1
|
Lundell C, Stergiopoulos N, Blomberg L, Ujvari D, Schuppe-Koistinen I, Kopp-Kallner H, Iliadis SI, Skalkidou A, Hirschberg AL. Breast and endometrial safety of micronised progesterone versus norethisterone acetate in menopausal hormone therapy (PROBES): study protocol of a double-blind randomised controlled trial. BMJ Open 2024; 14:e082749. [PMID: 39448218 PMCID: PMC11499784 DOI: 10.1136/bmjopen-2023-082749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Data suggest that micronised progesterone (mP) in menopausal hormone therapy is safer for the breast than synthetic progestins, while protection of the endometrium appears to be less effective. However, comparative randomised trial data are lacking. The objective of the Progesterone Breast Endometrial Safety Study is to investigate breast and endometrial safety of mP versus norethisterone acetate (NETA) in continuous combination with oral oestrogen. METHODS AND ANALYSIS This multicentre trial, conducted at three University Hospitals in Stockholm and Uppsala, Sweden, consists of two phases: part 1 focuses on breast safety and is designed as a double-blind, randomised controlled trial. 260 postmenopausal women will be randomised to 100 mg mP or 0.5 mg NETA per day in continuous combination with 1 mg oestradiol. The primary objective is to compare the treatments with respect to percentage change in mammographic breast density after 12-month treatment. Secondary outcomes are breast proliferation, endometrial histology and proliferation, bleeding pattern, gut and vaginal microbiome, hormone levels and coagulation and metabolic factors, mood, and health-related quality of life. Part 2 features an open, single-arm design to study endometrial safety of 1-year treatment with mP in continuous combination with oestradiol on endometrial pathology (hyperplasia and cancer). We will treat 260 additional women with 100 mg mP/1 mg oestradiol resulting in an endometrial safety population of 390 women. The total number of participants in part 1 and part 2 will be 520. ETHICS AND DISSEMINATION The study protocol was approved by the Swedish Ethical Review Authority (2021-03033) on 29 June 2021 with amendment (2023-01480-02, protocol version 3.1) on 14 March 2023. Results of the study will be published in peer-reviewed journals and presented at scientific meetings. TRIAL REGISTRATION NUMBER NCT05586724.
Collapse
|
2
|
Palomba S, Costanzi F, Caserta D, Vitagliano A. Pharmacological and non-pharmacological interventions for improving endometrial receptivity in infertile patients with polycystic ovary syndrome: a comprehensive review of the available evidence. Reprod Biomed Online 2024; 49:104381. [PMID: 39454320 DOI: 10.1016/j.rbmo.2024.104381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Direct and indirect evidence suggests that endometrial receptivity may play a crucial role in the reduced fertility rate of women with polycystic ovary syndrome (PCOS). Various pharmacological and non-pharmacological strategies with potential effects on endometrial receptivity in patients with PCOS have been proposed. The aim of this study was to summarize the rationale and the clinical and experimental evidence of interventions tested for improving endometrial receptivity in infertile patients with PCOS. A systematic review was conducted by consulting electronic databases. All interventions with a potential influence on endometrial receptivity in infertile patients with PCOS were evaluated, and their main biological mechanisms were analysed. In total, 24 interventions related to endometrial receptivity were identified. Notwithstanding a strong biological rationale, no intervention aimed at improving endometrial receptivity in women with PCOS is supported by an adequate body of evidence, limiting their use in clinical practice. Further high-quality research is needed in this field to limit potentially ineffective and unsafe add-on treatments in infertile patients with PCOS.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Flavia Costanzi
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy; University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Donatella Caserta
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Amerigo Vitagliano
- Unit of Obstetrics and Gynaecology, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
3
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Giuliani E, Schon SB, Yang K, Burns GW, Neff LM, Remmer HA, Teixeira JM, Marsh EE. Obesity-induced follicular phase endometrial proteome dysregulation in a well-phenotyped population. F&S SCIENCE 2022; 3:367-375. [PMID: 35710094 DOI: 10.1016/j.xfss.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Despite obesity's significant impact on reproduction, its influence on the physiology of the human endometrium is largely understudied. We hypothesized that endometrial proteomic differences exist between obese (OW; body mass index [BMI] ≥30 kg/m2) and normal-weight women (NWW; BMI, 18.5-24.9 kg/m2). DESIGN Clinical cross-sectional study. SETTING Academic Medical Center. PATIENT(S) Healthy, normally-cycling, 18 to 40-year-old women (n = 6 OW and n = 6 NWW). MAIN OUTCOME MEASURE(S) Participants underwent screening and midfollicular phase visits. Demographic and anthropometric characteristics, blood samples, ultrasounds, and follicular phase endometrial biopsies were collected. Proteomic analyses of endometrial samples (liquid chromatography-mass spectrometry) were performed. Proteins with ≥2-fold difference and a false discovery rate of <0.1 were considered statistically significant (Benjamini-Hochberg adjustment). RESULT(S) Reproductive hormone levels did not differ between the two groups. Mean BMI, serum leptin concentration, and bioelectrical impedance analysis indices of adiposity were higher in OW than in NWW. Histological examination of the endometrial samples confirmed normal-appearing endometrium in both OW and NWW. A total of 2,930 proteins were detected across all samples, with an average number of proteins per sample of 2,059 ± 482 in NWW and 2,437 ± 187 in OW. A total of 17 proteins were differentially expressed in OW vs. NWW; 2 were more abundant, whereas 15 were underexpressed in OW, including the progesterone receptor. CONCLUSION(S) In this well-phenotyped population of healthy women, obesity was associated with significant endometrial proliferative phase proteomic differences affecting the hormonal and immunologic pathways. These could contribute to an increased risk of menstrual bleeding abnormalities and create an altered environment for future luteinization.
Collapse
Affiliation(s)
- Emma Giuliani
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Schon
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Kun Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Gregory W Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | - Henriette A Remmer
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
5
|
Kangasniemi MH, Komsi EK, Rossi HR, Liakka A, Khatun M, Chen JC, Paulson M, Hirschberg AL, Arffman RK, Piltonen TT. Artificial intelligence deep learning model assessment of leukocyte counts and proliferation in endometrium from women with and without polycystic ovary syndrome. F&S SCIENCE 2022; 3:174-186. [PMID: 35560015 DOI: 10.1016/j.xfss.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study whether artificial intelligence (AI) technology can be used to discern quantitative differences in endometrial immune cells between cycle phases and between samples from women with polycystic ovary syndrome (PCOS) and non-PCOS controls. Only a few studies have analyzed endometrial histology using AI technology, and especially, studies of the PCOS endometrium are lacking, partly because of the technically challenging analysis and unavailability of well-phenotyped samples. Novel AI technologies can overcome this problem. DESIGN Case-control study. SETTING University hospital-based research laboratory. PATIENT(S) Forty-eight women with PCOS and 43 controls. Proliferative phase samples (26 control and 23 PCOS) and luteinizing hormone (LH) surge timed LH+ 7-9 (10 control and 16 PCOS) and LH+ 10-12 (7 control and 9 PCOS) secretory endometrial samples were collected during 2014-2019. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Endometrial samples were stained with antibodies for CD8+ T cells, CD56+ uterine natural killer cells, CD68+ macrophages, and proliferation marker Ki67. Scanned whole slide images were analyzed with an AI deep learning model. Cycle phase differences in leukocyte counts, proliferation rate, and endometrial thickness were measured within the study populations and between the PCOS and control samples. A subanalysis of anovulatory PCOS samples (n = 11) vs. proliferative phase controls (n = 18) was also performed. RESULT(S) Automated cell counting with a deep learning model performs well for the human endometrium. The leukocyte numbers and proliferation in the endometrium fluctuate with the menstrual cycle. Differences in leukocyte counts were not observed between the whole PCOS population and controls. However, anovulatory women with PCOS presented with a higher number of CD68+ cells in the epithelium (controls vs. PCOS, median [interquartile range], 0.92 [0.75-1.51] vs. 1.97 [1.12-2.68]) and fewer leukocytes in the stroma (CD8%, 3.72 [2.18-4.20] vs. 1.44 [0.77-3.03]; CD56%, 6.36 [4.43-7.43] vs. 2.07 [0.65-4.99]; CD68%, 4.57 [3.92-5.70] vs. 3.07 [1.73-4.59], respectively) compared with the controls. The endometrial thickness and proliferation rate were comparable between the PCOS and control groups in all cycle phases. CONCLUSION(S) Artificial intelligence technology provides a powerful tool for endometrial research because it is objective and can efficiently analyze endometrial compartments separately. Ovulatory endometrium from women with PCOS did not differ remarkably from the controls, which may indicate that gaining ovulatory cycles normalizes the PCOS endometrium and enables normalization of leukocyte environment before implantation. Deviant endometrial leukocyte populations observed in anovulatory women with PCOS could be interrelated with the altered endometrial function observed in these women.
Collapse
Affiliation(s)
- Marika H Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Elina K Komsi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Henna-Riikka Rossi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Annikki Liakka
- Department of Pathology, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California
| | - Mariana Paulson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica L Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.
| |
Collapse
|
6
|
Pathare ADS, Hinduja I, Mahadik RC. Basic aspects of endometrial receptivity in PCOS patients. Mol Biol Rep 2022; 49:1519-1528. [PMID: 34988892 DOI: 10.1007/s11033-021-06976-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Polycystic Ovarian Syndrome (PCOS) is an endocrine disorder commonly affecting the reproductive capacity of women leading to infertility. PCOS-related infertility is majorly due to anovulation; however, it is not the only cause. The defective endometrium causing recurrent miscarriage and implantation failure can also be accountable for infertility in PCOS women. The unusual levels of hormones and their receptors in the PCOS endometrium have a hostile effect during WOI, making the microenvironment unfavorable for embryo implantation. To date, many studies have been performed to determine the role of candidate genes in endometrial receptivity but very limited data is available using whole genome approach. This review aims at summarizing the existing studies on the basic aspects of endometrial receptivity in PCOS. The review focuses on aberrant levels of hormones and their receptors in the endometrium, affecting the receptivity. Additionally, it explores the novel approach reviewing the effect on treatment options administered for ovulation induction in PCOS on their endometrial receptivity. Overall, this review will help us to understand the molecular milieu in PCOS endometrium and its effect on the receptivity potential. However, to have a thorough understanding of the mechanistic approach of hormonal imbalance in PCOS on endometrial receptivity, there is a need to give more weightage to genome-wide studies in the future. The current review will further guide us to formulate future studies using whole genome technologies for the assessment of endometrial receptivity in different cohorts of PCOS women, which may have future diagnostic implementations.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400016, India
| | - Indira Hinduja
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - Roshani C Mahadik
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400016, India
| |
Collapse
|
7
|
Palomba S. Is fertility reduced in ovulatory women with polycystic ovary syndrome? An opinion paper. Hum Reprod 2021; 36:2421-2428. [PMID: 34333641 DOI: 10.1093/humrep/deab181] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/22/2021] [Indexed: 01/13/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility; however, whether women with PCOS and spontaneous or drug-induced ovulatory cycles have the same reproductive potential as non-PCOS controls is a matter of debate. In the present opinion paper, the author takes the opportunity to summarize the collective evidence supporting the hypothesis of reduced fertility potential in women with PCOS, regardless of ovulatory status, and speculate that reduced reproductive potential may be caused by altered oocytes, embryo and endometrial competence, and infertility-related co-morbidities as well as an increased risk of pregnancy complications.
Collapse
Affiliation(s)
- Stefano Palomba
- Obstetrics and Gynecology, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Khatun M, Arffman RK, Lavogina D, Kangasniemi M, Laru J, Ahtikoski A, Lehtonen S, Paulson M, Hirschberg AL, Salumets A, Andersson LC, Piltonen TT. Women with polycystic ovary syndrome present with altered endometrial expression of stanniocalcin-1†. Biol Reprod 2021; 102:306-315. [PMID: 31494675 PMCID: PMC7016287 DOI: 10.1093/biolre/ioz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Stanniocalcin-1 (STC-1) is a pro-survival factor that protects tissues against stressors, such as hypoxia and inflammation. STC-1 is co-expressed with the endometrial receptivity markers, and recently endometrial STC-1 was reported to be dysregulated in endometriosis, a condition linked with endometrial progesterone resistance and inflammation. These features are also common in the endometrium in women with polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. Given that women with PCOS present with subfertility, pregnancy complications, and increased risk for endometrial cancer, we investigated endometrial STC-1 expression in affected women. Endometrial biopsy samples were obtained from women with PCOS and controls, including samples from overweight/obese women with PCOS before and after a 3-month lifestyle intervention. A total of 98 PCOS and 85 control samples were used in immunohistochemistry, reverse-transcription polymerase chain reaction, or in vitro cell culture. STC-1 expression was analyzed at different cycle phases and in endometrial stromal cells (eSCs) after steroid hormone exposure. The eSCs were also challenged with 8-bromo-cAMP and hypoxia for STC-1 expression. The findings indicate that STC-1 expression is not steroid hormone mediated although secretory-phase STC-1 expression was blunted in PCOS. Lower expression seems to be related to attenuated STC-1 response to stressors in PCOS eSCs, shown as downregulation of protein kinase A activity. The 3-month lifestyle intervention did not restore STC-1 expression in PCOS endometrium. More studies are warranted to further elucidate the mechanisms behind the altered endometrial STC-1 expression and rescue mechanism in the PCOS endometrium.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Darja Lavogina
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Marika Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Johanna Laru
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Anne Ahtikoski
- Department of Pathology, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Siri Lehtonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mariana Paulson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Velez LM, Seldin M, Motta AB. Inflammation and reproductive function in women with polycystic ovary syndrome†. Biol Reprod 2021; 104:1205-1217. [PMID: 33739372 DOI: 10.1093/biolre/ioab050] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathies, affecting 5-10% of women of reproductive age, and is characterized by the presence of ovarian cysts, oligo, or anovulation, and clinical or biochemical hyperandrogenism. Metabolic abnormalities such as hyperinsulinemia, insulin resistance, cardiovascular complications, dyslipidemia, and obesity are frequently present in PCOS women. Several key pathogenic pathways overlap between these metabolic abnormalities, notably chronic inflammation. The observation that this mechanism was shared led to the hypothesis that a chronic inflammatory state could contribute to the pathogenesis of PCOS. Moreover, while physiological inflammation is an essential feature of reproductive events such as ovulation, menstruation, implantation, and labor at term, the establishment of chronic inflammation may be a pivotal feature of the observed reproductive dysfunctions in PCOS women. Taken together, the present work aims to review the available evidence about inflammatory mediators and related mechanisms in women with PCOS, with an emphasis on reproductive function.
Collapse
Affiliation(s)
- Leandro M Velez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Alicia B Motta
- Center of Pharmacological and Botanical Studies (CEFYBO), National Scientific and Technical Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Albaghdadi AJH, Kan FWK. Therapeutic Potentials of Low-Dose Tacrolimus for Aberrant Endometrial Features in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:2872. [PMID: 33808965 PMCID: PMC7998611 DOI: 10.3390/ijms22062872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major anovulatory infertility affecting a great proportion of women of childbearing age and is associated with obesity, insulin resistance and chronic inflammation. Poor endometrial receptivity and recurrent implantation failure are major hurdles to the establishment of pregnancy in women with PCOS. The accumulating body of evidence obtained from experimental and clinical studies suggests a link between inherent adaptive and innate immune irregularities and aberrant endometrial features in PCOS. The use of conventional therapeutic interventions such as lifestyle modification, metformin and ovarian stimulation has achieved limited clinical success in restoring ovulation and endometrial receptivity in women with PCOS. Unlike other immunosuppressive drugs prescribed in the clinical management of autoimmune and inflammatory disorders that may have deleterious effects on fertility and fetal development, preclinical studies in mice and in women without PCOS but with repeated implantation failure revealed potential therapeutic benefits for the use of low-dose tacrolimus in treating female infertility. Improved systemic and ovarian immune functions, endometrial progesterone receptor and coreceptor expressions and uterine vascular adaptation to pregnancy were among features of enhanced progesterone-receptor sensitivity in the low-dose tacrolimus-treated mouse model of the disease. In this review, we have compiled available experimental and clinical data in literature on endometrial progesterone resistance and current therapeutic options, as well as mechanisms of actions and reported outcomes relevant to the potential therapeutic benefits for the use of low-dose tacrolimus in treating PCOS-associated female infertility.
Collapse
Affiliation(s)
| | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
11
|
Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update 2020; 27:584-618. [PMID: 33302299 DOI: 10.1093/humupd/dmaa051] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. An endometrial component has been suggested to contribute to subfertility and poor reproductive outcomes in affected women. OBJECTIVE AND RATIONALE The aim of this review was to determine whether there is sufficient evidence to support that endometrial function is altered in women with PCOS, whether clinical features of PCOS affect the endometrium, and whether there are evidence-based interventions to improve endometrial dysfunction in PCOS women. SEARCH METHODS An extensive literature search was performed from 1970 up to July 2020 using PubMed and Web of Science without language restriction. The search included all titles and abstracts assessing a relationship between PCOS and endometrial function, the role played by clinical and biochemical/hormonal factors related to PCOS and endometrial function, and the potential interventions aimed to improve endometrial function in women with PCOS. All published papers were included if considered relevant. Studies having a specific topic/hypothesis regarding endometrial cancer/hyperplasia in women with PCOS were excluded from the analysis. OUTCOMES Experimental and clinical data suggest that the endometrium differs in women with PCOS when compared to healthy controls. Clinical characteristics related to the syndrome, alone and/or in combination, may contribute to dysregulation of endometrial expression of sex hormone receptors and co-receptors, increase endometrial insulin-resistance with impaired glucose transport and utilization, and result in chronic low-grade inflammation, immune dysfunction, altered uterine vascularity, abnormal endometrial gene expression and cellular abnormalities in women with PCOS. Among several interventions to improve endometrial function in women with PCOS, to date, only lifestyle modification, metformin and bariatric surgery have the highest scientific evidence for clinical benefit. WIDER IMPLICATIONS Endometrial dysfunction and abnormal trophoblast invasion and placentation in PCOS women can predispose to miscarriage and pregnancy complications. Thus, patients and their health care providers should advise about these risks. Although currently no intervention can be universally recommended to reverse endometrial dysfunction in PCOS women, lifestyle modifications and metformin may improve underlying endometrial dysfunction and pregnancy outcomes in obese and/or insulin resistant patients. Bariatric surgery has shown its efficacy in severely obese PCOS patients, but a careful evaluation of the benefit/risk ratio is warranted. Large scale randomized controlled clinical trials should address these possibilities.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Obstetrics and Gynecology, Grande Ospedale Metropolitano of Reggio Calabria, Reggio Calabria, Italy
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Paulson M, Sahlin L, Hirschberg AL. Endometrial expression of anti-Müllerian hormone and its type II receptor in women with polycystic ovary syndrome. Reprod Biomed Online 2020; 41:128-137. [DOI: 10.1016/j.rbmo.2020.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023]
|
13
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Paulson M, Norstedt G, Sahlin L, Hirschberg AL. Association between prolactin receptor expression and proliferation in the endometrium of obese women with polycystic ovary syndrome. Gynecol Endocrinol 2020; 36:226-232. [PMID: 31389293 DOI: 10.1080/09513590.2019.1650343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with increased risk of endometrial cancer. There is growing evidence that prolactin and its receptor (PRLR) are involved in the development of cancer. We assessed endometrial expression of PRLR mRNA, and immunostaining of PRLR and the proliferation marker Ki67 on different cycle days in obese (OB-PCOS) and normal-weight women with PCOS and body mass index-matched controls. The OB-PCOS group underwent a 3 months lifestyle intervention. Prior to intervention, obese women with PCOS and controls had lower endometrial levels of PRLR mRNA in proliferative endometrium than the normal-weight groups (p < .05). After intervention, six OB-PCOS women had confirmed ovulation, while 12 remained anovulatory. Both these subgroups displayed higher immunostaining of PRLR in endometrial stroma, and in the anovulatory subgroup also increased Ki67, on cycle days 21-23 compared with controls (p < .05). In obese controls, the PRLR mRNA expression was decreased in secretory endometrium compared with proliferative endometrium (p = .004). A corresponding change within the cycle was not found in OB-PCOS women. Immunostaining of PRLR in the secretory phase correlated positively with Ki67 (p < .05) in the endometrium. These observations suggest that short-term lifestyle intervention can restore ovulation but not normalize PRLR expression in the endometrium of obese women with PCOS. Trial registration: ISRCTN, ISRCTN18400086, https://doi.org/10.1186/ISRCTN18400086.
Collapse
Affiliation(s)
- Mariana Paulson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Pediatric Endocrinology Unit, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Norstedt
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Pediatric Endocrinology Unit, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Lena Sahlin
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Nordfertil Research Lab Stockholm, Childhood Cancer Research Unit, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|