1
|
Latini A, De Benedittis G, Conigliaro P, Bonini C, Morgante C, Iacovantuono M, D’Antonio A, Bergamini A, Novelli G, Chimenti MS, Ciccacci C, Borgiani P. The rs11568820 Variant in the Promoter Region of Vitamin D Receptor Gene Is Associated with Clinical Remission in Rheumatoid Arthritis Patients Receiving Tumor Necrosis Factor Inhibitors. Genes (Basel) 2024; 15:234. [PMID: 38397223 PMCID: PMC10887840 DOI: 10.3390/genes15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The vitamin D receptor (VDR), binding to the active form of the vitamin, promotes the transcription of numerous genes involved in the proliferation of immune cells, cytokine production and lymphocyte activation. It is known that vitamin D deficiency can influence the risk of developing rheumatoid arthritis (RA) or modulate its disease activity. The aim of this study was to investigate a possible association between the rs11568820 (C > T) polymorphism in the promoter region of VDR gene and the response to therapy with anti-TNF drugs in patients with RA. A total of 178 consecutive Italian patients with RA treated with anti-TNF, naïve for biological therapy, were recruited. Disease activity data were evaluated using specific indices such as DAS28, CDAI and SDAI, measured at the start of therapy and subsequently at 22, 52, 104 and 240 weeks. A statistically significant association emerged between the rs11568820 variant allele of VDR gene and failure to remission assessed by CDAI and SDAI at 52 weeks, and by DAS28, CDAI and SDAI at 104 weeks of follow-up. Furthermore, the variant allele of this polymorphism was observed more frequently in patients who did not undergo sustained remission calculated by CDAI and SDAI. The variant T allele of rs11568820 in VDR gene is associated with a reduced remission rate with anti-TNFα drugs. These data suggest the role of VDR genetic variability in the response to therapy and in the achievement of remission.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| | - Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Chiara Bonini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Chiara Morgante
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| | - Maria Iacovantuono
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Arianna D’Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
- School of Medicine, Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
- IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (P.C.); (C.B.); (M.I.); (A.D.); (A.B.); (M.S.C.)
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.L.); (G.D.B.); (C.M.); (G.N.)
| |
Collapse
|
2
|
Insights into the Molecular and Hormonal Regulation of Complications of X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by mutations in the PHEX gene, leading to elevated serum levels of FGF23, decreased production of 1,25 dihydroxyvitamin D3 (1,25D), and hypophosphatemia. Those affected with XLH manifest impaired growth and skeletal and dentoalveolar mineralization as well as increased mineralization of the tendon–bone attachment site (enthesopathy), all of which lead to decreased quality of life. Many molecular and murine studies have detailed the role of mineral ions and hormones in regulating complications of XLH, including how they modulate growth and growth plate maturation, bone mineralization and structure, osteocyte-mediated mineral matrix resorption and canalicular organization, and enthesopathy development. While these studies have provided insight into the molecular underpinnings of these skeletal processes, current therapies available for XLH do not fully prevent or treat these complications. Therefore, further investigations are needed to determine the molecular pathophysiology underlying the complications of XLH.
Collapse
|
3
|
André J, Zhukouskaya VV, Lambert AS, Salles JP, Mignot B, Bardet C, Chaussain C, Rothenbuhler A, Linglart A. Growth hormone treatment improves final height in children with X-linked hypophosphatemia. Orphanet J Rare Dis 2022; 17:444. [PMID: 36544157 PMCID: PMC9768884 DOI: 10.1186/s13023-022-02590-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Despite optimal conventional treatment (oral phosphate supplements and active vitamin D analogs), about 40-50% of children with well-controlled X-linked hypophosphatemia (XLH) show linear growth failure, making them less likely to achieve an acceptable final height. Here, we studied the hypothesis that rhGH treatment improves final height in children with XLH and growth failure. METHODS Two cohorts of children with XLH were included in this retrospective longitudinal analysis: (1) a cohort treated with rhGH for short stature (n = 34) and (2) a cohort not treated with rhGH (n = 29). The mean duration of rhGH treatment was 4.4 ± 2.9 years. We collected the auxological parameters at various time points during follow-up until final height. RESULTS In rhGH-treated children, 2 years of rhGH therapy was associated with a significant increase in height from - 2.4 ± 0.9 to - 1.5 ± 0.7 SDS (p < 0.001). Their mean height at rhGH discontinuation was - 1.2 ± 0.9 SDS and at final height was - 1.3 ± 0.9 SDS corresponding to 165.5 ± 6.4 cm in boys and 155.5 ± 6.3 cm in girls. Notably, the two groups had similar final heights; i.e., the final height in children not treated with rhGH being - 1.2 ± 1.1 SDS (165.4 ± 6.8 cm in boys and 153.7 ± 7.8 cm in girls), p = 0.7. CONCLUSION Treatment with rhGH permits to improve final height in children with XLH and growth failure, despite optimal conventional treatment. We propose therefore that rhGH therapy could be considered as an option for short stature in the context of XLH.
Collapse
Affiliation(s)
- Julia André
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Volha V. Zhukouskaya
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Université Paris Cité, Montrouge, France
| | - Anne-Sophie Lambert
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.413784.d0000 0001 2181 7253AP-HP, Medicine for Adolescents, Bicêtre Paris Saclay Hospital, Le Kremlin Bicêtre, France
| | - Jean-Pierre Salles
- grid.508721.9Unit of Endocrinology and Bone Diseases, Children Hospital, Toulouse University Hospital, CHU de Toulouse, Université de Toulouse, ERN BOND, INSERM UMR 1291/CNRS 5051, INFINITY Center, Toulouse, France
| | - Brigitte Mignot
- grid.411158.80000 0004 0638 9213Department of Pediatrics, CHU of Besancon, Besançon, France
| | - Claire Bardet
- grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Université Paris Cité, Montrouge, France
| | - Catherine Chaussain
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.508487.60000 0004 7885 7602Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), Université Paris Cité, Montrouge, France ,grid.50550.350000 0001 2175 4109AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Universite de Paris, Paris, France
| | - Anya Rothenbuhler
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Agnès Linglart
- grid.413784.d0000 0001 2181 7253AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, DMU SEA, OSCAR Filière, EndoRare and BOND ERN, Bicêtre Paris Saclay Hospital, 78 Rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France ,grid.460789.40000 0004 4910 6535INSERM, Physiologie Et Physiopathologie Endocrinienne, Bicêtre Paris Saclay Hospital, Paris Saclay University, Le Kremlin Bicêtre, France
| |
Collapse
|
4
|
Baroncelli GI, Mora S. X-Linked Hypophosphatemic Rickets: Multisystemic Disorder in Children Requiring Multidisciplinary Management. Front Endocrinol (Lausanne) 2021; 12:688309. [PMID: 34421819 PMCID: PMC8378329 DOI: 10.3389/fendo.2021.688309] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
X-linked hypophosphatemic rickets (XLH) is the commonest inherited form of rickets. It is caused by an impaired regulation of fibroblast growth factor 23 (FGF23) due to a PHEX gene mutation, which leads to reduced tubular reabsorption of phosphate and renal 1α-hydroxylase activity and increased renal 24-hydroxylase activity. Hypophosphatemia associated with renal phosphate wasting, normal serum levels of calcium, parathyroid hormone, and 25-hydroxyvitamin D represents the main biochemical sign in affected patients. Patients with XLH show rickets and osteomalacia, severe deformities of the lower limbs, bone and muscular pain, stunted growth, and reduced quality of life. However, XLH is a multisystemic disorder requiring multidisciplinary approaches in specialized subdisciplines. Severe complications may occur in patients with XLH including craniosynostosis, hearing loss, progressive bone deformities, dental and periodontal recurrent lesions, and psychosocial distress. Moreover, long-term conventional treatment with active vitamin D metabolites and oral inorganic phosphate salts may cause endocrinological complications such as secondary or tertiary hyperparathyroidism, and adverse events in kidney as hypercalciuria, nephrocalcinosis, and nephrolithiasis. However, conventional treatment does not improve phosphate metabolism and it shows poor and slow effects in improving rickets lesions and linear growth. Recently, some trials of treatment with recombinant human IgG1 monoclonal antibody that targets FGF23 (burosumab) showed significant improvement of serum phosphate concentration and renal tubular reabsorption of phosphate that were associated with a rapid healing of radiologic signs of rickets, reduced muscular and osteoarticular pain, and improved physical function, being more effective for the treatment of patients with XLH in comparison with conventional therapy. Therefore, a global management of patients with XLH is strongly recommended and patients should be seen regularly by a multidisciplinary team of experts.
Collapse
Affiliation(s)
- Giampiero Igli Baroncelli
- Pediatric and Adolescent Endocrinology, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
- *Correspondence: Giampiero Igli Baroncelli, ; Stefano Mora,
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology and Bone Densitometry Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Giampiero Igli Baroncelli, ; Stefano Mora,
| |
Collapse
|
5
|
Allegra S, Cusato J, De Francia S, Arduino A, Longo F, Pirro E, Massano D, De Nicolò A, Piga A, D'Avolio A. Role of CYP24A1, VDR and GC gene polymorphisms on deferasirox pharmacokinetics and clinical outcomes. THE PHARMACOGENOMICS JOURNAL 2017; 18:506-515. [PMID: 29160302 DOI: 10.1038/tpj.2017.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
β-Thalassemia patients develop deficiency in vitamin D absorption and liver hydroxylation, resulting in extremely low calcitriol levels. We explored the role of single-nucleotide polymorphisms (SNPs) involved in vitamin D metabolism, transport and activity on deferasirox pharmacokinetics and outcomes (effectiveness trough levels (Ctrough) and the area under the curve (AUC) cutoffs of 20 μg ml-1 and 360 μg ml-1 h-1, respectively; nonresponse AUC limit of 250 μg ml-1 h-1). Ninety-nine β-thalassemic patients were enrolled. Drug plasma Ctrough and AUC were measured by the high-performance liquid chromatography system coupled with an ultraviolet determination method. Allelic discrimination for VDR, CYP24A1, CYP27B1 and GC gene SNPs was performed by real-time PCR. CYP24A1 22776 TT significantly influenced Cmin and negatively predicted it in regression analysis. CYP24A1 3999 CC was associated with Ctrough and Cmin and was a negative predictor of Tmax, whereas CYP24A1 8620 GG seemed to have a role in Ctrough, AUC, t1/2 and Cmin, and was an AUC negative predictor factor. Considering treatment outcome, Cdx2 and GC 1296 were retained in regression analysis as AUC efficacy cutoff negative predictors.
Collapse
Affiliation(s)
- S Allegra
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - J Cusato
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - S De Francia
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - A Arduino
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - F Longo
- Department of Paediatrics, Centre for Microcitemie, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - E Pirro
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - D Massano
- Department of Paediatrics, Centre for Microcitemie, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - A De Nicolò
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| | - A Piga
- Department of Paediatrics, Centre for Microcitemie, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - A D'Avolio
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
6
|
Rothenbuhler A, Esterle L, Gueorguieva I, Salles JP, Mignot B, Colle M, Linglart A. Two-year recombinant human growth hormone (rhGH) treatment is more effective in pre-pubertal compared to pubertal short children with X-linked hypophosphatemic rickets (XLHR). Growth Horm IGF Res 2017; 36:11-15. [PMID: 28822957 DOI: 10.1016/j.ghir.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
Abstract
CONTEXT Twenty-five to 40% of patients with well-controlled X-linked hypophosphatemic rickets (XLHR) have a final height under -2 SDS. Previous studies have shown that recombinant human growth hormone (rhGH) treatment improves linear growth in short children with XLHR. OBJECTIVE We studied the effectiveness of rhGH treatment in children with XLHR in a larger cohort. DESIGN Monocentric, prospective, non-randomized trial. SETTING University hospital in France. PATIENTS 19 patients with XLHR and a mutation in the PHEX gene. Six male and 6 female Tanner stage 1 patients (age 6.1±2.4years) and 4 male and 3 female Tanner stage 2 patients (age 13.1±1years). At inclusion, height SDS was -2.35±0.8 SDS and growth velocity was -1.12±1.2 SDS. INTERVENTION 2years of treatment with 67mcg/kg/day of rhGH at initiation. Every three months rhGH dosage was adjusted using an IGF-1 dosing protocol. MAIN OUTCOME MEASURES Comparison in change from baseline to year 2 in height and growth velocity. RESULTS Height SDS improved from -2.35±0.8 SDS at baseline, to -1.62±0.8 SDS (p=0.01) after one and to -1.2±1 SDS (p=0.04) after two years of rhGH treatment. There was a strong correlation (r2=0.6104, p<0.0001) between the age of onset of rhGH treatment and the number of cm gained over the study period. Pre-pubertal patients height SDS improved compared to baseline height SDS after one (-1.5±0.7, p<0.03) and two (-0.96±1, p<0.03) years of rhGH treatment. In pubertal patients there was no significant improvement in height SDS after one year (-1.75±1) and after two years (-1.7±0.8) of rhGH treatment. CONCLUSION Two-year rhGH treatment is effective to treat short stature in XLHR children. Pre-pubertal children responded better to rhGH. CLINICAL TRIAL REGISTRATION NUMBER NCT02720770.
Collapse
Affiliation(s)
- Anya Rothenbuhler
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France.
| | - Laure Esterle
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France
| | - Iva Gueorguieva
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France
| | - Jean-Pierre Salles
- Unite d'Endocrinologie, Maladies Osseuses, Hopital des Enfants, Toulouse University Hospital, INSERM UMR 1043 (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Brigitte Mignot
- Service de Pediatrie, Centre Hospitalier Regional Universitaire, Hopital Jean Minjoz, Besancon, France
| | | | - Agnes Linglart
- Department of Pediatric Endocrinology and Diabetes, Centre de Reference des Maladies Rares du Metabolisme du Calcium et du Phophore, Pole I3E, Bicetre Hospital, Paris Sud University, APHP, 94275 Le Kremlin Bicetre, France
| |
Collapse
|
7
|
Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández O, Fernández-Iglesias A, Alonso-Durán L, Rodríguez-Rubio E, Santos F. X-linked hypophosphatemia and growth. Rev Endocr Metab Disord 2017; 18:107-115. [PMID: 28130634 DOI: 10.1007/s11154-017-9408-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
X-Linked hypophosphatemia (XLH) is the most common form of hereditary rickets caused by loss-of function mutations in the PHEX gene. XLH is characterized by hypophosphatemia secondary to renal phosphate wasting, inappropriately low concentrations of 1,25 dihydroxyvitamin D and high circulating levels of fibroblast growth factor 23 (FGF23). Short stature and rachitic osseous lesions are characteristic phenotypic findings of XLH although the severity of these manifestations is highly variable among patients. The degree of growth impairment is not dependent on the magnitude of hypophosphatemia or the extent of legs´ bowing and height is not normalized by chronic administration of phosphate supplements and 1α hydroxyvitamin D derivatives. Treatment with growth hormone accelerates longitudinal growth rate but there is still controversy regarding the potential risk of increasing bone deformities and body disproportion. Treatments aimed at blocking FGF23 action are promising, but information is lacking on the consequences of counteracting FGF23 during the growing period. This review summarizes current knowledge on phosphorus metabolism in XLH, presents updated information on XLH and growth, including the effects of FGF23 on epiphyseal growth plate of the Hyp mouse, an animal model of the disease, and discusses growth hormone and novel FGF23 related therapies.
Collapse
Affiliation(s)
- R Fuente
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - H Gil-Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - D Claramunt-Taberner
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - O Hernández
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - A Fernández-Iglesias
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - L Alonso-Durán
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - E Rodríguez-Rubio
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - F Santos
- Division of Pediatrics, Department of Medicine. Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain.
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Penido MGMG, Alon US. Hypophosphatemic rickets due to perturbations in renal tubular function. Pediatr Nephrol 2014; 29:361-73. [PMID: 23636577 DOI: 10.1007/s00467-013-2466-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
The common denominator for all types of rickets is hypophosphatemia, leading to inadequate supply of the mineral to the growing bone. Hypophosphatemia can result from insufficient uptake of the mineral from the gut or its disproportionate losses in the kidney, the latter being caused by either tubular abnormalities per se or the effect on the tubule of circulating factors like fibroblast growth factor-23 and parathyroid hormone (PTH). High serum levels of the latter result in most cases from abnormalities in vitamin D metabolism which lead to decreased calcium absorption in the gut and hypocalcemia, triggering PTH secretion. Rickets is a disorder of the growth plate and hence pediatric by definition. However, it is important to recognize that the effect of hypophosphatemia on other parts of the skeleton results in osteomalacia in both children and adults. This review addresses the etiology, pathophysiologic mechanisms, clinical manifestations and treatment of entities associated with hypophosphatemic rickets due to perturbations in renal tubular function.
Collapse
Affiliation(s)
- Maria Goretti M G Penido
- Pediatric Nephrology Unit, Clinics Hospital, School of Medicine, Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, CEP, 30130100, Belo Horizonte, MG, Brazil,
| | | |
Collapse
|
9
|
Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prié D, Rothenbuhler A, Wicart P, Harvengt P. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 2014; 3:R13-30. [PMID: 24550322 PMCID: PMC3959730 DOI: 10.1530/ec-13-0103] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In children, hypophosphatemic rickets (HR) is revealed by delayed walking, waddling gait, leg bowing, enlarged cartilages, bone pain, craniostenosis, spontaneous dental abscesses, and growth failure. If undiagnosed during childhood, patients with hypophosphatemia present with bone and/or joint pain, fractures, mineralization defects such as osteomalacia, entesopathy, severe dental anomalies, hearing loss, and fatigue. Healing rickets is the initial endpoint of treatment in children. Therapy aims at counteracting consequences of FGF23 excess, i.e. oral phosphorus supplementation with multiple daily intakes to compensate for renal phosphate wasting and active vitamin D analogs (alfacalcidol or calcitriol) to counter the 1,25-diOH-vitamin D deficiency. Corrective surgeries for residual leg bowing at the end of growth are occasionally performed. In absence of consensus regarding indications of the treatment in adults, it is generally accepted that medical treatment should be reinitiated (or maintained) in symptomatic patients to reduce pain, which may be due to bone microfractures and/or osteomalacia. In addition to the conventional treatment, optimal care of symptomatic patients requires pharmacological and non-pharmacological management of pain and joint stiffness, through appropriated rehabilitation. Much attention should be given to the dental and periodontal manifestations of HR. Besides vitamin D analogs and phosphate supplements that improve tooth mineralization, rigorous oral hygiene, active endodontic treatment of root abscesses and preventive protection of teeth surfaces are recommended. Current outcomes of this therapy are still not optimal, and therapies targeting the pathophysiology of the disease, i.e. FGF23 excess, are desirable. In this review, medical, dental, surgical, and contributions of various expertises to the treatment of HR are described, with an effort to highlight the importance of coordinated care.
Collapse
Affiliation(s)
- Agnès Linglart
- Service d'Endocrinologie et Diabétologie de l'EnfantHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Université Paris 11 faculté de Médecine, Hôpital Bicêtre70 rue du général Leclerc, Le Kremlin-Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Correspondence should be addressed to A Linglart
| | - Martin Biosse-Duplan
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Service d'Odontologie-Maladies Rares Hôpital Bretonneau 2 rue Carpeaux Paris, 75018France
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
| | - Karine Briot
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
- Service Rhumatologie B Hôpital Cochin, APHP27, rue du Faubourg Saint-Jacques, Paris, 75014France
| | - Catherine Chaussain
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Service d'Odontologie-Maladies Rares Hôpital Bretonneau 2 rue Carpeaux Paris, 75018France
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
| | - Laure Esterle
- Service d'Endocrinologie et Diabétologie de l'EnfantHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
| | - Séverine Guillaume-Czitrom
- Service de Pédiatrie générale – Consultation de rhumatologieHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Centre de Référence des Maladies Rares des Maladies Auto-Inflammatoires Rares de l'EnfantLe Kremlin BicêtreFrance
| | - Peter Kamenicky
- Service d'Endocrinologie et des Maladies de la ReproductionHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Université Paris 11 faculté de Médecine, Hôpital Bicêtre70 rue du général Leclerc, Le Kremlin-Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
| | - Jerome Nevoux
- Service d'ORL et chirurgie cervico-maxillo-facialeHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Université Paris 11 faculté de Médecine, Hôpital Bicêtre70 rue du général Leclerc, Le Kremlin-Bicêtre, 94270France
| | - Dominique Prié
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
- Service d'explorations fonctionnelles rénales, Hôpital Necker-Enfants Malades149 rue de Sèvres, Paris, 75015France
| | - Anya Rothenbuhler
- Service d'Endocrinologie et Diabétologie de l'EnfantHôpital Bicêtre, APHP78 rue du Général Leclerc , Le Kremlin Bicêtre, 94270France
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
| | - Philippe Wicart
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du PhosphoreLe Kremlin-BicêtreFrance
- Université Paris Descartes 12 Rue de l'École de MédecineParis, 75006France
- Service de Chirurgie infantile orthopédiqueHôpital Necker-Enfants Malades149 rue de Sèvres, Paris, 75015 France
| | - Pol Harvengt
- Association de patients RVRH-XLH20 rue Merlin de Thionville, Suresnes , 92150France
| |
Collapse
|
10
|
Abstract
Over the last decade the discovery of fibroblast growth factor 23 (FGF23) and the progressive and ongoing clarification of its role in phosphate and mineral metabolism have led to expansion of the diagnostic spectrum of primary hypophosphatemic syndromes. This article focuses on the impairment of growth in these syndromes. Growth retardation is a common, but not constant, feature and it presents with large variability. As a result of the very low prevalence of other forms of primary hypophosphatemic syndromes, the description of longitudinal growth and the pathogenesis of its impairment have been mostly studied in X-linked hypophosphatemia (XLH) patients and in Hyp mice, the animal model of this disease. In general, children with XLH have short stature with greater shortness of lower limbs than trunk. Treatment with phosphate supplements and 1α vitamin D derivatives heals active lesions of rickets, but does not normalize growth of XLH patients. Patients might benefit from recombinant human growth hormone (rhGH) therapy, which may accelerate the growth rate without increasing body disproportion or correcting hypophosphatemia. These clinical data as well as research findings obtained in Hyp mice suggest that the pathogenesis of defective growth in XLH and other hypophosphatemic syndromes is not entirely dependent on the mineralization disorder and point to other effects of hypophosphatemia itself or FGF23 on the metabolism of bone and growth plate.
Collapse
Affiliation(s)
- Fernando Santos
- Hospital Universitario Central de Asturias & University of Oviedo, Oviedo, Asturias, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 2012; 27:581-8. [PMID: 22101457 DOI: 10.1007/s00467-011-2046-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 01/10/2023]
Abstract
Inactivating mutations in phosphate-regulating endopeptidase (PHEX) cause X-linked hypophosphatemic rickets (XLHR) characterized by phosphaturia, hypophosphatemia, bony deformities, and growth retardation. We assessed the efficacy of combined calcitriol and orally administered phosphate (Pi) therapy on longitudinal growth in relation to age at treatment onset in a retrospective, single-center review of children with XLHR and documented PHEX mutations. Growth was compared in those who started treatment before (G1; N = 10; six boys) and after (G2; N = 13; five boys) 1 year old. Median height standard deviation score (HSDS) at treatment onset was normal in G1: 0.1 [interquartile range (IR) -1.3 to 0.4) and significantly (p = 0.004) lower in G2 (IR -2.1 (-2.8 to -1.4). Treatment duration was similar [G1 8.5 (4.0-15.2) vs G2 11.9 (6.2-14.3) years; p = 0.56], as were prescribed phosphate and calcitriol doses. Recent HSDS was significantly (p = 0.009) better in G1 [-0.7 (-1.5 to 0.3)] vs G2 [-2.0 (-2.3 to -1.0)]. No effects of gender or genotype on growth could be identified. Children with PHEX-associated XLHR benefit from early treatment and can achieve normal growth. Minimal catchup growth was seen in those who started treatment later. Our findings emphasize the importance of early diagnosis to allow treatment before growth has been compromised.
Collapse
|
14
|
Vital SO, Gaucher C, Bardet C, Rowe P, George A, Linglart A, Chaussain C. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 2012; 50:989-97. [PMID: 22296718 PMCID: PMC3345892 DOI: 10.1016/j.bone.2012.01.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/06/2012] [Accepted: 01/14/2012] [Indexed: 01/27/2023]
Abstract
Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization.
Collapse
Affiliation(s)
- S. Opsahl Vital
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau- Louis Mourier), F-75018, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Gaucher
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpital Albert Chennevier, Créteil, F-94010, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Bardet
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
| | - P.S. Rowe
- The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - A. George
- Department of Oral Biology, University of Illinois in Chicago, Illinois 60612, USA
| | - A. Linglart
- Inserm, U986 Hôpital St Vincent de Paul AP-HP, Paris, F-75014, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Chaussain
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau- Louis Mourier), F-75018, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
- Corresponding author at: Dental school University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, France 2120. Fax: +33 158076724. (C. Chaussain)
| |
Collapse
|
15
|
Zivičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 2011; 26:223-31. [PMID: 21120538 DOI: 10.1007/s00467-010-1705-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/14/2010] [Accepted: 10/09/2010] [Indexed: 01/08/2023]
Abstract
Children with X-linked hypophosphatemic rickets (XLH) are prone to severe stunting. A multicenter mixed-longitudinal study was conducted to assess age-related stature, sitting height, arm and leg length in XLH patients on continuous treatment with phosphate and calcitriol. Mean standard deviation scores (SDS) for all body dimensions were markedly reduced and differed significantly among each other at the initial and subsequent evaluations (baseline: stature -2.48 SDS; sitting height -0.99 SDS; arm length -1.81 SDS; leg length -2.90 SDS; each p<0.001). A strong association between stature and leg length (r (2)=0.87, p<0.001) was noted. Leg length SDS decreased progressively during childhood (2-9 years) and adolescence (12-15 years; each p<0.001). Sitting height SDS increased significantly during late childhood, indicating uncoupled growth of the legs and trunk and resulting in an ever increasing sitting height index (i.e. ratio of sitting height to stature; age 2 years 2.0 SDS; age 10 years 3.3 SDS; p<0.001) that was associated with the degree of stunting (r (2)=0.314, p<0.001). Mean serum phosphate levels were positively associated with stature and leg length, but negatively with sitting height index. Based on these results, we can conclude that growth of the legs and trunk is uncoupled in XLH and related to serum phosphate levels.
Collapse
Affiliation(s)
- Miroslav Zivičnjak
- Department of Pediatric Nephrology, Children's Hospital of Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vitamin d status is not associated with outcomes of experimentally-induced muscle weakness and pain in young, healthy volunteers. J Nutr Metab 2010; 2010:674240. [PMID: 21209718 PMCID: PMC3010688 DOI: 10.1155/2010/674240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/18/2010] [Accepted: 11/12/2010] [Indexed: 11/17/2022] Open
Abstract
Vitamin D receptors have been identified in skeletal muscle; and symptoms of vitamin D deficiency include muscle weakness and pain. Moreover, increased serum 25-hydroxyvitamin D (25(OH)D) concentrations have been associated with improved muscle function. To further clarify the importance of vitamin D to muscle, we examined the association between vitamin D status and exercise-induced muscle pain and weakness in healthy people. Muscle damage to the elbow flexors was induced with eccentric exercise (EE) in 48 individuals (22.5 ± 3.2 yrs). Muscle pain ratings following unloaded movement and peak isometric force (IF) were collected before EE and for 4 days post-EE. Linear regression was used to determine if serum 25(OH)D was a predictor of any outcome. In males, R2-values from 0.48 to 1.00. R2 for IF ranged from 0 to 0.02 and P-values from 0.48 to 1.00. In females, R2 for pain ratings ranged from 0.01 to 0.11 and P-values from 0.14 to 0.59. R2 for IF ranged from 0 to 0.04 and P-values from 0.41 to 0.90. In conclusion, vitamin D status did not predict muscle pain or strength after EE-induced muscle damage in young healthy men and women.
Collapse
|
17
|
|