1
|
Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Review of the Case Reports on Metformin, Sulfonylurea, and Thiazolidinedione Therapies in Type 2 Diabetes Mellitus Patients. Med Sci (Basel) 2023; 11:50. [PMID: 37606429 PMCID: PMC10443323 DOI: 10.3390/medsci11030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the world's most common metabolic disease. The development of T2DM is mainly caused by a combination of two factors: the failure of insulin secretion by the pancreatic β-cells and the inability of insulin-sensitive tissues to respond to insulin (insulin resistance); therefore, the disease is indicated by a chronic increase in blood glucose. T2DM patients can be treated with mono- or combined therapy using oral antidiabetic drugs and insulin-replaced agents; however, the medication often leads to various discomforts, such as abdominal pain, diarrhea or constipation, nausea and vomiting, and hypersensitivity reactions. A biguanide drug, metformin, has been used as a first-line drug to reduce blood sugar levels. Sulfonylureas work by blocking the ATP-sensitive potassium channel, directly inducing the release of insulin from pancreatic β-cells and thus decreasing blood glucose concentrations. However, the risk of the failure of sulfonylurea as a monotherapy agent is greater than that of metformin or rosiglitazone (a thiazolidinedione drug). Sulfonylureas are used as the first-line drug of choice for DM patients who cannot tolerate metformin therapy. Other antidiabetic drugs, thiazolidinediones, work by activating the peroxisome proliferator-activated receptor gamma (PPARγ), decreasing the IR level, and increasing the response of β-cells towards the glucose level. However, thiazolidines may increase the risk of cardiovascular disease, weight gain, water retention, and edema. This review article aims to discuss case reports on the use of metformin, sulfonylureas, and thiazolidinediones in DM patients. The literature search was conducted on the PubMed database using the keywords 'metformin OR sulfonylureas OR thiazolidinediones AND case reports', filtered to 'free full text', 'case reports', and '10 years publication date'. In some patients, metformin may affect sleep quality and, in rare cases, leads to the occurrence of lactate acidosis; thus, patients taking this drug should be monitored for their kidney status, plasma pH, and plasma metformin level. Sulfonylureas and TZDs may cause a higher risk of hypoglycemia and weight gain or edema due to fluid retention. TZDs may be associated with risks of cardiovascular events in patients with concomitant T2DM and chronic obstructive pulmonary disease. Therefore, patients taking these drugs should be closely monitored for adverse effects.
Collapse
Affiliation(s)
- Elis Susilawati
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
- Faculty of Pharmacy, Bhakti Kencana University, Bandung 40614, West Java, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| |
Collapse
|
2
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
3
|
Stanik J, Barak L, Dankovcikova A, Valkovicova T, Skopkova M, Gasperikova D. Diabetes treatment in two pregnant women with permanent neonatal diabetes mellitus due to a KCNJ11 mutation. Diabet Med 2020; 37:1956-1958. [PMID: 32634858 DOI: 10.1111/dme.14363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023]
Affiliation(s)
- J Stanik
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Centre of Slovak Academy of Sciences, Bratislava
- Children Diabetes Centre of the Slovak Republic at the Department of Paediatrics, Medical Faculty of Comenius University and National Institute for Children´s Diseases, Bratislava
| | - L Barak
- Children Diabetes Centre of the Slovak Republic at the Department of Paediatrics, Medical Faculty of Comenius University and National Institute for Children´s Diseases, Bratislava
| | - A Dankovcikova
- Department of Paediatrics, Children Faculty Hospital, Kosice, Slovakia
| | - T Valkovicova
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Centre of Slovak Academy of Sciences, Bratislava
| | - M Skopkova
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Centre of Slovak Academy of Sciences, Bratislava
| | - D Gasperikova
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Biomedical Research Centre of Slovak Academy of Sciences, Bratislava
| |
Collapse
|
4
|
Abstract
In addition to the common types of diabetes mellitus, two major monogenic diabetes forms exist. Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic, autosomal dominant diseases. MODY accounts for 1-2% of all diabetes cases, and it is not just underdiagnosed but often misdiagnosed to type 1 or type 2 diabetes. More than a dozen MODY genes have been identified to date, and their molecular classification is of great importance in the correct treatment decision and in the judgment of the prognosis. The most prevalent subtypes are HNF1A, GCK, and HNF4A. Genetic testing for MODY has changed recently due to the technological advancements, as contrary to the sequential testing performed in the past, nowadays all MODY genes can be tested simultaneously by next-generation sequencing. The other major group of monogenic diabetes is neonatal diabetes mellitus which can be transient or permanent, and often the diabetes is a part of a syndrome. It is a severe monogenic disease appearing in the first 6 months of life. The hyperglycemia usually requires insulin. There are two forms, permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). In TNDM, the diabetes usually reverts within several months but might relapse later in life. The incidence of NDM is 1:100,000-1:400,000 live births, and PNDM accounts for half of the cases. Most commonly, neonatal diabetes is caused by mutations in KCNJ11 and ABCC8 genes encoding the ATP-dependent potassium channel of the β cell. Neonatal diabetes has experienced a quick and successful transition into the clinical practice since the discovery of the molecular background. In case of both genetic diabetes groups, recent guidelines recommend genetic testing.
Collapse
Affiliation(s)
- Zsolt Gaál
- 4th Department of Medicine, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Shepherd M, Brook AJ, Chakera AJ, Hattersley AT. Management of sulfonylurea-treated monogenic diabetes in pregnancy: implications of placental glibenclamide transfer. Diabet Med 2017; 34:1332-1339. [PMID: 28556992 PMCID: PMC5612398 DOI: 10.1111/dme.13388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 01/05/2023]
Abstract
The optimum treatment for HNF1A/HNF4A maturity-onset diabetes of the young and ATP-sensitive potassium (KATP ) channel neonatal diabetes, outside pregnancy, is sulfonylureas, but there is little evidence regarding the most appropriate treatment during pregnancy. Glibenclamide has been widely used in the treatment of gestational diabetes, but recent data have established that glibenclamide crosses the placenta and increases risk of macrosomia and neonatal hypoglycaemia. This raises questions about its use in pregnancy. We review the available evidence and make recommendations for the management of monogenic diabetes in pregnancy. Due to the risk of stimulating increased insulin secretion in utero, we recommend that in women with HNF1A/ HNF4A maturity-onset diabetes of the young, those with good glycaemic control who are on a sulfonylurea per conception either transfer to insulin before conception (at the risk of a short-term deterioration of glycaemic control) or continue with sulfonylurea (glibenclamide) treatment in the first trimester and transfer to insulin in the second trimester. Early delivery is needed if the fetus inherits an HNF4A mutation from either parent because increased insulin secretion results in ~800-g weight gain in utero, and prolonged severe neonatal hypoglycaemia can occur post-delivery. If the fetus inherits a KATP neonatal diabetes mutation from their mother they have greatly reduced insulin secretion in utero that reduces fetal growth by ~900 g. Treating the mother with glibenclamide in the third trimester treats the affected fetus in utero, normalising fetal growth, but is not desirable, especially in the high doses used in this condition, if the fetus is unaffected. Prospective studies of pregnancy in monogenic diabetes are needed.
Collapse
Affiliation(s)
- M. Shepherd
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - A. J. Brook
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
- Lancashire Women and Newborn CentreBurnley General Hospital, East Lancashire NHS Hospitals TrustBurnleyUK
- University of ManchesterManchesterUK
| | - A. J. Chakera
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
- Royal Sussex County Hospital, Brighton and Sussex University HospitalsBrightonUK
| | - A. T. Hattersley
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
6
|
Ashcroft FM, Puljung MC, Vedovato N. Neonatal Diabetes and the K ATP Channel: From Mutation to Therapy. Trends Endocrinol Metab 2017; 28:377-387. [PMID: 28262438 PMCID: PMC5582192 DOI: 10.1016/j.tem.2017.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabilities. Here, we review how KATP channel mutations lead to the varied clinical phenotype, how sulfonylureas exert their therapeutic effects, and why their efficacy varies with individual mutations.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK.
| | - Michael C Puljung
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| | - Natascia Vedovato
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| |
Collapse
|
7
|
Myngheer N, Allegaert K, Hattersley A, McDonald T, Kramer H, Ashcroft FM, Verhaeghe J, Mathieu C, Casteels K. Fetal macrosomia and neonatal hyperinsulinemic hypoglycemia associated with transplacental transfer of sulfonylurea in a mother with KCNJ11-related neonatal diabetes. Diabetes Care 2014; 37:3333-5. [PMID: 25231897 PMCID: PMC5894804 DOI: 10.2337/dc14-1247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Sulfonylureas (SUs) are effective at controlling glycemia in permanent neonatal diabetes mellitus (PNDM) caused by KCNJ11 (Kir6.2) mutations. RESEARCH DESIGN AND METHODS We report the case of a woman with PNDM who continued high doses of glibenclamide (85 mg/day) during her pregnancy. The baby was born preterm, and presented with macrosomia and severe hyperinsulinemic hypoglycemia requiring high-rate intravenous glucose infusion. RESULTS Postnatal genetic testing excluded a KCNJ11 mutation in the baby. Glibenclamide was detected in both the baby's blood and the maternal milk. CONCLUSIONS We hypothesize that high doses of glibenclamide in the mother led to transplacental passage of the drug and overstimulation of fetal β-cells, which resulted in severe hyperinsulinemic hypoglycemia in the neonate (who did not carry the mutation) and contributed to fetal macrosomia. We suggest that glibenclamide (and other SUs) should be avoided in mothers with PNDM if the baby does not carry the mutation or if prenatal screening has not been performed, while glibenclamide may be beneficial when the fetus is a PNDM carrier.
Collapse
Affiliation(s)
- Nele Myngheer
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Karel Allegaert
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Tim McDonald
- University of Exeter Medical School, Exeter, U.K
| | - Holger Kramer
- University Laboratory of Physiology, Oxford, Oxford, U.K
| | | | - Johan Verhaeghe
- Department of Obstetrics/Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Kristina Casteels
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Affiliation(s)
- Shivani Misra
- From the Department of Metabolic Medicine, Imperial Healthcare NHS Trust, London, U.K.; and the
| | - Anne Dornhorst
- Department of Medicine, Imperial College Healthcare NHS Trust, London, U.K
| |
Collapse
|
9
|
Gaal Z, Klupa T, Kantor I, Mlynarski W, Albert L, Tolloczko J, Balogh I, Czajkowski K, Malecki MT. Sulfonylurea use during entire pregnancy in diabetes because of KCNJ11 mutation: a report of two cases. Diabetes Care 2012; 35:e40. [PMID: 22619292 PMCID: PMC3357257 DOI: 10.2337/dc12-0163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zsolt Gaal
- From the 4th Department of Medicine, Josa Andras Teaching Hospital, Nyiregyhaza, Szabolcs-Szatmár-Bereg, Hungary; the
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College and University Hospital, Krakow, Malopolskie, Poland; the
| | - Irene Kantor
- Department of Pediatrics, Josa Andras Teaching Hospital, Nyiregyhaza, Szabolcs-Szatmár-Bereg, Hungary; the
| | - Wojciech Mlynarski
- Department of Pediatrics, Medical University of Lodz, Lodz, Lodzkie, Poland; the
| | - Laszlo Albert
- Department of Obstetrics and Gynecology, Josa Andras Teaching Hospital, Nyiregyhaza, Szabolcs-Szatmár-Bereg, Hungary; the
| | - Justyna Tolloczko
- Department of Neonatology and Neonatal Intensive Care, Warsaw Medical University, Warsaw, Mazowieckie, Poland; the
| | - Istvan Balogh
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hajdu-Bihar, Hungary; and the
| | - Krzysztof Czajkowski
- 2nd Department of Obstetrics and Gynecology, Warsaw Medical University, Warsaw, Mazowieckie, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College and University Hospital, Krakow, Malopolskie, Poland; the
| |
Collapse
|
10
|
Rubio-Cabezas O, Klupa T, Malecki MT. Permanent neonatal diabetes mellitus--the importance of diabetes differential diagnosis in neonates and infants. Eur J Clin Invest 2011; 41:323-33. [PMID: 21054355 DOI: 10.1111/j.1365-2362.2010.02409.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The differential diagnosis of various types and forms of diabetes is of great practical importance. This is particularly true for monogenic disease forms, where some spectacular applications of pharmacogenetics have recently been described. DESIGN For many years the distinct character of diabetes diagnosed in the first weeks and months of life remained unnoticed. The results of the search for type 1 diabetes-related autoantibodies, description of the HLA haplotypes distribution and analysis of clinical features in patients diagnosed in the first 6 months of life provided the initial evidence that the etiology of their disease might be different from that of autoimmune diabetes. RESULTS Over the last decade, mutations in about a dozen of genes have been linked to the development of Permanent Neonatal Diabetes Mellitus (PNDM). The most frequent causes of PNDM are heterozygous mutations in the KCNJ11, INS and ABCC8 genes. Although PNDM is a rare phenomenon (one case in about 200,000 live births), this discovery has had a large impact on clinical practice as most carriers of KCNJ11 and ABCC8 gene mutations have been switched from insulin to oral sulphonylureas with an improvement in glycemic control. In this review we summarize the practical aspects of diabetes differential diagnosis in neonates and infants. CONCLUSIONS Genetic testing should be advised in all subjects with PNDM as it may influence medical care in subjects with these monogenic forms of early onset diabetes.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Universities of Exeter & Plymouth, Exeter, UK
| | | | | | | |
Collapse
|