of hearing that also includes high frequencies, and the presence and degree of vertigo and tinnitus symptoms in pediatric patients diagnosed with endocrine diseases such as type 1 diabetes mellitus (DM), growth hormone deficiency (GHD), obesity, idiopathic short stature, and precocious puberty
Methods
The present study included a patient group of 207 children patients diagnosed with endocrine disease (95 males, 112 females; mean age 9.71 years old [range 6–16 years old]) and a control group including 55 healthy children who do not have any kind of chronic disease (26 males, 29 females; mean age 9.33 years old [range 6–16 years old]). The subjects underwent a hearing test with frequencies between 250 and 20,000 Hz. The vestibular and tinnitus symptoms were evaluated with the Pediatric Vestibular Symptom Questionnaire.
Results
Out of 207 patients in the patient group, 5 (2.4%) had hearing loss in pure tones, 10 (4.8%) had it in high frequencies, 40 (19.3%) had tinnitus symptoms, and 18 (8.7%) had vertigo symptoms. A total of 4 out of 207 patients in the study group (1.9%), 2 out of 59 with type 1 DM patients (3.4%), 1 out of 46 with GHD (2.2%), and 1 out of 43 obesity patients (2.3%) had hearing loss, vertigo, and tinnitus symptoms.
Conclusions
Our results suggest that some childhood endocrine diseases can cause some changes in the inner ear, although the exact cause is unknown. Perhaps, a detailed hearing and balance examination should be a routine in a child diagnosed with an endocrine disease. We think it is necessary to work on more comprehensive patient groups and tests in the future.
Collapse
Affiliation(s)
- Murat Kocyigit
- Department of Otolaryngolgy, Istanbul Kanuni Sultan Suleyman Egitim ve Arastirma Hastanesi, Istanbul, Turkey
| | - Selin Ustun Bezgin
- Department of Otolaryngolgy, Istanbul Kanuni Sultan Suleyman Egitim ve Arastirma Hastanesi, Istanbul, Turkey
| | - Taliye Cakabay
- Department of Otolaryngolgy, Istanbul Kanuni Sultan Suleyman Egitim ve Arastirma Hastanesi, Istanbul, Turkey
| | - Safiye Giran Ortekin
- Department of Otolaryngolgy, Istanbul Kanuni Sultan Suleyman Egitim ve Arastirma Hastanesi, Istanbul, Turkey
| | - Melek Yıldız
- Department of Pediatric Endocrinology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Guven Ozkaya
- Department of Biostatistics, Uludag Universitesi Tip Fakultesi, Bursa, Turkey
| | - Banu Aydın
- Department of Pediatric Endocrinology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
34
|
Pennuto M, Pandey UB, Polanco MJ. Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Front Neuroendocrinol 2020; 57:100821. [PMID: 32006533 DOI: 10.1016/j.yfrne.2020.100821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The pleiotropic peptide insulin-like growth factor 1 (IGF-I) regulates human body homeostasis and cell growth. IGF-I activates two major signaling pathways, namely phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt) and Ras/extracellular signal-regulated kinase (ERK), which contribute to brain development, metabolism and function as well as to neuronal maintenance and survival. In this review, we discuss the general and tissue-specific effects of the IGF-I pathways. In addition, we present a comprehensive overview examining the role of IGF-I in neurodegenerative diseases, such as spinal and muscular atrophy, amyotrophic lateral sclerosis, and polyglutamine diseases. In each disease, we analyze the disturbances of the IGF-I pathway, the modification of the disease protein by IGF-I signaling, and the therapeutic strategies based on the use of IGF-I developed to date. Lastly, we highlight present and future considerations in the use of IGF-I for the treatment of these disorders.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy; Padova Neuroscience Center (PNC), 35131 Padova, Italy; Myology Center (CIR-Myo), 35131 Padova, Italy.
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - María José Polanco
- Department of Pharmaceutic and Health Science, University San Pablo CEU, Campus Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
35
|
Tran KT, Le VS, Bui HTP, Do DH, Ly HTT, Nguyen HT, Dao LTM, Nguyen TH, Vu DM, Ha LT, Le HTT, Mukhopadhyay A, Nguyen LT. Genetic landscape of autism spectrum disorder in Vietnamese children. Sci Rep 2020; 10:5034. [PMID: 32193494 PMCID: PMC7081304 DOI: 10.1038/s41598-020-61695-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder with an unclear aetiology and an estimated global prevalence of 1%. However, studies of ASD in the Vietnamese population are limited. Here, we first conducted whole exome sequencing (WES) of 100 children with ASD and their unaffected parents. Our stringent analysis pipeline was able to detect 18 unique variants (8 de novo and 10 ×-linked, all validated), including 12 newly discovered variants. Interestingly, a notable number of X-linked variants were detected (56%), and all of them were found in affected males but not in affected females. We uncovered 17 genes from our ASD cohort in which CHD8, DYRK1A, GRIN2B, SCN2A, OFD1 and MDB5 have been previously identified as ASD risk genes, suggesting the universal aetiology of ASD for these genes. In addition, we identified six genes that have not been previously reported in any autism database: CHM, ENPP1, IGF1, LAS1L, SYP and TBX22. Gene ontology and phenotype-genotype analysis suggested that variants in IGF1, SYP and LAS1L could plausibly confer risk for ASD. Taken together, this study adds to the genetic heterogeneity of ASD and is the first report elucidating the genetic landscape of ASD in Vietnamese children.
Collapse
Affiliation(s)
- Kien Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung district, Hanoi, Vietnam
| | - Vinh Sy Le
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung district, Hanoi, Vietnam.
- University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay ditrict, Hanoi, Vietnam.
| | - Hoa Thi Phuong Bui
- Department of Gene Technology, Hi-tech Center, Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung district, Hanoi, Hanoi, Vietnam
| | - Duong Huy Do
- Department of Gene Technology, Hi-tech Center, Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung district, Hanoi, Hanoi, Vietnam
| | - Ha Thi Thanh Ly
- Department of Gene Technology, Hi-tech Center, Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung district, Hanoi, Hanoi, Vietnam
| | - Hieu Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung district, Hanoi, Vietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung district, Hanoi, Vietnam
| | - Thanh Hong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung district, Hanoi, Vietnam
| | - Duc Minh Vu
- Department of Gene Technology, Hi-tech Center, Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung district, Hanoi, Hanoi, Vietnam
| | - Lien Thi Ha
- Department of Gene Technology, Hi-tech Center, Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung district, Hanoi, Hanoi, Vietnam
| | - Huong Thi Thanh Le
- Department of Gene Technology, Hi-tech Center, Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung district, Hanoi, Hanoi, Vietnam
| | - Arijit Mukhopadhyay
- Translational Medicine Laboratory, Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung district, Hanoi, Vietnam.
| |
Collapse
|
36
|
Santos-Carvalho HA, Aguiar-Oliveira MH, Salvatori R, Valença EHO, Andrade-Guimarães AL, Palanch-Repeke CE, Moreira-Cândido LP, Araújo-Daniel CR, de Oliveira-Barreto AC, Andrade BMR, Oliveira AHA, Vieira ER, Gois-Junior MB. Vestibular function in severe GH deficiency due to an inactivating mutation in the GH-releasing hormone receptor gene. Endocrine 2020; 67:659-664. [PMID: 31902114 DOI: 10.1007/s12020-019-02178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/26/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Body balance involves the vestibular, visual, and proprioceptive systems. IGF-I is a GH-dependent key factor in the development and postnatal differentiation of the inner ear in mice and men, but its role in the vestibular function in adult humans is unknown. We have previously described a cohort of individuals with severe isolated GH deficiency (IGHD) caused by a mutation in the GHRH receptor (GHRHR) gene. These individuals complain of dizziness, exhibit mild sensorineural loss, but have normal postural balance, without increase in falls risk. The aim of this study was to evaluate their vestibular function. METHODS We performed physical examination (clinical head impulse and Fukuda dynamic stepping test), oculomotor (saccadic eye movements, spontaneous, semi-spontaneous and opotokinetic nystagmus, and pendular tracking) and caloric stimulation (postcaloric reflex and ocular fixation index) tests, in 15 GH-naïve IGHD (seven males) and 15 controls (five males). RESULTS IGHD subjects showed lower height and weight, with similar BMI to controls, and higher number of individuals with abnormal clinical head impulse test and abnormal oculomotor tests, namely the saccadic movements and the spontaneous nystagmus. There was a nonsignificant trend in abnormalities in the Fukuda stepping test and postcaloric reflex test. CONCLUSIONS Adult untreated IGHD individuals have higher prevalence of moderate peripheral vestibular impairment, and of abnormal vestibular-ocular reflex.
Collapse
Affiliation(s)
- Hugo A Santos-Carvalho
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, Sergipe, 49060-100, Brazil
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (Grupo de Estudos em Atividade Física), Sergipe, Brazil
| | | | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Eugênia H O Valença
- Department of Speech and Hearing Sciences, Federal University of Sergipe, Aracaju, Sergipe, 49060-100, Brazil
| | - Alana L Andrade-Guimarães
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, Sergipe, 49060-100, Brazil
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (Grupo de Estudos em Atividade Física), Sergipe, Brazil
| | - Carlos E Palanch-Repeke
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, Sergipe, 49060-100, Brazil
| | - Luan P Moreira-Cândido
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, Sergipe, 49060-100, Brazil
| | - Carlos R Araújo-Daniel
- Department of Statistic and Actuarial Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Aline C de Oliveira-Barreto
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, Sergipe, 49060-100, Brazil
| | - Bruna M R Andrade
- Department of Speech and Hearing Sciences, Federal University of Sergipe, Aracaju, Sergipe, 49060-100, Brazil
| | - Alaide H A Oliveira
- Dentistry Division, Federal University of Sergipe, Aracaju, Sergipe, 49060-100, Brazil
| | - Edgar R Vieira
- Department of Physical Therapy and Neuroscience, Wertheims' College of Nursing and Health Science, Florida International University, Florida City, FL, USA
| | - Miburge B Gois-Junior
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, Sergipe, 49060-100, Brazil
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (Grupo de Estudos em Atividade Física), Sergipe, Brazil
- Department of Statistic and Actuarial Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| |
Collapse
|
37
|
Ramírez L, Sanguineti N, Scaglia P, Keselman A, Ballerini MG, Karabatas L, Landi E, Castro J, Domené S, Pennisi P, Jasper H, Rey RA, Vázquez M, Domené H, Bergadá I, Gutiérrez M. A novel heterozygous STAT5B variant in a patient with short stature and partial growth hormone insensitivity (GHI). Growth Horm IGF Res 2020; 50:61-70. [PMID: 31902742 DOI: 10.1016/j.ghir.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure. OBJECTIVE To characterize the molecular defect in a patient with short stature and partial GHI. PATIENT AND METHODS The boy was born at term adequate for gestational age from non-consanguineous normal-stature parents. At 2.2 years, he presented proportionate short stature (height -2.77 SDS), wide forehead and normal mental development. Whole-exome analysis and functional characterization (site-directed mutagenesis, dual luciferase reporter assay, immunofluorescence and western immunoblot) were performed. RESULTS Biochemical and endocrinological evaluation revealed partial GH insensitivity with normal stimulated GH peak (7.8 ng/mL), undetectable IGF1 and low IGFBP3 levels. Two heterozygous variants in the GH-signaling pathway were found: a novel heterozygous STAT5B variant (c.1896G>T, p.K632N) and a hypomorphic IGFALS variant (c.1642C>T, p.R548W). Functional in vitro characterization demonstrated that p.K632N-STAT5b is an inactivating variant that impairs STAT5b activity through abolished phosphorylation. Remarkably, the patient's immunological evaluation displayed only a mild hypogammaglobulinemia, while a major characteristic of STAT5b deficient patients is severe immunodeficiency. CONCLUSIONS We reported a novel pathogenic inactivating STAT5b variant, which may be associated with partial GH insensitivity and can present without severe immunological complications in heterozygous state. Our results contribute to expand the spectrum of phenotypes associated to GHI.
Collapse
Affiliation(s)
- Laura Ramírez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Estefanía Landi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Julia Castro
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Héctor Jasper
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Horacio Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Colon G, Saccon T, Schneider A, Cavalcante MB, Huffman DM, Berryman D, List E, Ikeno Y, Musi N, Bartke A, Kopchick J, Kirkland JL, Tchkonia T, Masternak MM. The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience 2019; 41:759-774. [PMID: 31485887 PMCID: PMC6925094 DOI: 10.1007/s11357-019-00096-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) is secreted by the anterior pituitary gland and regulates various metabolic processes throughout the body. GH and IGF-1 levels are markedly reduced in older humans, leading some to hypothesize GH supplementation could be a viable "anti-aging" therapy. However, there is still much debate over the benefits and risks of GH administration. While an early study of GH administration reported reduced adiposity and lipid levels and increased bone mineral density, subsequent studies failed to show significant benefits. Conversely, other studies found positive effects of GH deficiency including extended life span, improved cognitive function, resistance to diseases such as cancer and diabetes, and improved insulin sensitivity despite a higher fat percentage. Thus, the roles of GH in aging and cognition remain unclear, and there is currently not enough evidence to support use of GH as an anti-aging or cognitive impairment therapy. Additional robust and longer-duration studies of efficacy and safety of GH administration are needed to determine if modulating GH levels could be a successful strategy for treating aging and age-related diseases.
Collapse
Affiliation(s)
- Gabriela Colon
- College of Medicine, Florida State University, Tallahassee, FL, 32304, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Tatiana Saccon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcelo B Cavalcante
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brazil
| | - Derek M Huffman
- Departments of Molecular Pharmacology, Medicine, and the Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Darlene Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Ed List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric, Research, Education and Clinical Center, San Antonio, TX, 78229, USA
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - John Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
| |
Collapse
|
39
|
Maus A, Kemp J, Milosevic D, Renuse S, Pandey A, Singh RJ, Grebe SKG. Center of Mass Calculation in Combination with MS/MS Allows Robust Identification of Single Amino Acid Polymorphisms in Clinical Measurements of Insulin-Like Growth Factor-1. J Proteome Res 2019; 19:186-193. [DOI: 10.1021/acs.jproteome.9b00494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony Maus
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jennifer Kemp
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Dragana Milosevic
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Santosh Renuse
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Akhilesh Pandey
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ravinder J. Singh
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Stefan K. G. Grebe
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
40
|
Neirijnck Y, Papaioannou MD, Nef S. The Insulin/IGF System in Mammalian Sexual Development and Reproduction. Int J Mol Sci 2019; 20:ijms20184440. [PMID: 31505893 PMCID: PMC6770468 DOI: 10.3390/ijms20184440] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent research over the past few decades has clearly established that the insulin-like family of growth factors, which is composed of insulin and insulin-like growth factors 1 (IGF1) and 2 (IGF2), plays essential roles in sexual development and reproduction of both males and females. Within the male and female reproductive organs, ligands of the family act in an autocrine/paracrine manner, in order to guide different aspects of gonadogenesis, sex determination, sex-specific development or reproductive performance. Although our knowledge has greatly improved over the last years, there are still several facets that remain to be deciphered. In this review, we first briefly outline the principles of sexual development and insulin/IGF signaling, and then present our current knowledge, both in rodents and humans, about the involvement of insulin/IGFs in sexual development and reproductive functions. We conclude by highlighting some interesting remarks and delineating certain unanswered questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Marilena D Papaioannou
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
41
|
Ocaranza P, Losekoot M, Walenkamp MJE, De Bruin C, Wit JM, Mericq V. Intrauterine Twin Discordancy and Partial Postnatal Catch-up Growth in a Girl with a Pathogenic IGF1R Mutation. J Clin Res Pediatr Endocrinol 2019; 11:293-300. [PMID: 30859796 PMCID: PMC6745462 DOI: 10.4274/jcrpe.galenos.2019.2018.0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Insulin like growth factors-1 (IGF-1) is essential for normal in utero and postnatal human growth. It mediates its effects through the IGF-1 receptor (IGF1R), a widely expressed cell surface tyrosine kinase receptor. The aim of the study was to analyze pre- and post-natal growth, clinical features and laboratory findings in a small for gestational age (SGA) girl in whom discordant postnatal growth persisted and her appropriate for gestational age (AGA) brother. METHODS A girl born with a low weight and length [-2.3 and -2.4 standard deviation (SD) score (SDS), respectively] but borderline low head circumference (-1.6 SD) presented with a height of -1.7 SDS, in contrast to a normal height twin brother (0.0 SDS). IGF-1 resistance was suspected because of elevated serum IGF-1 levels. RESULTS Sequencing revealed the presence of a previously described pathogenic heterozygous mutation (p.Glu1050Lys) in the SGA girl which was not present in the parents nor in the AGA twin brother. CONCLUSION The pathogenic IGF1R mutation in this girl led to intrauterine growth retardation followed by partial postnatal catch-up growth. Height in mid-childhood was in the lower half of the reference range, but still 1.7 SD shorter than her twin brother.
Collapse
Affiliation(s)
- Paula Ocaranza
- University of Chile Faculty of Medicine, Institute of Maternal and Child Research, Santiago, Chile
| | - Monique Losekoot
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Marie J. E. Walenkamp
- Emma Children’s Hospital, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Christiaan De Bruin
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
| | - Jan M. Wit
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
| | - Veronica Mericq
- University of Chile Faculty of Medicine, Institute of Maternal and Child Research, Santiago, Chile,* Address for Correspondence: University of Chile Faculty of Medicine, Institute of Maternal and Child Research, Santiago, Chile E-mail:
| |
Collapse
|
42
|
Liu G, Zhang S, Wang Y, Fan X, Xia H, Liang H. Insights into pathological mutations in insulin-like growth factor I through in silico screening and molecular dynamics simulation. J Mol Model 2019; 25:276. [PMID: 31456057 DOI: 10.1007/s00894-019-4173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
Insulin-like growth factor I (IGF-I) is an anabolic growth hormone indispensable for cell growth, proliferation, differentiation, and other metabolic processes. Three missense mutations in IGF-I have been identified to be disease-related, while more mutations are waiting for phenotype annotation. However, there is no previous work regarding effective and accurate identification of pathological mutations of IGF-I, neither regarding the effects of mutations on the protein structure and dynamics. In this study, we first predicted potential deleterious mutations present in IGF-I using 16 in silico tools. Then, these mutations were further evaluated through multiple bioinformatics methods including conservation analysis, physicochemical characterization, and molecular dynamics simulation. After rigorous screening, five mutations (T4M, V17M, V44M, R50W, and M59R) were finally selected, of which two have been previously reported to be deleterious. These mutations locate at conserved regions and change the residue size locally. In the conventional simulations, the mutations destabilized the overall IGF-I structure by destroying two important hydrogen bonds within the key region of "C-neck." This finding was further confirmed by the thermal unfolding simulations and the free-energy calculations, where the mutants were associated with faster and greater loss of helix and lower energy barriers in comparison with the wild-type protein. The rigorous phenotype prediction and comprehensive structural analysis of missense mutations will not only pave the way of screening for harmful mutations in IGF-I but also provide new prospects for the rational design of IGF-I analogues and tailored medicine.
Collapse
Affiliation(s)
- Guangjian Liu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Shu Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yong Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xuejiao Fan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huiying Liang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
43
|
Wu Z, Sanders H, Motorykin I, Phillip Caulfield M, John McPhaul M. Detection of Insulin-Like Growth Factor 1 Variants by Mass Spectrometry: Results from a Clinical Reference Laboratory. Clin Chem 2019; 65:1060-1061. [DOI: 10.1373/clinchem.2019.302539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zengru Wu
- Quest Diagnostics, San Juan Capistrano, CA
| | | | | | | | | |
Collapse
|
44
|
Juul A, Skakkebæk NE. Why Do Normal Children Have Acromegalic Levels of IGF-I During Puberty? J Clin Endocrinol Metab 2019; 104:2770-2776. [PMID: 30840065 DOI: 10.1210/jc.2018-02099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The rapid pubertal height growth is unique to humans, but why do we have it? Although the spurt contributes 13% to 15% to the final adult height, we hypothesized that the biological significance of the high acromegalic levels of GH and IGF-I, which are behind the pubertal growth spurt, might primarily occur to stimulate the reproductive organs. EVIDENCE SYNTHESIS Animal data have demonstrated that adult Igf1 and Igf2 gene knockout mice that survive show a dramatic reduction in the size of the reproductive organs and are infertile. In humans, case reports of mutations in the genes affecting the GH-IGF axis and growth (GH, GHRH, GH-R, STAT5b, IGF-I, IGF-II, IGF-1R, PAPPA2) are also characterized by delayed pubertal onset and micropenis. Furthermore, GH treatment will tend to normalize the penile size in patients with GH deficiency. Thus, the endocrine effects of high IGF-I levels might be needed for the transition of the sexual organs, including the secondary sex characteristics, from the "dormant" stages of childhood into fully functioning reproductive systems. The peak IGF-I levels, on average, occur 2 years after the peak height growth velocity, suggesting reasons other than longitudinal growth for the high IGF-I levels, and remain high in the years after the height spurt, when the reproductive systems become fully functional. CONCLUSION We suggest that the serum levels of IGF-I should be monitored in children with poor development of sexual organs, although it remains to be investigated whether GH should be added to sex steroids in the management of hypogonadism for some pubertal children (e.g., boys with micropenis).
Collapse
Affiliation(s)
- Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark
| | - Niels E Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark
- The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
45
|
Genome-Wide Profiling of Laron Syndrome Patients Identifies Novel Cancer Protection Pathways. Cells 2019; 8:cells8060596. [PMID: 31208077 PMCID: PMC6627189 DOI: 10.3390/cells8060596] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest that congenital IGF1 deficiency confers protection against the development of malignancies. This ‘experiment of nature’ reflects the critical role of IGF1 in tumor biology. The present review article provides an overview of recently conducted genome-wide profiling analyses aimed at identifying mechanisms and signaling pathways that are directly responsible for the link between life-time low IGF1 levels and protection from tumor development. The review underscores the concept that ‘data mining’ an orphan disease might translate into new developments in oncology.
Collapse
|
46
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
47
|
Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M. Primary Cilia as Signaling Hubs in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801138. [PMID: 30643718 PMCID: PMC6325590 DOI: 10.1002/advs.201801138] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Primary cilia detect extracellular cues and transduce these signals into cells to regulate proliferation, migration, and differentiation. Here, the function of primary cilia as signaling hubs of growth factors and morphogens is in focus. First, the molecular mechanisms regulating the assembly and disassembly of primary cilia are described. Then, the role of primary cilia in mediating growth factor and morphogen signaling to maintain human health and the potential mechanisms by which defects in these pathways contribute to human diseases, such as ciliopathy, obesity, and cancer are described. Furthermore, a novel signaling pathway by which certain growth factors stimulate cell proliferation through suppression of ciliogenesis is also described, suggesting novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Takashi Shiromizu
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncologic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
48
|
Argente J, Tatton-Brown K, Lehwalder D, Pfäffle R. Genetics of Growth Disorders-Which Patients Require Genetic Testing? Front Endocrinol (Lausanne) 2019; 10:602. [PMID: 31555216 PMCID: PMC6742727 DOI: 10.3389/fendo.2019.00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The second 360° European Meeting on Growth Hormone Disorders, held in Barcelona, Spain, in June 2017, included a session entitled Pragmatism vs. Curiosity in Genetic Diagnosis of Growth Disorders, which examined current concepts of genetics and growth in the clinical setting, in terms of both growth failure and overgrowth. For patients with short stature, multiple genes have been identified that result in GH deficiency, which may be isolated or associated with additional pituitary hormone deficiencies, or in growth hormone resistance, primary insulin-like growth factor (IGF) acid-labile subunit deficiency, IGF-I deficiency, IGF-II deficiency, IGF-I resistance, and primary PAPP-A2 deficiency. While genetic causes of short stature were previously thought to primarily be associated with the GH-IGF-I axis, it is now established that multiple genetic anomalies not associated with the GH-IGF-I axis can result in short stature. A number of genetic anomalies have also been shown to be associated with overgrowth, some of which involve the GH-IGF-I axis. In patients with overgrowth in combination with an intellectual disability, two predominant gene families, the epigenetic regulator genes, and PI3K/AKT pathway genes, have now been identified. Specific processes should be followed for decisions on which patients require genetic testing and which genes should be examined for anomalies. The decision to carry out genetic testing should be directed by the clinical process, not merely for research purposes. The intention of genetic testing should be to direct the clinical options for management of the growth disorder.
Collapse
Affiliation(s)
- Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III and IMDEA Institute, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Katrina Tatton-Brown
- Institute of Cancer Research, St George's University Hospital NHS Foundation Trust, London and St George's University of London, London, United Kingdom
| | - Dagmar Lehwalder
- Global Medical Affairs, Merck Healthcare KGaA, Darmstadt, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
- Roland Pfäffle
| |
Collapse
|
49
|
Baranowski JR, Claud EC. Necrotizing Enterocolitis and the Preterm Infant Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:25-36. [PMID: 30680646 DOI: 10.1007/5584_2018_313] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial colonization patterns in preterm infants differ from those of their term counterparts due to maternal microbial diversity, delivery mode, feeding methods, antibiotic use, and exposure to commensal microbiota and pathogens in the neonatal intensive care unit (NICU). Early gut microbiome dysbiosis predisposes neonates to necrotizing enterocolitis (NEC), a devastating intestinal disease with high morbidity and mortality. Though mechanisms of NEC pathogenesis are not fully understood, the microbiome is a promising therapy target for prevention and treatment. Direct administration of probiotics to preterm infants has been shown to reduce the incidence of NEC, but is not without risk. The immature immune systems of preterm infants leave them vulnerable to even beneficial bacteria. Further research is required to investigate both short-term and long-term effects of probiotic administration to preterm infants. Other methods of altering the preterm infant microbiome must also be considered, including breastfeeding, prebiotics, and targeting the maternal microbiome.
Collapse
Affiliation(s)
| | - Erika C Claud
- Department of Pediatrics, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
| |
Collapse
|
50
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|