1
|
Ochando I, Urbano A, Rueda J. Genetics in reproductive medicine. Arch Med Res 2024; 55:103092. [PMID: 39342776 DOI: 10.1016/j.arcmed.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Thanks to advances in technology, genetic testing is now available to explore the causes of infertility and to assess the risk of a given couple passing on a genetic disorder to their offspring. This allows at-risk couples to make an informed decision when opting for assisted reproduction and allows professionals to offer pre-implantation diagnosis when appropriate. Genetic screening of an infertile couple has thus become standard practice for an appropriate diagnosis, treatment, and prognostic assessment. This review aims to highlight the conditions under which genetic screening plays a role in improving reproductive outcomes for infertile couples.
Collapse
Affiliation(s)
- Isabel Ochando
- Nuuma Genetics, Hospital HLA Vistahermosa, Alicante, Spain; Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain.
| | - Antonio Urbano
- Nuuma Genetics, Hospital HLA Vistahermosa, Alicante, Spain; Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain
| | - Joaquín Rueda
- Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
2
|
Jia H, Wang W, Zhou Z, Chen Z, Lan Z, Bo H, Fan L. Single-cell RNA sequencing technology in human spermatogenesis: Progresses and perspectives. Mol Cell Biochem 2024; 479:2017-2033. [PMID: 37659974 DOI: 10.1007/s11010-023-04840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Spermatogenesis, a key part of the spermiation process, is regulated by a combination of key cells, such as primordial germ cells, spermatogonial stem cells, and somatic cells, such as Sertoli cells. Abnormal spermatogenesis can lead to azoospermia, testicular tumors, and other diseases related to male infertility. The application of single-cell RNA sequencing (scRNA-seq) technology in male reproduction is gradually increasing with its unique insight into deep mining and analysis. The data cover different periods of neonatal, prepubertal, pubertal, and adult stages. Different types of male infertility diseases including obstructive and non-obstructive azoospermia (NOA), Klinefelter Syndrome (KS), Sertoli Cell Only Syndrome (SCOS), and testicular tumors are also covered. We briefly review the principles and application of scRNA-seq and summarize the research results and application directions in spermatogenesis in different periods and pathological states. Moreover, we discuss the challenges of applying this technology in male reproduction and the prospects of combining it with other technologies.
Collapse
Affiliation(s)
- Hanbo Jia
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wei Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaowen Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhiyi Chen
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zijun Lan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| |
Collapse
|
3
|
Mazzilli R, Petrucci S, Zamponi V, Golisano B, Pecora G, Mancini C, Salerno G, Alesi L, De Santis I, Libi F, Rossi C, Borro M, Raffa S, Visco V, Defeudis G, Piane M, Faggiano A. Seminological, Hormonal and Ultrasonographic Features of Male Factor Infertility Due to Genetic Causes: Results from a Large Monocentric Retrospective Study. J Clin Med 2024; 13:4399. [PMID: 39124666 PMCID: PMC11313503 DOI: 10.3390/jcm13154399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Objectives: Evaluate the prevalence of genetic factors in a large population of infertile subjects and define the seminological, hormonal, and ultrasonographic features for each alteration. Methods: This single-center retrospective study included male partners of infertile couples undergoing genetic investigations due to oligozoospermia or azoospermia evaluated from January 2012 to January 2022. The genetic investigations consist of karyotype, CFTR gene mutations plus variant of the IVS8-5T polymorphic trait, Y chromosome microdeletion, and Next Generation Sequencing panel to analyze genes implicated in congenital hypogonadotropic hypogonadism (CHH). Results: Overall, 15.4% (72/466) of patients received a diagnosis of genetic cause of infertility. Specifically, 23 patients (31.9%) harbor mutations in the CFTR gene, 22 (30.6%) have a 47, XXY karyotype, 14 (19.4%) patients show a Y chromosome microdeletion, 7 (9.7%) have structural chromosomal anomalies, and 6 (8.3%) have CHH. Overall, 80.6% of patients were azoospermic and 19.4% oligozoospermic (sperm concentration 3.5 ± 3.8 million/mL). Almost all patients presented hormonal alterations related to the specific genotype, while the main ultrasound alterations were testicular hypoplasia, calcifications/microcalcifications, and enlarged/hyperechoic epididymis. Conclusions: The prevalence of genetic abnormalities in males of infertile couples was 15.4% in our Center. CFTR gene disease-causing variants resulted in more frequent, with various clinical features, highlighting the complexity and heterogeneity of the presentation. Other investigations are needed to understand if conditions like ring chromosomes and other translocations are related to infertility or are incidental factors.
Collapse
Affiliation(s)
- Rossella Mazzilli
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Simona Petrucci
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
| | - Virginia Zamponi
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Bianca Golisano
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Giulia Pecora
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Camilla Mancini
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Gerardo Salerno
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
| | - Laura Alesi
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Ilaria De Santis
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Fabio Libi
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Carla Rossi
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Marina Borro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Vincenzo Visco
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Giuseppe Defeudis
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Antongiulio Faggiano
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| |
Collapse
|
4
|
Ng R, Stanar P, Louie K, Chow V, Ma S. Increased Y Chromosome Microdeletions in Cord Blood of Male Newborns From Assisted Reproductive Technology Compared to Natural Conception. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102342. [PMID: 38176679 DOI: 10.1016/j.jogc.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES To investigate the incidence of Y chromosome microdeletions in male newborns conceived by intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), and natural conception (NC). METHODS A total of 186 male newborns were recruited, including 35 conceived by ICSI, 37 conceived by IVF, and 114 conceived naturally. DNA was extracted from umbilical cord blood after birth. The Yq genetic status of the newborns was determined according to 18 Y-specific sequence tagging sites (STS) markers covering 3 azoospermia factor (AZF) sub-regions and internal control sequences. RESULTS Partial AZF microdeletions were identified in 8 of 35 (22.9%) ICSI newborns, 4 of 37 (10.8%) IVF newborns, and 1 of 114 (0.9%) NC newborns. There was a statistically significant difference in the proportion of newborns with partial Y chromosome microdeletions between the ICSI, IVF, and NC groups. When analyzed individually, only the SY114 and SY152 STS markers showed a statistically significant difference in incidence between the 3 cohorts. CONCLUSIONS Our study indicates that the population of male children conceived through assisted reproductive technologies (ART), particularly ICSI, is at an increased risk of genetic defect in the form of partial Y chromosome microdeletions. The growing population of ART-conceived children emphasizes the importance of studying the genetic repercussions of these procedures regarding the future fertility of males conceived in vitro.
Collapse
Affiliation(s)
- Richard Ng
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Paloma Stanar
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Victor Chow
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Graziani A, Merico M, Grande G, Di Mambro A, Vinanzi C, Rocca MS, Selice R, Ferlin A. A cryptozoospermic infertile male with Y chromosome AZFc microdeletion and low FSH levels due to a simultaneous polymorphism in the FSHB gene: a case report. Hum Reprod 2024; 39:504-508. [PMID: 38224259 DOI: 10.1093/humrep/dead277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Genetic causes account for 10-15% of male factor infertility, making the genetic investigation an essential and useful tool, mainly in azoospermic and severely oligozoospermic men. In these patients, the most frequent findings are chromosomal abnormalities and Y chromosome long arm microdeletions, which cause a primary severe spermatogenic impairment with classically increased levels of FSH. On the other hand, polymorphisms in the FSH receptor (FSHR) and FSH beta chain (FSHB) genes have been associated with different FSH plasma levels, due to variations in the receptor sensitivity (FSHR) or in the production of FSH from the pituitary gland (FSHB). Here, we describe an unusual patient with a combined genetic alteration (classic AZFc deletion of the Y chromosome and TT homozygosity for the -211G>T polymorphism in the FSHB gene (rs10835638)), presenting with cryptozoospermia, severe hypospermatogenesis, and normal LH and testosterone plasma concentrations, but low FSH levels. The patient partially benefitted from treatment with FSH (150 IU three times/week for 6 months) which allowed him to cryopreserve enough motile spermatozoa to be used for intracytoplasmic sperm injection. According to our knowledge, this is the first report of an infertile man with AZFc microdeletion with low FSH plasma concentrations related to homozygosity for the -211G>T polymorphism in the FSHB gene.
Collapse
Affiliation(s)
| | - Maurizio Merico
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Giuseppe Grande
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Antonella Di Mambro
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Cinzia Vinanzi
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Maria Santa Rocca
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Riccardo Selice
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Alberto Ferlin
- Department of Medicine, University of Padova, Padova, Italy
- Department of Systems Medicine, Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| |
Collapse
|
6
|
Fedder J, Fagerberg C, Jørgensen MW, Gravholt CH, Berglund A, Knudsen UB, Skakkebæk A. Complete or partial loss of the Y chromosome in an unselected cohort of 865 non-vasectomized, azoospermic men. Basic Clin Androl 2023; 33:37. [PMID: 38093178 PMCID: PMC10720143 DOI: 10.1186/s12610-023-00212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Structural abnormalities as well as minor variations of the Y chromosome may cause disorders of sex differentiation or, more frequently, azoospermia. This study aimed to determine the prevalence of loss of Y chromosome material within the spectrum ranging from small microdeletions in the azoospermia factor region (AZF) to complete loss of the Y chromosome in azoospermic men. RESULTS Eleven of 865 azoospermic men (1.3%) collected from 1997 to 2022 were found to have a karyotype including a 45,X cell line. Two had a pure 45,X karyotype and nine had a 45,X/46,XY mosaic karyotype. The AZF region, or part of it, was deleted in eight of the nine men with a structural abnormal Y-chromosome. Seven men had a karyotype with a structural abnormal Y chromosome in a non-mosaic form. In addition, Y chromosome microdeletions were found in 34 men with a structural normal Y chromosome. No congenital malformations were detected by echocardiography and ultrasonography of the kidneys of the 11 men with a 45,X mosaic or non-mosaic cell line. CONCLUSIONS In men with azoospermia, Y chromosome loss ranging from small microdeletions to complete loss of the Y chromosome was found in 6.1% (53/865). Partial AZFb microdeletions may give a milder testicular phenotype compared to complete AZFb microdeletions.
Collapse
Affiliation(s)
- J Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, Kløvervænget 23, DK-5000, Odense, Denmark.
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark.
- Fertility Clinic, Horsens Hospital, Horsens, Denmark.
| | - C Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - M W Jørgensen
- Department of Clinical Genetics, Lillebaelt Hospital, Vejle, Denmark
| | - C H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Berglund
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - U B Knudsen
- Fertility Clinic, Horsens Hospital, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Jiang W, Xie Q, Li X, Yang Y, Luan T, Ni D, Chen Y, Wang X, Zhao C, Ling X. Y chromosome AZFc microdeletion may have negative effect on embryo euploidy: a retrospective cohort study. BMC Med Genomics 2023; 16:324. [PMID: 38082270 PMCID: PMC10712062 DOI: 10.1186/s12920-023-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Embryo aneuploidy is a main of principal reason of pregnancy loss, in vitro fertilization (IVF) failure and birth defects in offspring. Previous researchs have demonstrated that Y chromosome AZFc microdeletion was associated with reproduction outcomes, however, the relationship between Y chromosome AZFc microdeletion and embryo aneuploidy remains unexplored. METHODS This retrospective cohort study enrolled 513 patients with 603 cycles in the reproductive center of Nanjing Maternity and Child Health Care Hospital from January 1, 2016 to June 30, 2022. The study cohort was divided into two groups: the AZFc microdeletion group, comprising 53 patients and 58 cycles, and the control group, comprising 460 patients and 545 cycles. Statistical methods including restricted cubic spline and generalized estimating equation (GEE) were employed to evaluate the relationship between Y chromosome AZFc microdeletion and embryo euploidy. RESULTS 294 and 2833 blastocysts were selected as AZFc microdeletion group and control group, respectively. Patients with Y chromosome AZFc microdeletion had significantly higher embryo aneuploid rate (33.0% vs. 27.3%, P < 0.05), lower rate of normal fertilization rate (81.5% vs. 90.3%, P < 0.05) and lower blastocysts formation rate (47.0% vs. 57.8%, P < 0.05) compared with the control group. However, no significant differences in pregnancy outcomes after euploid embryos transfer were observed between these two groups. CONCLUSIONS Our study underscored the association between Y chromosome AZFc microdeletion and an elevated risk of embryo aneuploidy. Before the conventional intracytoplasmic sperm injection (ICSI) treatment, couples with Y chromosome AZFc microdeletion should be apprised of the heightened susceptibility to embryo aneuploidy. Preimplantation genetic testing for aneuploidy (PGT-A) should be introduced for selection.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Qijun Xie
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Xin Li
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Ye Yang
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Danyu Ni
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Yuting Chen
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Xinyu Wang
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China
| | - Chun Zhao
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China.
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Tianfei Lane, Mochou Road, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
8
|
Eisenberg ML, Esteves SC, Lamb DJ, Hotaling JM, Giwercman A, Hwang K, Cheng YS. Male infertility. Nat Rev Dis Primers 2023; 9:49. [PMID: 37709866 DOI: 10.1038/s41572-023-00459-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Clinical infertility is the inability of a couple to conceive after 12 months of trying. Male factors are estimated to contribute to 30-50% of cases of infertility. Infertility or reduced fertility can result from testicular dysfunction, endocrinopathies, lifestyle factors (such as tobacco and obesity), congenital anatomical factors, gonadotoxic exposures and ageing, among others. The evaluation of male infertility includes detailed history taking, focused physical examination and selective laboratory testing, including semen analysis. Treatments include lifestyle optimization, empirical or targeted medical therapy as well as surgical therapies that lead to measurable improvement in fertility. Although male infertility is recognized as a disease with effects on quality of life for both members of the infertile couple, fewer data exist on specific quantification and impact compared with other health-related conditions.
Collapse
Affiliation(s)
- Michael L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sandro C Esteves
- ANDROFERT Andrology and Human Reproduction Clinic, Campinas, Brazil
- Division of Urology, Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Dolores J Lamb
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kathleen Hwang
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yu-Sheng Cheng
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Fu M, Chen M, Guo N, Lin M, Li Y, Huang H, Cai M, Xu L. Molecular genetic analysis of 1,980 cases of male infertility. Exp Ther Med 2023; 26:345. [PMID: 37383371 PMCID: PMC10294593 DOI: 10.3892/etm.2023.12044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/17/2023] [Indexed: 06/30/2023] Open
Abstract
The present study aimed to investigate the occurrence of chromosomal karyotype abnormalities and azoospermia factor (AZF) microdeletion on the long arm of the Y chromosome (Yq) in infertile men, and to determine their association with infertility to ultimately improve clinical outcomes in these patients. A total of 1,980 azoospermic and oligospermic men from the outpatient department of the Fujian Maternity and Child Health Hospital (Fuzhou, China) were recruited between January 2016 and December 2019. Peripheral blood was used for karyotype analysis; AZF microdeletion analysis of the Yq was performed using capillary electrophoresis. Among the 1,980 patients, 178 had chromosomal abnormalities (9.0%; 178/1,980), of whom 98 had an abnormal number of chromosomes. Among the abnormal karyotypes, the most common was 47, XXY (80/178; 44.9%). AZF microdeletion on the Yq occurred at a rate of 10.66% (211/1,980); the most common type was the AZFb/c deletion (sY1192; 140/211; 66.4%). The present findings showed that karyotype abnormalities and AZF gene microdeletion are important drivers of male infertility. Specifically, men with Yqh- and del(Y)(q11) had a higher risk of AZF microdeletion. These results suggested that patient treatment could be personalized based on routine molecular genetic analysis, which could further alleviate the economic and emotional burden of undergoing redundant or ineffective treatments.
Collapse
Affiliation(s)
- Meimei Fu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
10
|
Sun H, Yang Z, Teng Z, Zhang Y, Han Z, Xu C, Wang Z, Wang H, Wen H, Chen X, Qu C, Wang Y. DDX58 expression promotes inflammation and growth arrest in Sertoli cells by stabilizing p65 mRNA in patients with Sertoli cell-only syndrome. Front Immunol 2023; 14:1135753. [PMID: 37033952 PMCID: PMC10073560 DOI: 10.3389/fimmu.2023.1135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Sertoli cell -only syndrome (SCOS) is a type of testicular pathological failure that causes male infertility and no effective treatment strategy, is available for this condition. Moreover, the molecular mechanism underlying its development remains unknown. We identified DExD/H-Box helicase 58 (DDX58) as a key gene in SCOS based on four datasets of testicular tissue samples obtained from the Gene Expression Synthesis database. DDX58 was significantly upregulated in SCOS testicular Sertoli cells. Moreover, high expression of DDX58 was positively correlated with the expression of several testicular inflammatory factors, such as IL -1β, IL-18, and IL-6. Interestingly, DDX58 could be induced in the D-galactose (D-gal)-stimulated TM4 cell injury model. Whereas silencing of DDX58 inhibited D-gal -mediated p65 expression, inflammatory cytokine release, and growth arrest. Mechanistically, we found that DDX58 acts as an RNA-binding protein, which enhances p65 expression by promoting mRNA stability. Furthermore, p65 gene silencing decreased the expression of inflammatory cytokines and inhibition of cell growth in D-gal-induced cells. In conclusion, our findings demonstrate that DDX58 promotes inflammatory responses and growth arrest in SCOS Sertoli cells by stabilizing p65 mRNA. Accordingly, the DDX58/p65 regulatory axis might be a therapeutic target for SCOS.
Collapse
Affiliation(s)
- Hao Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhuang Wen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Chen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changbao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| |
Collapse
|
11
|
Wang J, Zhou Q, Ding J, Yin T, Ye P, Zhang Y. The Conceivable Functions of Protein Ubiquitination and Deubiquitination in Reproduction. Front Physiol 2022; 13:886261. [PMID: 35910557 PMCID: PMC9326170 DOI: 10.3389/fphys.2022.886261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Protein ubiquitination with general existence in virtually all eukaryotic cells serves as a significant post-translational modification of cellular proteins, which leads to the degradation of proteins via the ubiquitin-proteasome system. Deubiquitinating enzymes (DUBs) can reverse the ubiquitination effect by removing the ubiquitin chain from the target protein. Together, these two processes participate in regulating protein stability, function, and localization, thus modulating cell cycle, DNA repair, autophagy, and transcription regulation. Accumulating evidence indicates that the ubiquitination/deubiquitination system regulates reproductive processes, including the cell cycle, oocyte maturation, oocyte-sperm binding, and early embryonic development, primarily by regulating protein stability. This review summarizes the extensive research concerning the role of ubiquitin and DUBs in gametogenesis and early embryonic development, which helps us to understand human pregnancy further.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Qi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Chen T, Wang Y, Tian L, Guo X, Xia J, Wang Z, Song N. Aberrant Gene Expression Profiling in Men With Sertoli Cell-Only Syndrome. Front Immunol 2022; 13:821010. [PMID: 35833143 PMCID: PMC9273009 DOI: 10.3389/fimmu.2022.821010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Sertoli cell-only syndrome (SCOS) is the most severe and common pathological type of non-obstructive azoospermia. The etiology of SCOS remains largely unknown to date despite a handful of studies reported in this area. According to the gene expression of testicular tissue samples in six datasets from the Gene Expression Omnibus, we detected 1441 differentially expressed genes (DEGs) between SCOS and obstructive azoospermia (OA) testicular tissue samples. Enriched GO terms and KEGG pathways for the downregulated genes included various terms and pathways related to cell cycle and reproduction, while the enrichment for the upregulated genes yielded many inflammation-related terms and pathways. In accordance with the protein-protein interaction (PPI) network, all genes in the most critical module belonged to the downregulated DEGs, and we obtained nine hub genes, including CCNB1, AURKA, CCNA2, BIRC5, TYMS, UBE2C, CDC20, TOP2A, and OIP5. Among these hub genes, six were also found in the most significant SCOS-specific module obtained from consensus module analysis. In addition, most of SCOS-specific modules did not have a consensus counterpart. Based on the downregulated genes, transcription factors (TFs) and kinases within the upstream regulatory network were predicted. Then, we compared the difference in infiltrating levels of immune cells between OA and SCOS samples and found a significantly higher degree of infiltration for most immune cells in SCOS than OA samples. Moreover, CD56bright natural killer cell was significantly associated with six hub genes. Enriched hallmark pathways in SCOS had remarkably more upregulated pathways than the downregulated ones. Collectively, we detected DEGs, significant modules, hub genes, upstream TFs and kinases, enriched downstream pathways, and infiltrated immune cells that might be specifically implicated in the pathogenesis of SCOS. These findings provide new insights into the pathogenesis of SCOS and fuel future advances in its theranostics.
Collapse
Affiliation(s)
- Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linlin Tian
- Department of Microbiology Laboratory, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ninghong Song, ; Zengjun Wang,
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Kezhou People’s Hospital of Nanjing Medical University, Kezhou, China
- *Correspondence: Ninghong Song, ; Zengjun Wang,
| |
Collapse
|
13
|
Finelli R, Moreira BP, Alves MG, Agarwal A. Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:77-113. [DOI: 10.1007/978-3-030-89340-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Beverley R, Snook ML, Brieño-Enríquez MA. Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease. Front Cell Dev Biol 2021; 9:710033. [PMID: 34409039 PMCID: PMC8365356 DOI: 10.3389/fcell.2021.710033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi-protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in decreased fecundity and increased infertility and miscarriage rates with advancing maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize the human genetic studies which have identified genetic variants of cohesin proteins and the associated reproductive phenotypes including primary ovarian insufficiency, trisomy in offspring, and non-obstructive azoospermia. The association of cohesion defects with cancer predisposition and potential impact on aging are also described. Expansion of genetic testing within clinical medicine, with a focus on cohesin protein-related genes, may provide additional insight to previously unknown etiologies of disorders contributing to gamete exhaustion in females, and infertility and reproductive aging in both men and women.
Collapse
Affiliation(s)
- Rachel Beverley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L Snook
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Iijima M, Shigehara K, Igarashi H, Kyono K, Suzuki Y, Tsuji Y, Kobori Y, Kobayashi H, Mizokami A. Y chromosome microdeletion screening using a new molecular diagnostic method in 1030 Japanese males with infertility. Asian J Androl 2021; 22:368-371. [PMID: 31603142 PMCID: PMC7406102 DOI: 10.4103/aja.aja_97_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The azoospermia factor (AZF) region is important for spermatogenesis, and deletions within these regions are a common cause of oligozoospermia and azoospermia. Although several studies have reported this cause, the present research, to the best of our knowledge, is the first large-scale study assessing this factor in Japan. In this study, 1030 male patients with infertility who were examined for Y chromosome microdeletion using the polymerase chain reaction-reverse sequence-specific oligonucleotide (PCR-rSSO) method, a newly developed method for Y chromosome microdeletion screening, were included. The study enrolled 250 patients with severe oligospermia and 717 patients with azoospermia. Among the 1030 patients, 4, 4, 10, and 52 had AZFa, AZFb, AZFb+c, and AZFc deletions, respectively. The sperm recovery rate (SRR) of microdissection testicular sperm extraction in patients with AZFc deletions was significantly higher than that in those without AZF deletions (60.0% vs 28.7%, P = 0.04). In patients with gr/gr deletion, SRR was 18.7%, which was lower than that in those without gr/gr deletion, but was not statistically significant. In conclusion, our study showed that the frequency of Y chromosome microdeletion in male patients in Japan was similar to that reported in patients from other countries, and SRR was higher in patients with AZFc deletion.
Collapse
Affiliation(s)
- Masashi Iijima
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | | | - Koichi Kyono
- Kyono ART Clinic, Takanawa, Tokyo 108-0074, Japan
| | - Yasuo Suzuki
- Suzuki Lady's Hospital, Kanazawa 921-8033, Japan
| | - Yuji Tsuji
- Ebisu Tsuji Clinic, Tokyo 150-0021, Japan.,Tenjin Tsuji Clinic, Fukuoka 810-0001, Japan
| | - Yoshitomo Kobori
- Dokkyo Medical University Koshigaya Hospital, Saitama 343-8555, Japan
| | - Hideyuki Kobayashi
- Department of Urology, Faculty of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| |
Collapse
|
16
|
Zhang L, Mao JM, Li M, Lian Y, Lin SL, Chen LX, Yan LY, Qiao J, Liu P. Poor intracytoplasmic sperm injection outcome in infertile males with azoospermia factor c microdeletions. Fertil Steril 2021; 116:96-104. [PMID: 33745721 DOI: 10.1016/j.fertnstert.2021.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To explore whether the presence of azoospermia factor c (AZFc) microdeletions adversely affects intracytoplasmic sperm injection (ICSI) outcome. DESIGN Retrospective cohort. SETTING University hospital. PATIENT(S) A total of 293 patients with azoospermia or severe oligozoospermia AZFc deletions underwent 345 ICSI cycles, and 363 idiopathic patients with normal Y chromosome underwent 462 ICSI cycles. INTERVENTION(S) Testicular sperm aspiration, microdissection testicular sperm extraction. MAIN OUTCOME MEASURE(S) The main clinical outcome parameters were cumulative clinical pregnancy rate, cumulative live birth delivery rate, and no embryo suitable for transfer cycle rate. RESULT(S) Compared with the control group, the AZFc deletion group exhibited poorer ICSI outcome, with significant differences between the 2 groups for cumulative clinical pregnancy rate (45.39% vs. 67.49%; odds ratio [OR], 2.843; 95% confidence interval [CI]), cumulative live birth delivery rate (35.15% vs. 53.44%; OR, 2.234; 95% CI), no embryo suitable for transfer cycle rate (15.07% vs. 8.23%; OR, 0.565; 95% CI), fertilization rate (46.80% vs. 53.37%; adjusted β, -0.074; 95% CI), implantation rate (28.63% vs. 31.26%; adjusted β, -0.075; 95% CI) separately. The poor ICSI outcome of the AZFc deletion group was related to AZFc microdeletions by linear and logistic regression analyses. CONCLUSION(S) AZFc microdeletions adversely affect ICSI outcome; patients with AZFc deletion should be informed that they have reduced opportunities to be biological fathers.
Collapse
Affiliation(s)
- Li Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Jia-Ming Mao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Ming Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Sheng-Li Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Li-Xue Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Li-Ying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China; Beijing Advanced Innovation Center for Genomics, Beijing 100871, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| |
Collapse
|
17
|
Abstract
Infertility affects approximately 15% of couples. With infertility such a common problem in a generally healthy age group, complete evaluation is needed of both men and women. Infertility work up for men includes a semen analysis, the results of which suggest various supplemental studies, including karyotype. Karyotype is indicated when a patient has findings on history or physical exam concerning for chromosomal abnormalities, azoospermia, or severe oligospermia (count <5 million/mL). The most common chromosomal numerical abnormality found on karyotype is Klinefelter syndrome which is classified as redundant sex chromosomes, with the most common chromosomal arrangement being 47, XXY. If a patient is found to have a chromosomal abnormality such as Klinefelter’s, there is still a chance of fertility using testicular sperm extraction and in-vitro fertilization.
Collapse
Affiliation(s)
- Gavin D Stormont
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher M Deibert
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Witherspoon L, Dergham A, Flannigan R. Y-microdeletions: a review of the genetic basis for this common cause of male infertility. Transl Androl Urol 2021; 10:1383-1390. [PMID: 33850774 PMCID: PMC8039600 DOI: 10.21037/tau-19-599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human Y-chromosome contains genetic material responsible for normal testis development and spermatogenesis. The long arm (Yq) of the Y-chromosome has been found to be susceptible to self-recombination during spermatogenesis predisposing this area to deletions. The incidence of these deletions is estimated to be 1/4,000 in the general population but has been found to be much higher in infertile men. Currently, Y-microdeletions are the second most commonly identified genetic cause of male infertility after Klinefelter syndrome. This has led to testing for these deletions becoming standard practice in men with azoospermia and severe oligospermia. There are three commonly identified Y-microdeletions in infertile males, termed azoospermia factor (AZF) microdeletions AZFa, AZFb and AZFc. With increased understanding and investigation of this genetic basis for infertility a more comprehensive understanding of these deletions has evolved, with several other deletion subtypes being identified. Understanding the genetic basis and pathology behind these Y-microdeletions is essential for any clinician involved in reproductive medicine. In this review we discuss the genetic basis of Y-microdeletions, the various subtypes of deletions, and current technologies available for testing. Our understanding of this issue is evolving in many areas, and in this review we highlight future testing opportunities that may allow us to stratify men with Y-microdeletion associated infertility more accurately
Collapse
Affiliation(s)
- Luke Witherspoon
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Ali Dergham
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
19
|
Yuen W, Golin AP, Flannigan R, Schlegel PN. Histology and sperm retrieval among men with Y chromosome microdeletions. Transl Androl Urol 2021; 10:1442-1456. [PMID: 33850779 PMCID: PMC8039602 DOI: 10.21037/tau.2020.03.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this review of Y chromosome microdeletions, azoospermia factor (AZF) deletion subtypes, histological features and microTESE sperm retrieval rates are summarized after a systematic literature review. PubMed was searched and papers were identified using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Approximately half of infertile couples have a male factor contributing to their infertility. One of the most common genetic etiologies are Y chromosome microdeletions. Men with Y chromosome microdeletions may have rare sperm available in the ejaculate or undergo surgical sperm retrieval and subsequent intracytoplasmic sperm injection to produce offspring. Azoospermia or severe oligozoospermia are the most common semen analysis findings found in men with Y chromosome microdeletions, associated with impaired spermatogenesis. Men with complete deletions of azoospermia factor a, b, or a combination of any loci have severely impaired spermatogenesis and are nearly always azoospermic with no sperm retrievable from the testis. Deletions of the azoospermia factor c or d often have sperm production and the highest likelihood of a successful sperm retrieval. In men with AZFc deletions, histologically, 46% of men demonstrate Sertoli cell only syndrome on biopsy, whereas 38.2% have maturation arrest and 15.7% have hypospermatogenesis. The microTESE sperm retrieval rates in AZFc-deleted men range from 13-100% based on the 32 studies analyzed, with a mean sperm retrieval rate of 47%.
Collapse
Affiliation(s)
- Wallace Yuen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew P Golin
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Peter N Schlegel
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Pelzman DL, Hwang K. Genetic testing for men with infertility: techniques and indications. Transl Androl Urol 2021; 10:1354-1364. [PMID: 33850771 PMCID: PMC8039607 DOI: 10.21037/tau-19-725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic testing is an integral component in the workup of male infertility as genetic conditions may be responsible for up to 15% of all cases. Currently, three genetic tests are commonly performed and recommended by major urologic associations: karyotype analysis (KA), Y-chromosome microdeletion testing, and CFTR mutation testing. Despite widespread adoption of these tests, an etiology for infertility remains elusive in up to 80% of cases. Recent work has identified intriguing new targets for genetic testing which may soon see clinical relevance. This review will discuss the indications and techniques for currently offered genetic tests and briefly explore ongoing research directions within this field.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Garolla A, Pizzol D, Carosso AR, Borini A, Ubaldi FM, Calogero AE, Ferlin A, Lanzone A, Tomei F, Engl B, Rienzi L, De Santis L, Coticchio G, Smith L, Cannarella R, Anastasi A, Menegazzo M, Stuppia L, Corsini C, Foresta C. Practical Clinical and Diagnostic Pathway for the Investigation of the Infertile Couple. Front Endocrinol (Lausanne) 2021; 11:591837. [PMID: 33542705 PMCID: PMC7851076 DOI: 10.3389/fendo.2020.591837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Capsule This expert opinion summarizes current knowledge on risk factors for infertility and identifies a practical clinical and diagnostic approach for the male and female partners of an infertile couple aimed to improve the investigation and management of fertility problems. Background Infertility represents an important and growing health problem affecting up to 16% of couples worldwide. In most cases, male, female, or combined factor can be identified, and different causes or risk factors have been related to this condition. However, there are no standardized guidelines on the clinical-diagnostic approach of infertile couples and the recommendations concerning infertility are sometimes lacking, incomplete, or problematic to apply. Objective The aim of this work is to provide an appropriate clinical and diagnostic pathway for infertile couples designed by a multidisciplinary-team of experts. The rationale is based on the history and physical examination and then oriented on the basis of initial investigations. This approach could be applied in order to reduce variation in practice and to improve the investigation and management of fertility problems. Methods Prominent Italian experts of the main specialties committed in the ART procedures, including gynecologists, andrologists, embryologists, biologists, geneticists, oncologists, and microbiologists, called "InfertilItaly group", used available evidence to develop this expert position. Outcomes Starting from the individuation of the principal risk factors that may influence the fertility of females and males and both genders, the work group identified most appropriate procedures using a gradual approach to both partners aimed to obtain a precise diagnosis and the most effective therapeutic option, reducing invasive and occasionally redundant procedures. Conclusions This expert position provides current knowledge on risk factors and suggests a diagnostic workflow of infertile couples. By using this step-by-step approach, health care workers involved in ART, may individuate a practical clinical management of infertile couples shared by experts.
Collapse
Affiliation(s)
- Andrea Garolla
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Damiano Pizzol
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
- Italian Agency for Development Cooperation, Public Health, Jerusalem, Israel
| | - Andrea Roberto Carosso
- Department of Surgical Sciences, Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, University of Torino, Torino, Italy
| | - Andrea Borini
- 9.baby, Family and Fertility Center, Tecnobios Procreazione, Bologna, Italy
| | | | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Lanzone
- Department of Woman’s Health Sciences of the Child and Public Health, Unit of Obstetrics Pathology, University Clinic Foundation “A Gemelli” IRCCS, Rome, Italy
- Clinic of Obstetrics and Gynecology, Catholic University Sacro Cuore, Rome, Italy
| | - Francesco Tomei
- Assisted Reproductive Unit, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Bruno Engl
- Donna Salus, Center for Women’s Health and Fertility, Bolzano, Italy
| | - Laura Rienzi
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Lucia De Santis
- IVF Unit, Gynaecological-Obstetric Department, IRCCS San Raffaele Hospital, Vita-Salute University, Milan, Italy
- Italian Society of Embryology, Reproduction and Research (SIERR), Giarre, Italy
| | - Giovanni Coticchio
- 9.baby, Family and Fertility Center, Tecnobios Procreazione, Bologna, Italy
| | - Lee Smith
- The Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Attilio Anastasi
- Center for Physiopathology of Human Reproduction, Delta Hospital, Lagosanto, Italy
| | - Massimo Menegazzo
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Christian Corsini
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Ortac M, Ergul R, Gurcan M, Kalayci T, Palanduz S, Aydin R, Kadıoğlu A. Indication for Y Chromosome Microdeletion Analysis in Infertile Men: Is a New Sperm Concentration Threshold Needed? Urology 2020; 146:113-117. [PMID: 33031841 DOI: 10.1016/j.urology.2020.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To describe the prevalence of Y-chromosome deletions in patients with a sperm concentration of less than 5 million/mL. To also determine a new sperm threshold for Y-chromosome analysis in men with infertility. METHODS A total of 3023 patients who had a semen concentration of less than 5 million/mL included in this retrospective study. All of these patients had a genetic evaluation, hormonal evaluation, and 2 abnormal semen analyses. RESULTS Y-chromosome deletions were present in 116 (3.8 %) patients with sperm concentration <5 million/mL. The frequency of a Y-chromosome deletions was 6.8%, 1.0%, 0.15% in azoospermic men, in men with sperm concentrations of 0-1 million /mL, in men with sperm concentrations of 1-5 million/mL. Patients were divided into 2 groups regarding the determined new sperm threshold. The sensitivity and specificity of the Y-chromosome deletions test were 92.2.7% and 49.3 %, 99.1%, and 22.1% in patients with azoospermia and sperm concentrations <1 million/mL, respectively. If the sperm concentration thresholds of azoospermia or <1 million/mL, are applied, the number of tests decreased to 50.5% (1442 tests) and 23.1% (643 tests), respectively. Approximately $108,150 and $48,225 would be saved if the sperm thresholds were azoospermia and <1 million/mL, respectively CONCLUSION: The current threshold of sperm concentration for Y-chromosome deletions is controversial. The new proposed sperm threshold for genetic testing of 1 million/mL would increase sensitivity and more cost-effective compared to the current threshold.
Collapse
Affiliation(s)
- Mazhar Ortac
- Istanbul University, Istanbul Faculty of Medicine, Urology Department, Istanbul, Turkey.
| | - Rifat Ergul
- Istanbul University, Istanbul Faculty of Medicine, Urology Department, Istanbul, Turkey
| | - Mehmet Gurcan
- Istanbul University, Istanbul Faculty of Medicine, Urology Department, Istanbul, Turkey
| | - Tugba Kalayci
- Istanbul University, Istanbul Faculty of Medicine, Internal Medicine Department, Medical Genetics Division, Istanbul, Turkey
| | - Sukru Palanduz
- Istanbul University, Istanbul Faculty of Medicine, Internal Medicine Department, Medical Genetics Division, Istanbul, Turkey
| | - Resat Aydin
- Istanbul University, Istanbul Faculty of Medicine, Urology Department, Istanbul, Turkey
| | - Ateş Kadıoğlu
- Istanbul University, Istanbul Faculty of Medicine, Urology Department, Istanbul, Turkey
| |
Collapse
|
23
|
Sharma A, Halder A, Kaushal S, Jain M. Intra-individual Genomic Variation Analysis in Tissues (Blood vs. Testis) Through SNP Microarray: A Case Report of Two Patients with Idiopathic Sertoli Cell Only Syndrome (SCOS). J Reprod Infertil 2020; 21:308-311. [PMID: 33209739 PMCID: PMC7648869 DOI: 10.18502/jri.v21i4.4325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Inflammatory responses within the peritoneal cavity may result in endometrial dysfunction in women with endometriosis. The true causes of this disease remain poorly understood. It is hypothesized that downstream toll-like receptors (TLRs) inflammatory cytokines in response to pathogens may be associated with endometriosis. So, this study was aimed at evaluating the expression of TLRs signaling and endometriosis-associated inflammatory responses. Methods: Totally, 20 infertile endometriosis patients and 20 normal women undergoing controlled ovarian stimulation were enrolled. The cellular pellet and supernatant were obtained by centrifugation of follicular fluid (FF). Evaluation of TLRs and their signaling pathway gene expression was performed on cellular pellets using quantitative-PCR. The supernatant was used for determination of cytokine protein expression by ELISA. The results are expressed as mean±SEM and a p<0.05 was considered statistically significant. Results: Quantitative-PCR analysis suggested that TLR1, 5, 6, 7, 8, 10, MYD88, NF-ĸB, IL-10 and TGF-β genes expression significantly increased in patients compared to the control group (p<0.05). TLR3, 9, INF-β genes expression was significantly lower in endometriosis than control group (p<0.05). There was no significant difference in the expression of TLR2, TLR4, TIRAP, TRIF, TRAM, and IRF3 between two groups. Also, significant increase in the levels of IL-6, IL-8 and MIF protein in FF of endometriosis group was detected in comparison with normal women (p<0.05). Conclusion: The expression of TLR downstream signaling in the follicular cells can initiate inflammatory responses and changes in the FF cytokine profile which in turn may induce endometriosis and infertility disorder.
Collapse
Affiliation(s)
- Aiyush Sharma
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Halder
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Jain
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Peng Y, Ouyang L, Lin Z, Zhang F, Wang H, Guan J. MRI findings of nonobstructive azoospermia: lesions in and out of pelvic cavity. Abdom Radiol (NY) 2020; 45:2213-2224. [PMID: 31552463 DOI: 10.1007/s00261-019-02232-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonobstructive azoospermia (NOA) can be caused by various diseases, including congenital disorders, endocrine disorders, infections, tumor or tumor-like diseases, vascular diseases, etc. Diagnosis of the underlying cause of NOA is complicated and challenging. In this study, we introduce an MR examination protocol for the etiological diagnosis of NOA, and demonstrate a series of NOA patients with different causes and imaging findings. Except for lesions of testes, the patients may also combine abnormalities of adrenal glands and central nervous system. In such cases, the patients could benefit from additional abdominal and intracranial scans.
Collapse
Affiliation(s)
- Yang Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshanerlu Road, Guangzhou, Guangdong, People's Republic of China
| | - Longyuan Ouyang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshanerlu Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhi Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshanerlu Road, Guangzhou, Guangdong, People's Republic of China
| | - Fan Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshanerlu Road, Guangzhou, Guangdong, People's Republic of China
| | - Huanjun Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshanerlu Road, Guangzhou, Guangdong, People's Republic of China
| | - Jian Guan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshanerlu Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Yamaguchi K, Ishikawa T, Mizuta S, Takeuchi T, Matsubayashi H, Kokeguchi S, Habara T, Ichioka K, Ohashi M, Okamoto S, Kawamura T, Kanto S, Taniguchi H, Tawara F, Hara T, Hibi H, Masuda H, Matsuyama T, Yoshida H. Clinical outcomes of microdissection testicular sperm extraction and intracytoplasmic sperm injection in Japanese men with Y chromosome microdeletions. Reprod Med Biol 2020; 19:158-163. [PMID: 32273821 PMCID: PMC7138942 DOI: 10.1002/rmb2.12317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023] Open
Abstract
PURPOSE We investigated the clinical results of Japanese men with Y chromosome microdeletions. METHODS This study retrospectively examined 2163 azoospermic or severe oligozoospermic patients. We investigated the frequency of azoospermia factor (AZF) deletions and sperm retrieval rate (SRR) by microTESE in patients with these deletions, then analyzed the ICSI outcomes. RESULTS Azoospermia factor deletions were found in 201 patients. SRR was significantly higher than that of the control group (74.0% vs 20.4%, P < .001). Thirty-three couples underwent ICSI using testicular spermatozoa retrieved by microTESE, and eight couples underwent ICSI using ejaculatory spermatozoa. The fertilization rate and clinical pregnancy rate per embryo transfer cycle were significantly higher in the ejaculatory group than that of the testicular group (66.4% vs 43.7%, P < .001, 53.3% vs 24.7%, P = .03, respectively). When compared with the control group, the fertilization rate was significantly lower in the testicular group with AZFc microdeletions (43.7% vs 53.6%, P < .001). CONCLUSIONS Our study highlights that although microTESE in azoospermic men with AZFc microdeletions led to a higher SRR, ICSI outcomes of these men were worse than that of men without AZF deletions, even if testicular spermatozoa were retrieved.
Collapse
Affiliation(s)
| | | | - Shimpei Mizuta
- Division of InfertilityReproduction Clinic OsakaOsakaJapan
| | - Takumi Takeuchi
- Division of InfertilityReproduction Clinic OsakaOsakaJapan
- Kyono ART Clinic TakanawaTokyoJapan
| | | | | | | | | | | | - Sumihide Okamoto
- Obstetrics and GynecologyART Okamoto Women's ClinicNagasakiJapan
| | | | | | | | | | - Tetsuaki Hara
- Division of Reproductive MedicineHiroshima Prefectural HospitalHiroshimaJapan
| | - Hatsuki Hibi
- Division of UrologyKyoritsu General HospitalAichiJapan
| | | | | | | |
Collapse
|
26
|
Re: Taylor P. Kohn, Jaden R. Kohn, Ryan C. Owen, R. Matthew Coward. The Prevalence of Y-chromosome Microdeletions in Oligozoospermic Men: A Systematic Review and Meta-analysis of European and North American Studies. Eur Urol 2019;76:626-36: Indication for Y Chromosome Microdeletion Analysis in Infertile Men Should Not be Based Merely on Sperm Concentration. Eur Urol 2020; 77:e96-e97. [PMID: 31980313 DOI: 10.1016/j.eururo.2020.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
|
27
|
Sujit KM, Singh V, Trivedi S, Singh K, Gupta G, Rajender S. Increased DNA methylation in the spermatogenesis-associated (SPATA) genes correlates with infertility. Andrology 2020; 8:602-609. [PMID: 31838782 DOI: 10.1111/andr.12742] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Spermatogenesis-associated (SPATA) family of genes plays important roles in spermatogenesis, sperm maturation or fertilization. The knockout studies in mice have demonstrated that SPATA genes are crucial for fertility. Gene expression and genetic polymorphism studies have further suggested their correlation with infertility; however, methylation analysis of SPATA genes in human male infertility has not yet been undertaken. OBJECTIVES To analyze the methylation status of SPATA4, SPATA5 and SPATA6 genes in oligozoospermic male infertility. MATERIALS AND METHODS In the present study, we have analyzed DNA methylation pattern in the promoter regions of SPATA4, SPATA5 and SPATA6 genes in oligozoospermic patients and compared it with normozoospermic fertile controls. Semen samples were obtained from 30 oligozoospermic infertile and 19 normozoospermic fertile controls, and DNA methylation levels of the target gene promoters were analyzed by amplicon based deep sequencing methylation analysis using MiSeq. RESULTS SPATA4 (P < 0.0008), SPATA5 (P = 0.009) and SPATA6 (Promoter, P < 0.0005; Exon 1, P = 0.0128) genes were significantly hypermethylated in oligozoospermic patients in comparison to controls. This is the first study reporting a higher methylation in the promoters of SPATA4, SPATA5 and SPATA6 in oligozoospermic infertile individuals in comparison to the normozoospermic fertile controls. DISCUSSION Altered methylation of SPATA genes would affect pathways involved in sperm production or affect various processes linked to sperm fertility. CONCLUSION In conclusion, hypermethylation in the SPATA4, SPATA5 and SPATA6 genes correlates with oligozoospermic infertility.
Collapse
Affiliation(s)
| | - Vertika Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Sameer Trivedi
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Kiran Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Gopal Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| |
Collapse
|
28
|
Golin AP, Neil S, Flannigan R. Case - Severely oligozoospermic patient with both mosaic Klinefelter syndrome and a complete azoospermia factor c (AZFc) Y chromosome microdeletion. Can Urol Assoc J 2019; 14:E224-E226. [PMID: 31793865 DOI: 10.5489/cuaj.6255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew P Golin
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Neil
- Olive Fertility Centre, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Weill Cornell Medicine, Department of Urology, New York, NY, United States
| |
Collapse
|
29
|
Case of Inherited Partial AZFa Deletion without Impact on Male Fertility. Case Rep Genet 2019; 2019:3802613. [PMID: 31781421 PMCID: PMC6874946 DOI: 10.1155/2019/3802613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
Male factor infertility accounts for 40–50% of all infertility cases. Deletions of one or more AZF region parts in chromosome Y are one of the most common genetic causes of male infertility. Usually full or partial AZF deletions, including genes involved in spermatogenesis, are associated with spermatogenic failure. Here we report a case of a Caucasian man with partial AZFa region deletion from a couple with secondary infertility. Partial AZFa deletion, involving part of USP9Y gene appears to be benign, as we proved transmission from father to son. According to our results, it is recommended to revise guidelines on markers selected for testing of AZFa region deletion, to be more selective against DDX3Y gene and exclude probably benign microdeletions involving only USP9Y gene.
Collapse
|
30
|
Thirumavalavan N, Gabrielsen JS, Lamb DJ. Where are we going with gene screening for male infertility? Fertil Steril 2019; 111:842-850. [PMID: 31029238 DOI: 10.1016/j.fertnstert.2019.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/11/2023]
Abstract
Male infertility is a heterogenous disease process requiring the proper functioning and interaction of thousands of genes. Given the number of genes involved, it is thought that genetic causes contribute to most cases of infertility. Identifying these causes, however, is challenging. Infertility is associated with negative health outcomes, such as cancer, highlighting the need to further understand the genetic underpinnings of this condition. This paper describes the genetic and genomic tests currently available to identify the etiology of male infertility and then will discuss emerging technologies that may facilitate diagnosis and treatment of in the future.
Collapse
Affiliation(s)
| | | | - Dolores J Lamb
- Department of Urology, Center for Reproductive Genomics and Caryle and Israel Englander, Institute for Precision Medicine, Weill Cornell School of Medicine, New York, New York.
| |
Collapse
|
31
|
Kohn TP, Kohn JR, Owen RC, Coward RM. The Prevalence of Y-chromosome Microdeletions in Oligozoospermic Men: A Systematic Review and Meta-analysis of European and North American Studies. Eur Urol 2019; 76:626-636. [PMID: 31400948 DOI: 10.1016/j.eururo.2019.07.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
CONTEXT European and North American guidelines recommend Y-chromosome microdeletion (YCM) screening in azoospermic and oligozoospermic men with sperm concentrations of <5 million sperm/ml; however, numerous studies have suggested that YCMs are rare when sperm concentrations are >1 million sperm/ml. OBJECTIVE We systematically reviewed and meta-analyzed European and North American studies to determine the prevalence of a complete YCM in oligozoospermic men with sperm concentrations of >0-1, >1-5, and >5-20 million sperm/ml, and to determine whether 1 or 5 million sperm/ml is the most appropriate sperm concentration threshold for YCM screening. EVIDENCE ACQUISITION A systematic review of MEDLINE, EMBASE, Cochrane Library, and ClinicalTrials.gov was performed for studies assessing the prevalence of a complete YCM in oligozoospermic men in European and North American studies. EVIDENCE SYNTHESIS Thirty-seven studies were identified during a systematic review (n = 12 492 oligozoospermic men). All complete YCMs in oligozoospermic men were AZFc microdeletions. Eighteen studies contained data conducive to meta-analysis (n = 10 866 men). Comparing the pooled estimated prevalence by sperm concentration, complete YCMs were significantly more common in men with sperm concentrations of >0-1 million sperm/ml (5.0% [95% confidence interval {CI}: 3.6-6.8%]) versus >1-5 million sperm/ml (0.8% [95% CI: 0.5-1.3%], p < 0.001). YCMs were similar in men with sperm concentrations of >1-5 and >5-20 million sperm/ml (0.8% [95% CI: 0.5-1.3%] vs 0.5% [95% CI: 0.2-0.9%], p = 0.14). CONCLUSIONS In Europe and North America, the majority of YCMs occur in men with sperm concentrations of ≤1 million sperm/ml, with <1% identified in men with >1 million sperm/ml. Male infertility guidelines for North America and Europe should reconsider the sperm concentration screening thresholds to recommend testing for YCMs only for men with sperm concentrations of <1 million sperm/ml. PATIENT SUMMARY Complete Y-chromosome microdeletions (YCMs) are rare in men with >1 million sperm/ml. Routine screening for YCMs should occur only if sperm concentration is ≤1 million sperm/ml.
Collapse
Affiliation(s)
- Taylor P Kohn
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jaden R Kohn
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Owen
- Department of Urology, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA
| | - R Matthew Coward
- Department of Urology, University of North Caroline School of Medicine, Chapel Hill, NC, USA; UNC Fertility LLC, Raleigh, NC, USA
| |
Collapse
|
32
|
Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527-535. [DOI: 10.1111/andr.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- M. K. Das
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
- Department of Molecular Medicine, Faculty of Medicine; University of Oslo; Oslo Norway
| | - L. Kleppa
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| | - T. B. Haugen
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| |
Collapse
|
33
|
Sciarra F, Pelloni M, Faja F, Pallotti F, Martino G, Radicioni AF, Lenzi A, Lombardo F, Paoli D. Incidence of Y chromosome microdeletions in patients with Klinefelter syndrome. J Endocrinol Invest 2019; 42:833-842. [PMID: 30499012 DOI: 10.1007/s40618-018-0989-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE The aim of this study was to study the incidence of Y chromosome microdeletions in a Caucasian population of Klinefelter syndrome (KS) patients and to investigate the possible association between Y chromosome microdeletions and KS. MATERIALS AND METHODS We conducted a retrospective study on 118 KS patients, 429 patients with non-obstructive azoospermia (NOA), and 155 normozoospermic men. Eight of the 118 KS patients had undergone testicular sperm extraction (TESE). All patients underwent semen examination and Y chromosome microdeletions evaluated by PCR, using specific sequence tagged site (STS) primer sets, which spanned the azoospermia factor AZFa, AZFb, and AZFc regions of the Y chromosome. RESULTS Semen analysis of the KS group revealed: 1 patient with oligozoospermia, 1 with severe oligoasthenoteratozoospermia, 2 with cryptozoospermia, and 114 with azoospermia. Eight of the 114 azoospermic KS patients underwent TESE, and spermatozoa were recovered from three of these, all of whom had non-mosaic karyotype 47, XXY. 10.7% of the NOA patients presented AZF microdeletions. In 429 cases with NOA, 8 cases had AZFa + b + c deletion, 6 cases had AZF b + c deletion, 4 cases had AZFa microdeletion, 8 cases had AZFb microdeletion, and 20 cases had AZFc microdeletion. Just one KS patient (0.8%) presented microdeletion in the AZFc region. CONCLUSION The percentage of microdeletions in KS patients was lower than in NOA patients, suggesting that AZF microdeletions and KS do not have a causal relationship and that Y chromosome microdeletions are not a genetic factor linked to KS.
Collapse
Affiliation(s)
- F Sciarra
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - M Pelloni
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - F Faja
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - F Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - G Martino
- Department of Surgical Sciences "R. Paolucci", "Sapienza" University of Rome, Rome, Italy
| | - A F Radicioni
- Hormone Laboratory, Department of Experimental Medicine, Medical Pathophysiology Section, "Sapienza" University of Rome, Rome, Italy
| | - A Lenzi
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - F Lombardo
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
34
|
Ferlin A, Dipresa S, Delbarba A, Maffezzoni F, Porcelli T, Cappelli C, Foresta C. Contemporary genetics-based diagnostics of male infertility. Expert Rev Mol Diagn 2019; 19:623-633. [DOI: 10.1080/14737159.2019.1633917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia, Brescia, Italy
| | - Savina Dipresa
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Andrea Delbarba
- Unit of Endocrinology and Metabolism, Department of Medicine, ASST Spedali Civili Brescia, Brescia, Italy
| | - Filippo Maffezzoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Teresa Porcelli
- Endocrinology, Montichiari Hospital, ASST Spedali Civili Brescia, Montichiari, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia, Brescia, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Abstract
The term primary gonadal failure encompasses not only testicular insufficiency in 46,XY males and ovarian insufficiency in 46,XX females, but also those disorders of sex development (DSD) which result in gender assignment that is at variance with the genotype and gonadal type. In boys, causes of gonadal failure include Klinefelter and other aneuploidy syndromes, bilateral cryptorchidism, testicular torsion, and forms of 46,XY DSD such as partial androgen insensitivity. Causes in girls include Turner syndrome and other aneuploidies, galactosemia, and autoimmune ovarian failure. Iatrogenic causes in both boys and girls include the late effects of childhood cancer treatment, total body irradiation prior to bone marrow transplantation, and iron overload in transfusion-dependent thalassaemia. In this paper, a brief description of the physiology of testicular and ovarian development is followed by a section on the causes and practical management of gonadal impairment in boys and girls. Protocols for pubertal induction and post-pubertal hormone replacement - intramuscular, oral and transdermal testosterone in boys; oral and transdermal oestrogen in girls - are then given. Finally, current and future strategies for assisted conception and fertility preservation are discussed.
Collapse
Affiliation(s)
- Asmahane Ladjouze
- Faculté de Médecine d'Alger, Service de Pédiatrie, Centre Hospitalo-Universitaire Bad El Oued, 1 Boulevard Said Touati, Algiers, Algeria.
| | - Malcolm Donaldson
- Section of Child Health, School of Medicine, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, United Kingdom.
| |
Collapse
|
36
|
Rani DS, Rajender S, Pavani K, Chaubey G, Rasalkar AA, Gupta NJ, Deendayal M, Chakravarty B, Thangaraj K. High frequencies of Non Allelic Homologous Recombination (NAHR) events at the AZF loci and male infertility risk in Indian men. Sci Rep 2019; 9:6276. [PMID: 31000748 PMCID: PMC6472346 DOI: 10.1038/s41598-019-42690-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
Deletions in the AZoospermia Factor (AZF) regions (spermatogenesis loci) on the human Y chromosome are reported as one of the most common causes of severe testiculopathy and spermatogenic defects leading to male infertility, yet not much data is available for Indian infertile men. Therefore, we screened for AZF region deletions in 973 infertile men consisting of 771 azoospermia, 105 oligozoospermia and 97 oligoteratozoospermia cases, along with 587 fertile normozoospermic men. The deletion screening was carried out using AZF-specific markers: STSs (Sequence Tagged Sites), SNVs (Single Nucleotide Variations), PCR-RFLP (Polymerase Chain Reaction - Restriction Fragment Length Polymorphism) analysis of STS amplicons, DNA sequencing and Southern hybridization techniques. Our study revealed deletion events in a total of 29.4% of infertile Indian men. Of these, non-allelic homologous recombination (NAHR) events accounted for 25.8%, which included 3.5% AZFb deletions, 2.3% AZFbc deletions, 6.9% complete AZFc deletions, and 13.1% partial AZFc deletions. We observed 3.2% AZFa deletions and a rare long AZFabc region deletion in 0.5% azoospermic men. This study illustrates how the ethnicity, endogamy and long-time geographical isolation of Indian populations might have played a major role in the high frequencies of deletion events.
Collapse
Affiliation(s)
- Deepa Selvi Rani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Kadupu Pavani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Nalini J Gupta
- Institute of Reproductive Medicine, Salt Lake, Kolkata, India
| | | | | | | |
Collapse
|
37
|
Liu T, Song YX, Jiang YM. Early detection of Y chromosome microdeletions in infertile men is helpful to guide clinical reproductive treatments in southwest of China. Medicine (Baltimore) 2019; 98:e14350. [PMID: 30702623 PMCID: PMC6380789 DOI: 10.1097/md.0000000000014350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The microdeletions of azoospermia factor (AZF) genes in Y chromosome are greatly associated with male infertility, which is also known as the second major genetic cause of spermatogenetic failure. Accumulating studies demonstrate that the different type of AZF microdeletions in patients reflect different clinical manifestations. Therefore, a better understanding of Y chromosome microdeletions might have broad implication for men health. In this study, we sought to determine the frequency and the character of different Y chromosome microdeletion types in infertile men in southwest of China.In total, 1274 patients with azoospermia and oligozoospermia were recruited in southwest of China and screening for Y chromosome microdeletions in AZF regions by multiplex polymerase chain reaction.The incidence of AZF microdeletions in southwest of China is 12.87%, which is higher than the national average. Further investigations unveiled that azoospermia factor c (AZFc) is the most frequent type of all the AZF microdeletions. Additionally, the number and also the quality of sperm in patients with AZFc microdeletion is decreasing with the age. Therefore, it is conceivable that the early testing for Y chromosome microdeletions in infertile men is crucial for fertility guidance.The early detection of Y chromosome microdeletions in infertile men can not only clearly explain the etiology of oligzoospermia and azoospermia, but also help for the clinical management of both infertile man and his future male offspring.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yu-Xin Song
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| |
Collapse
|
38
|
Y chromosome microdeletions in azoospermic and oligozoospermic Tunisian men. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2018. [DOI: 10.1016/j.mefs.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Johnson M, Raheem A, De Luca F, Hallerstrom M, Zainal Y, Poselay S, Mohammadi B, Moubasher A, Johnson TF, Muneer A, Sangster P, Ralph DJ. An analysis of the frequency of Y-chromosome microdeletions and the determination of a threshold sperm concentration for genetic testing in infertile men. BJU Int 2018; 123:367-372. [PMID: 30113756 DOI: 10.1111/bju.14521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe the prevalence of Y-chromosome microdeletions in a multi-ethnic urban population in London, UK. To also determine predictive factors and a clinical threshold for genetic testing in men with Y chromosome microdeletions. PATIENTS AND METHODS A retrospective cohort study of 1473 men that were referred to a tertiary Andrology centre with male factor infertility between July 2004 and December 2016. All had a genetic evaluation, hormonal profile and 2 abnormal semen analyses. Those with abnormal examination findings also had targeted imaging performed. RESULTS The prevalence of microdeletions was 4% (n = 58) in this study. These microdeletions were partitioned into the following regions: Azoospermia factors (AZF); AZFc (75%), AZFb+c (13.8%), AZFb (6.9%), AZFa (1.7%), and partial AZFa (1.7%). A high follicle-stimulating hormone level (P < 0.001) and a low sperm concentration (P < 0.05) were both found to be significant predictors for the identification of a microdeletion. Testosterone level, luteinising hormone level and testicular volume did not predict the presence of a microdeletion. None of the men with an AZF microdeletion had a sperm concentration of >0.5 million/mL. Lowering the sperm concentration threshold to this level retained the high sensitivity (100%) and increased the specificity (31%). This would produce significant cost savings when compared to the European Academy of Andrology/European Molecular Genetics Quality Network and European Association of Urology guidelines. The surgical sperm retrieval (SSR) rate after microdissection testicular sperm extraction was 33.2% in men with AZFc microdeletion. CONCLUSIONS The prevalence of Y-chromosome microdeletions in infertile men appears to vary between populations and countries. A low sperm concentration was a predictive factor (P < 0.05) for identifying microdeletions in infertile males. A threshold for genetic testing of 0.5 million/mL would increase the specificity and lower the relative cost without adversely affecting the sensitivity. The rate of SSR was lower than that previously described in the literature.
Collapse
Affiliation(s)
- Mark Johnson
- Andrology Department, University College London Hospital, London, UK
| | - Amr Raheem
- Andrology Department, University College London Hospital, London, UK.,Andrology Department, Cairo University, Giza, Egypt
| | - Francesco De Luca
- Andrology Department, University College London Hospital, London, UK
| | | | - Yasmeen Zainal
- Andrology Department, University College London Hospital, London, UK
| | - Sameer Poselay
- Andrology Department, University College London Hospital, London, UK
| | - Baharak Mohammadi
- Andrology Department, University College London Hospital, London, UK
| | - Amr Moubasher
- Andrology Department, University College London Hospital, London, UK
| | | | - Asif Muneer
- Andrology Department, University College London Hospital, London, UK
| | - Philippa Sangster
- Andrology Department, University College London Hospital, London, UK.,The Centre for Reproductive and Genetic Health, London, UK
| | - David J Ralph
- Andrology Department, University College London Hospital, London, UK.,The Centre for Reproductive and Genetic Health, London, UK
| |
Collapse
|
40
|
Bahmanimehr A, Zeighami S, Namavar Jahromi B, Anvar Z, Parsanezhad ME, Davari M, Montazeri S. Detection of Y Chromosome Microdeletions and Hormonal Profile Analysis of Infertile Men undergoing Assisted Reproductive Technologies. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:173-177. [PMID: 29707937 PMCID: PMC5936618 DOI: 10.22074/ijfs.2018.5244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022]
Abstract
Background Y chromosome deletions (YCDs) in azoospermia factor (AZF) region are associated with ab-
normal spermatogenesis and may lead to azoospermia or severe oligozoospermia. Assisted reproductive tech-
nologies (ART) by intracytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) are com-
monly required for infertility management of patients carrying YCDs. The aim of this study was to estimate
the frequency of YCDs, to find the most frequent variant in infertile men candidate for ART and to compare
YCD distribution with a control fertile group. The semen parameters, hormonal profiles and ART outcomes
of the infertile group were studied.
Materials and Methods This case-control study consisted of 97 oligozoospermic or non-obstructive azoospermic
(NOA) infertile men, who had undergone ART, as the case group and 100 fertile men as the control group. DNA
samples were extracted from blood samples taken from all 197 participants and YCDs were identified by multiplex
polymerase chain reaction (PCR) of eight known sequence-tagged sites. The chi-square test was used to compare
the mean values of hormone and sperm parameters between the two groups. P<0.05 was considered statistically
significant. Results No YCD was detected in the control group. However, 20 out of 97 (20.6%) infertile men had a YCD. AZFc,
AZFbc and AZFabc deletions were detected in 15 (75%), four (20%) and one (5%) YCD-positive patients. No fer-
tilization or clinical pregnancy was seen following ICSI in this sub-group with YCD. The mean level of FSH was
significantly higher in the group with YCD (28.45 ± 22.2 vs. 4.8 ± 3.17 and 10.83 ± 7.23 in YCD-negative patients
with and without clinical pregnancy respectively). Conclusion YCD is frequent among NOA men and YCD screening before ART and patient counseling is thus
strongly recommended.
Collapse
Affiliation(s)
- Ardeshir Bahmanimehr
- Thalassemia and Hemophilia Genetic, PND Research Center, Dastgheib Hospital, Shiraz University of Medical Science, Shiraz, Iran
| | - Shahryar Zeighami
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Depatment of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic Address:
| | - Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic Address:
| | - Mohammad Ebrahim Parsanezhad
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Davari
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,IVF Center, Ghadir Mother and Child Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Montazeri
- Thalassemia and Hemophilia Genetic, PND Research Center, Dastgheib Hospital, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
41
|
Beyaz CC, Gunes S, Onem K, Kulac T, Asci R. Partial Deletions of Y-Chromosome in Infertile Men with Non-obstructive Azoospermia and Oligoasthenoteratozoospermia in a Turkish Population. ACTA ACUST UNITED AC 2018; 31:365-371. [PMID: 28438864 DOI: 10.21873/invivo.11068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Many genetic alterations have been identified to aid in understanding the genetic basis of male infertility, however, the cause of 30% of male infertility remains unknown. Some studies indicated that subdeletions of Y chromosome may be a reason for male infertility caused by testicular failure. In this regard, we aimed to investigate frequency of AZFc region subdeletions and their clinical effects in patients with idiopathic infertility. A total of 333 male infertile patients with non-obstructive azoospermia (NOA) or oligoasthenoteratozoospermia (OAT), and 87 normozoospermic controls were screened to detect gr/gr, b1/b3 and b2/b3 subdeletions. We recorded higher gr/gr deletion frequency in normozoospermic controls compared NAO and OAT groups (p=0.026). There were no significant differences in b2/b3 subdeletion rates among groups (p=0.437). In the OAT group, follicle-stimulating hormone levels of cases with b2/b3 deletion were statistically lower than cases without b2/b3 deletion (p=0.047). No statistical correlations were indicated among subdeletions, sperm count and assisted reproductive technology (ART) outcomes. These data demonstrate that gr/gr and b2/b3 subdeletions may not play a significant role in the etiopathogenesis of male infertility and ART outcomes in the studied population.
Collapse
Affiliation(s)
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey .,Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey
| | - Kadir Onem
- Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Tuba Kulac
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
42
|
Mokánszki A, Ujfalusi A, Gombos É, Balogh I. Examination of Y-Chromosomal Microdeletions and Partial Microdeletions in Idiopathic Infertility in East Hungarian Patients. J Hum Reprod Sci 2018; 11:329-336. [PMID: 30787516 PMCID: PMC6333031 DOI: 10.4103/jhrs.jhrs_12_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose The aim of this study was to establish the Y chromosome microdeletion and partial AZFc microdeletion/duplication frequency firstly in East Hungarian population and to gain information about the molecular mechanism of the heterogeneous phenotype identified in males bearing partial AZFc deletions and duplications. Materials and Methods Exactly determined sequences of azoospermia factor (AZF) region were amplified. Lack of amplification was detected for deletion. To determine the copy number of DAZ and CDY1 genes, we performed a quantitative analysis. The primers flank an insertion/deletion difference, which permitted the polymerase chain reaction products to be separated by polyacrylamide gel electrophoresis. Statistical Analysis Used Mann-Whitney/Wilcoxon two-sample test, Kruskal-Wallis test, and two-sample t-probe were used for statistical analysis. Results AZFbc deletion was detected only in the azoospermic cases; AZFc deletion occurred significantly more frequently among azoospermic patients, than among oligozoospermic males. The frequency of gr/gr deletions was significantly higher in the oligozoospermic patients than in the normospermic group. The b2/b3 deletion and partial duplications were not different among our groups, while b1/b3 deletion was found only in the azoospermic group. In infertile males and in normozoospermic controls, similar Y haplogroup distribution was detected with the highest frequency of haplogroup P. The gr/gr deletion with P haplogroup was more frequent in the oligozoospermic group than in the normozoospermic males. The b2/b3 deletion with E haplogroup was the most frequent, found only in the normozoospermic group. Conclusions Y microdeletion screening has prognostic value and can affect the clinical therapy. In case of Y chromosome molecular genetic aberrations, genetic counseling makes sense also for other males in the family because these types of aberrations are transmittable (from father to son 100% transmission).
Collapse
Affiliation(s)
- Attila Mokánszki
- Department of Laboratory Medicine, Division of Clinical Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Division of Clinical Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Gombos
- Department of Laboratory Medicine, Division of Clinical Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
43
|
Arafa MM, Majzoub A, AlSaid SS, El Ansari W, Al Ansari A, Elbardisi Y, Elbardisi HT. Chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar and their association with sperm retrieval intracytoplasmic sperm injection outcomes. Arab J Urol 2017; 16:132-139. [PMID: 29713544 PMCID: PMC5922002 DOI: 10.1016/j.aju.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/04/2017] [Accepted: 11/19/2017] [Indexed: 11/17/2022] Open
Abstract
Objective To study the types and incidence of chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar, and to compare the hormonal changes, testicular sperm retrieval rate, and intracytoplasmic sperm injection (ICSI) outcome between patients with chromosomal abnormalities and patients with idiopathic infertility. Patients and methods This study involved the retrospective chart review of 625 infertile male patients attending an academic tertiary medical centre in Qatar. Retrieved information included data on medical history, family history, clinical examination, semen analysis, initial hormonal profiles, and genetic studies, ICSI, and sperm retrieval results. Results The incidence of chromosomal abnormalities was 9.59% (10.6% amongst Qatari patients, 9.04% amongst non-Qataris). About 63.6% of the sample had azoospermia, of whom 10.8% had chromosomal abnormalities. Roughly 36.4% of the sample had oligozoospermia, of whom 7.5% had chromosomal abnormalities. There were no differences between patients with chromosomal abnormalities and those with idiopathic infertility for demographic and infertility features; but for the hormonal profiles, patients with idiopathic infertility had significantly lower luteinising hormone and follicle-stimulating hormone values. For ICSI outcomes, patients with chromosomal abnormalities had a significantly lower total sperm retrieval rate (47.4% vs 65.8%), surgical sperm retrieval rate (41.2% vs 58.1%), and lower clinical pregnancy rate (16.7% vs 26.6%) when compared to the idiopathic infertility group. Conclusion The incidence of chromosomal abnormalities in Qatar as a cause of severe male infertility is within a similar range as their prevalence internationally.
Collapse
Affiliation(s)
- Mohamed M. Arafa
- Urology Department, Hamad Medical Corporation, Doha, Qatar
- Andrology Department, Cairo University Medical School, Cairo, Egypt
- Corresponding author at: Department of Urology, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Ahmad Majzoub
- Urology Department, Hamad Medical Corporation, Doha, Qatar
| | - Sami S. AlSaid
- Urology Department, Hamad Medical Corporation, Doha, Qatar
| | - Walid El Ansari
- Department of Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Abdulla Al Ansari
- Urology Department, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
44
|
Gholami D, Jafari-Ghahfarokhi H, Nemati-Dehkordi M, Teimori H. Y chromosome microdeletions frequency in idiopathic azoospermia, oligoasthenozoospermia, and oligospermia. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.11.703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
45
|
Park J, Lee S, Park C, Eom H. A case of azoospermia in a non-destructive testing worker exposed to radiation. Ann Occup Environ Med 2017; 29:33. [PMID: 28815050 PMCID: PMC5556348 DOI: 10.1186/s40557-017-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/04/2017] [Indexed: 11/27/2022] Open
Abstract
Background Interest in radiation-related health problems has been growing with the increase in the number of workers in radiation-related jobs. Although an occupational level of radiation exposure would not likely cause azoospermia, several studies have reported the relation between radiation exposure and azoospermia after accidental or therapeutic radiation exposure. We describe a case of azoospermia in a non-destructive testing (NDT) worker exposed to radiation and discuss the problems of the related monitoring system. Case presentation A 39-year-old man who was childless after 8 years of marriage was diagnosed with azoospermia through medical evaluations, including testicular biopsy. He did not have any abnormal findings on biochemical evaluations, other risk factors, or evidence of congenital azoospermia. He had been working in an NDT facility from 2005 to 2013, attaching and arranging gamma-ray films on the structures and inner spaces of ships. The patient’s thermoluminescent dosimeter (TLD) badge recorded an exposure level of 0.01781 Gy for 80 months, whereas results of his florescence in situ hybridization (FISH) translocation assay showed an exposure level of up to 1.926 Gy of cumulative radiation, which was sufficient to cause azoospermia. Thus, we concluded that his azoospermia was caused by occupational radiation exposure. Conclusion The difference between the exposure dose records measured through TLD badge and the actual exposure dose implies that the monitor used by the NDT worker did not work properly, and such a difference could threaten the health and safety of workers. Thus, to protect the safety and health of NDT workers, education of workers and strengthening of law enforcement are required to ensure that regulations are strictly followed, and if necessary, random sampling of NDT workers using a cytogenetic dosimeter, such as FISH, should be considered.
Collapse
Affiliation(s)
- Jaechan Park
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| | - Sanggil Lee
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| | - Chulyong Park
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| | - Huisu Eom
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| |
Collapse
|
46
|
Ji J, Xu M, Huang Z, Li L, Zheng H, Yang S, Li S, Jin L, Ling X, Xia Y, Lu C, Wang X. Mitochondrial DNA sequencing and large-scale genotyping identifies MT-ND4 gene mutation m.11696G>A associated with idiopathic oligoasthenospermia. Oncotarget 2017; 8:52975-52982. [PMID: 28881787 PMCID: PMC5581086 DOI: 10.18632/oncotarget.17675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
Genetic variants of mitochondrial DNA (mtDNA) were implicated to be associated with male infertility. Our previous whole mitochondrial genome sequencing and association study has identified two susceptibility mtDNA variants for oligoasthenospermia in Han Chinese men. In this study, we tested promising associations in an extended validation using 670 idiopathic oligoasthenospermia cases and 793 healthy controls to identify additional risk variants. We found that the genetic variant of m.11696G>A showed significantly higher frequency in the case group than that in the control group (odds ratio (OR) 2.21, 95% CI 1.21-4.04) (P=7.90×10−3). To elucidate the exact role of the genetic variants in spermatogenesis, two main sperm parameters (sperm count and motility) were taken into account. We found that m.11696G>A was associated with low sperm motility, with the OR of 2.38 (95 % CI 1.27-4.46) (P =5.22×10−3). These results advance our understanding of the genetic susceptibility to oligoasthenospermia and more functional studies are needed to provide insights into its pathogenic mechanism.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.,Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hongxiang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shuping Yang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shilin Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
47
|
Differential expression of microRNAs and their messengerRNA targets in men with normal spermatogenesis versus Sertoli cell-only syndrome. UROLOGICAL SCIENCE 2017. [DOI: 10.1016/j.urols.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Abstract
Infertility affects approximately 15% of couples, and male factor is responsible for 30%-50% of all infertility. The most severe form of male infertility is testicular failure, and the typical phenotype of testicular failure is severely impaired spermatogenesis resulting in azoospermia or severe oligozoospermia. Although the etiology of testicular failure remains poorly understood, genetic factor typically is an underlying cause. Modern assisted reproductive techniques have revolutionized the treatment of male factor infertility, allowing biological fatherhood to be achieved by many men who would otherwise have been unable to become father to their children through natural conception. Therefore, identifying genetic abnormalities in male is critical because of the potential risk of transmission of genetic abnormalities to the offspring. Recently, along with other intense researches ongoing, whole-genome approaches have been used increasingly in the genetic studies of male infertility. In this review, we focus on the genetics of testicular failure and provide an update on the advances in the study of genetics of male infertility.
Collapse
Affiliation(s)
| | | | | | - Dolores J Lamb
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Castro A, Rodríguez F, Flórez M, López P, Curotto B, Martínez D, Maturana A, Lardone MC, Palma C, Mericq V, Ebensperger M, Cassorla F. Pseudoautosomal abnormalities in terminal AZFb+c deletions are associated with isochromosomes Yp and may lead to abnormal growth and neuropsychiatric function. Hum Reprod 2017; 32:465-475. [PMID: 28057878 DOI: 10.1093/humrep/dew333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are copy number variations (CNVs) in the pseudoautosomal regions (PARs) frequent in subjects with Y-chromosome microdeletions and can they lead to abnormal stature and/or neuropsychiatric disorders? SUMMARY ANSWER Only subjects diagnosed with azoospermia factor (AZF)b+c deletions spanning to the end of the Y chromosome (i.e. terminal deletions) harbor Y isochromosomes and/or cells 45,X that lead to pseudoautosomal gene CNVs, which were associated with abnormal stature and/or neuropsychiatric disorders. WHAT IS KNOWN ALREADY The microdeletions in the long arm of the Y chromosome (Yq) that include the loss of one to three AZF regions, referred to as Yq microdeletions, constitute the most important known etiological factor for primary spermatogenic failure. Recently, controversy has arisen about whether Yq microdeletions are associated with gain or loss of PAR genes, which are implicated in skeletal development and neuropsychiatric function. STUDY DESIGN, SIZE, DURATION We studied a cohort of 42 Chilean patients with complete AZF deletions (4 AZFa, 4 AZFb, 23 AZFc, 11 AZFb+c) from a university medical center, diagnosed over a period of 15 years. The subjects underwent complete medical examinations with special attention to their stature and neuropsychiatric function. PARTICIPANTS/MATERIALS, SETTING, METHODS All subjects were characterized for Yq breakpoints by PCR, and for CNVs in PARs by multiplex ligation-dependent probe amplification (MLPA), followed by qPCR analysis for genes in PAR1 (SHOX and ZBED1), PAR2 (IL9R) and two single copy genes (SRY and DDX3Y, respectively located in Yp11.3 and AZFa). In addition, karyotypes revision and fluorescence in situ hybridization (FISH) for SRY and centromeric probes for X (DXZ1) and Y (DYZ3) chromosomes were performed in males affected with CNVs. MAIN RESULTS AND THE ROLE OF CHANCE We did not detect CNVs in any of the 35 AZF-deleted men with interstitial deletions (AZFa, AZFb, AZFc or AZFb+c). However, six of the seven patients with terminal AZFb+c deletions showed CNVs: two patients showed a loss and four patients showed a gain of PAR1 genes, with the expected loss of VAMP-7 in PAR2. In these patients, the Yq breakpoints localized to the palindromes P8, P5 or P4. In the four cases with gain of PAR1, qPCR analysis showed duplicated signals for SRY and DDX3Y and one copy of IL9R, indicating isodicentric Yp chromosomes [idic(Y)] with breakpoint in Yq11.22. The two patients who had loss of PAR1, as shown by MLPA, had an additional reduction for SRY and DDX3Y, as shown by qPCR, associated with a high proportion of 45,X cells, as determined by FISH and karyotype. In agreement with the karyotype analysis, we detected DYZ3++ and DYZ3+ cells by FISH in the six patients, confirming idic(Y) and revealing additional monocentric Y chromosome [i(Y)]. Five patients had a history of major depressive disorders or bipolar disorder, and three had language impairment, whereas two patients showed severe short stature (Z score: -2.75 and -2.62), while a man with bipolar disorder was very tall (Z score: +2.56). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of males studied with Y-chromosome microdeletions and normozoospermic controls with normal karyotypes may not be enough to rule out an association between AZF deletions and PAR abnormalities. The prevalence of Y isochromosomes and/or 45,X cells detected in peripheral blood does not necessarily reflect the variations of PAR genes in target tissues. WIDER IMPLICATIONS OF THE FINDINGS This study shows that CNVs in PARs were present exclusively in patients with terminal AZFb+c deletions associated with the presence of Y isochromosomes and 45,X cells, and may lead to neuropsychiatric and growth disorders. In contrast, we show that men with interstitial Yq microdeletions with normal karyotypes do not have an increased risk of PAR abnormalities and of phenotypical consequences. Moreover, our results highlight the importance of performing molecular studies, which are not considered in the usual screening for patients with Yq microdeletions. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Fund for Scientific and Technological Development of Chile (FONDECYT), grant no. 1120176 (A.C.). The authors declare that no conflicting interests exist.
Collapse
Affiliation(s)
- A Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - F Rodríguez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - M Flórez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - P López
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - B Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - D Martínez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - A Maturana
- Psychiatric Unit, Clínica Las Condes, Santiago 7591046, Chile
| | - M C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - C Palma
- Department of Urology, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Urology, Clínica Las Condes, Santiago 7591046, Chile
| | - V Mericq
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - M Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| | - F Cassorla
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Hospital San Borja Arriarán, Santiago 8360160, Chile
| |
Collapse
|
50
|
Liu W, Gao X, Ma G, Yan L, Chen T, Li T, Yu RM, Ma JL. Correlation of genetic results with testicular histology, hormones and sperm retrieval in nonobstructive azoospermia patients with testis biopsy. Andrologia 2016; 49. [PMID: 27921326 DOI: 10.1111/and.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
To investigate the frequency and types of genetic results in different testicular histology of patients with nonobstructive azoospermia (NOA), and correlated with hormones and sperm retrieval (SR), a retrospective study was conducted in 286 Chinese NOA patients who underwent testis biopsy and 100 age-matched fertile men as the control group. Chromosome karyotype analyses were performed by the peripheral blood chromosome G-band detection method. Screening of Y chromosome microdeletions of azoospermia factor (AZF) region was performed by polymerase chain reaction (PCR) amplification of 11 sequence-tagged sites (STS). The serum levels of follicle-stimulating hormone, luteinising hormone and testosterone (T) and the appearance of scrotal ultrasound were also obtained. In 286 cases of NOA, 14.3% were found to have chromosomal alterations. The incidence of chromosomal abnormality was 2.8%. Sex chromosomal abnormalities were seen in six cases (four cases of Klinefelter's syndrome (47, XXY) and two cases of mosaics). The incidence of polymorphic chromosomal variants was 3% in the normal group and 11.5% in the NOA group. In total, 15.7% of NOA patients were found to have AZF microdeletions and AZF (c + d) was the most frequent one. The results of hormone and SR were found to be significantly different among all testicular histological types, whereas no significant differences were found when it comes to genetic alterations. It is concluded that the rate of cytogenetic alterations was high in NOA patients. So screening for chromosomal alterations and AZF microdeletions would add useful information for genetic counselling in NOA patients with testis biopsy and avoid vertical transmission of genetic defects by assisted reproductive technology.
Collapse
Affiliation(s)
- W Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - X Gao
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - G Ma
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - L Yan
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - T Chen
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - T Li
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - R-M Yu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| | - J-L Ma
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University) Ministry of Education, Jinan, China
| |
Collapse
|