1
|
Parent EE, Gleba JJ, Knight JA, Kenderian SJ, Copland JA, Cai H. Zirconium- 89 Labeled Antibody K1-70 for PET Imaging of Thyroid-stimulating Hormone Receptor Expression in Thyroid Cancer. Mol Imaging Biol 2024; 26:847-857. [PMID: 39174789 DOI: 10.1007/s11307-024-01945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Thyroid-stimulating hormone receptor (TSHR) is a G-protein coupled receptor that is highly expressed on benign and malignant thyroid tissues. TSHR binding and activation has long been a component of thyroid cancer molecular imaging and radiotherapy, by promoting expression of the sodium-iodide symporter (NIS) and incorporation of I-131 into thyroid hormones. Here, we report the radiosynthesis and preclinical evaluation of a Zirconium-89 (89Zr) labeled TSHR antibody to serve as a positron emission tomography (PET) diagnostic correlate for therapeutic agents targeting TSHR without reliance on NIS. PROCEDURES TSHR human monoclonal antibody K1-70 was conjugated to chelator desferrioxamine-p-benzyl-isothiocyanate, followed by labeling with Zr-89, yielding the radiotracer 89Zr-DFO-TSHR-Ab. The in vitro cellar uptake and binding affinity of 89Zr-DFO-TSHR-Ab were analyzed in three new TSHR stable overexpressing tumor cell lines and their corresponding wild types (WT) with low or no TSHR expression. 89Zr-DFO-TSHR-Ab PET/CT imaging of TSHR expression was evaluated in tumor mouse models bearing one TSHR-positive tumor and other negative control with or without the coinjection of antibody K1-70, and then verified by radiotracer biodistribution study and tumor immunohistochemistry (IHC). RESULTS The conjugate DFO-TSHR-Ab was labeled with Zr-89 at 37 °C for 60 min and purified by PD-10 column in radiochemical yields of 68.8 ± 9.9%, radiochemical purities of 98.7 ± 0.8%, and specific activities of 19.1 ± 2.7 mCi/mg (n = 5). In vitro cell studies showed 89Zr-DFO-TSHR-Ab had significantly high uptake on TSHR expressing tumor cells with nanomolar affinity and high potency. Preclinical PET/CT imaging revealed that 89Zr-DFO-TSHR-Ab selectively detected TSHR expressing thyroid tumors and displayed improved in vivo performance with the coinjection of unlabeled TSHR antibody K1-70 leading to higher uptake in TSHR expressing tumors than parental WT tumors and physiologic tissues; this observation was confirmed by the biodistribution and immunostaining analyses. CONCLUSIONS We synthesized 89Zr-labeled antibody K1-70 as a new radiopharmaceutical for PET imaging of TSHR. 89Zr-DFO-TSHR-Ab has high radioactive uptake and retention in TSHR expressing tumors and cleared quickly from most background tissues in mouse models. Our study demonstrated that 89Zr-DFO-TSHR-Ab has the potential for PET imaging of TSHR-positive thyroid cancer and monitoring TSHR-targeted therapy.
Collapse
Affiliation(s)
| | - Justyna J Gleba
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Joshua A Knight
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Saad J Kenderian
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Hancheng Cai
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Gimblet GR, Houson HA, Whitt J, Reddy P, Copland JA, Kenderian SS, Szkudlinski MW, Jaskula-Sztul R, Lapi SE. PET Imaging of Differentiated Thyroid Cancer with TSHR-Targeted [ 89Zr]Zr-TR1402. Mol Pharm 2024; 21:3889-3896. [PMID: 38976794 DOI: 10.1021/acs.molpharmaceut.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Thyroid cancer is the most common endocrine cancer, with differentiated thyroid cancers (DTCs) accounting for 95% of diagnoses. While most DTC patients are diagnosed and treated with radioiodine (RAI), up to 20% of DTC patients become RAI refractory (RAI-R). RAI-R patients have significantly reduced survival rates compared to patients who remain RAI-avid. This study explores [89Zr]Zr-TR1402 as a thyroid-stimulating hormone receptor (TSHR)-targeted PET radiopharmaceutical for DTC. [89Zr]Zr-TR1402 was synthesized with a molar activity of 25.9 MBq/nmol by conjugating recombinant human TSH (rhTSH) analogue TR1402 to chelator p-SCN-Bn-deferoxamine (DFO) in a molar ratio of 3:1 (DFO/TR1402) and radiolabeling with 89Zr (t1/2 = 78.4 h, β+ = 22.7%). As TSHR is absent in commonly available DTC-derived cell lines, TSHR was reintroduced via stable transduction by delivering a lentivirus containing the full-length coding region of the human TSHR gene. Receptor-mediated uptake of [89Zr]Zr-TR1402 was evaluated in vitro in stably transduced TSHR+ and wild-type TSHR- DTC cell lines. In vivo PET imaging was performed on Days 1-3 postinjection in male and female athymic nude mice bearing TSHR+ and TSHR- xenografts, along with ex vivo biodistribution on Day 3 postinjection. In vitro uptake of 1 nM [89Zr]Zr-TR1402 was significantly higher in TSHR+ THJ529T (P < 0.0001) and FTC133 (P < 0.01) cells than in TSHR- THJ529T and FTC133 cells. This uptake was shown to be specific in both TSHR+ THJ529T (P < 0.0001) and TSHR+ FTC133 (P < 0.0001) cells by blocking uptake with 250 nm DFO-TR1402. In vivo PET imaging showed accumulation of [89Zr]Zr-TR1402 in TSHR+ tumors, which was the highest on Day 1. In the male FTC133 xenograft model, ex vivo biodistribution confirmed a significant difference (P < 0.001) in uptake between FTC133+ (1.3 ± 0.1%ID/g) and FTC133- (0.8 ± 0.1%ID/g) tumors. A significant difference (P < 0.05) in uptake was also seen in the male THJ529T xenograft model between THJ529T+ (1.8 ± 0.6%ID/g) and THJ529T- (0.8 ± 0.4%ID/g) tumors. The in vitro and in vivo accumulation of [89Zr]Zr-TR1402 in TSHR-expressing DTC cell lines support the continued preclinical optimization of this approach.
Collapse
Affiliation(s)
- Grayson R Gimblet
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Pratheek Reddy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - John Al Copland
- Department of Cancer Biology, Mayo Clinic Jacksonville, Jacksonville, Florida 32224, United States
| | - Saad S Kenderian
- Division of Hematology, Mayo Clinic Rochester, Rochester, Minnesota 55905, United States
| | | | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
3
|
Kase AM, Gleba J, Miller JL, Miller E, Petit J, Barrett MT, Zhou Y, Parent EE, Cai H, Knight JA, Orme J, Reynolds J, Durham WF, Metz TM, Meurice N, Edenfield B, Alasonyalilar Demirer A, Bilgili A, Hickman PG, Pawlush ML, Marlow L, Wickland DP, Tan W, Copland JA. Patient-Derived Tumor Xenograft Study with CDK4/6 Inhibitor Plus AKT Inhibitor for the Management of Metastatic Castration-Resistant Prostate Cancer. Mol Cancer Ther 2024; 23:823-835. [PMID: 38442920 DOI: 10.1158/1535-7163.mct-23-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.
Collapse
Affiliation(s)
- Adam M Kase
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - Justyna Gleba
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - James L Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Erin Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Joachim Petit
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Yumei Zhou
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Hancheng Cai
- Radiology Department, Mayo Clinic Jacksonville, Florida
| | - Joshua A Knight
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Jacob Orme
- Division of Hematology-Oncology, Mayo Clinic Rochester, Minnesota
| | - Jordan Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic Jacksonville, Florida
| | | | - Thomas M Metz
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Nathalie Meurice
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | | | - Ahmet Bilgili
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | | | | | - Laura Marlow
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Daniel P Wickland
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic Jacksonville, Florida
| | - Winston Tan
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - John A Copland
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| |
Collapse
|
4
|
Cirello V, Gambale C, Nikitski AV, Masaki C, Roque J, Colombo C. Poorly differentiated thyroid carcinoma: molecular, clinico-pathological hallmarks and therapeutic perspectives. Panminerva Med 2024; 66:155-173. [PMID: 38576304 DOI: 10.23736/s0031-0808.23.05040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Poorly differentiated thyroid carcinoma (PDTC) is a rare and extremely aggressive tumor, accounting for about 2-15% of all thyroid cancer. PDTC has a distinct biological behavior compared to well-differentiated and anaplastic thyroid carcinoma and, in last years, it has been classified as a separate entity from both anatomopathological and clinical points of view. Nevertheless, there is still a lack of consensus among clinicians regarding inclusion criteria and definition of PDTC that affects its diagnosis and clinical management. Due to its rarity and difficulty in classification compared to other tumors, very few studies are available to date and series often include different histotypes in addition to PDTC. This review focuses on main studies concerning PDTC summarizing the evolution in the definition of its diagnosis criteria, clinicopathological features, management, and outcome. The data available confirm that the pathological evaluation and classification of PDTC are crucial and should therefore be standardized. Since the clinical presentation and prognosis of PDTC may vary widely depending on the different stage of the disease at diagnosis, the patient's management may differ in treatment and should be tailored to each patient. Finally, this review discusses advances in molecular insights of PDTC that, together with the implementation of both in vitro and in vivo models, will provide valuable insights into biological mechanisms of progression, metastasis, and invasion of this aggressive thyroid carcinoma. Further studies on larger, carefully selected series are needed to better assess the peculiar features of PDTC and to better define its management by focusing on the best diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Valentina Cirello
- Endocrine Oncology Unit, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carla Gambale
- Department of Clinical and Experimental Medicine, Endocrine Unit, University Hospital of Pisa, Pisa, Italy
| | - Alyaksandr V Nikitski
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Chie Masaki
- Department of Surgery, Ito Hospital, Tokyo, Japan
| | - João Roque
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Carla Colombo
- Endocrine Oncology Unit, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy -
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Gimblet GR, Whitt J, Houson HA, Lin D, Guenter R, Rao TC, Wang D, Ness J, Gonzalez ML, Murphy MS, Gillis A, Chen H, Copland JA, Kenderian SS, Lloyd RV, Szkudlinski MW, Lapi SE, Jaskula-Sztul R. Thyroid-stimulating hormone receptor (TSHR) as a target for imaging differentiated thyroid cancer. Surgery 2024; 175:199-206. [PMID: 37919223 DOI: 10.1016/j.surg.2023.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Of the half a million cases of thyroid cancer diagnosed annually, 95% are differentiated thyroid cancers. Although clinical guidelines recommend surgical resection followed by radioactive iodine ablation, loss of sodium-iodine symporter expression causes up to 20% of differentiated thyroid cancers to become radioactive iodine refractory. For patients with radioactive iodine refractory disease, there is an urgent need for new diagnostic and therapeutic approaches. We evaluated the thyroid-stimulating hormone receptor as a potential target for imaging of differentiated thyroid cancer. METHODS We immunostained tissue microarrays containing 52 Hurthle cell carcinomas to confirm thyroid-stimulating hormone receptor expression. We radiolabeled chelator deferoxamine conjugated to recombinant human thyroid-stimulating hormone analog superagonist TR1402 with 89Zr (t1/2 = 78.4 h, β+ =22.7%) to produce [89Zr]Zr-TR1402. We performed in vitro uptake assays in high-thyroid-stimulating hormone receptor and low-thyroid-stimulating hormone receptor-expressing THJ529T and FTC133 thyroid cancer cell lines. We performed in vivo positron emission tomography/computed tomography and biodistribution studies in male athymic nude mice bearing thyroid-stimulating hormone receptor-positive THJ529T tumors. RESULTS Immunohistochemical analysis revealed 62% of patients (27 primary and 5 recurrent) were thyroid-stimulating hormone receptor membranous immunostain positive. In vitro uptake of 1nM [89Zr]Zr-TR1402 was 38 ± 17% bound/mg in thyroid-stimulating hormone receptor-positive THJ529T thyroid cancer cell lines compared to 3.2 ± 0.5 in the low-expressing cell line (P < .01), with a similar difference seen in FTC133 cell lines (P < .0001). In vivo and biodistribution studies showed uptake of [89Zr]Zr-TR1402 in thyroid-stimulating hormone receptor-expressing tumors, with a mean percentage of injected dose/g of 1.9 ± 0.4 at 3 days post-injection. CONCLUSION Our observation of thyroid-stimulating hormone receptor expression in tissue microarrays and [89Zr]Zr-TR1402 accumulation in thyroid-stimulating hormone receptor-positive thyroid cancer cells and tumors suggests thyroid-stimulating hormone receptor is a promising target for imaging of differentiated thyroid cancer.
Collapse
Affiliation(s)
- Grayson R Gimblet
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Diana Lin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Rachael Guenter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL. https://twitter.com/rachaelguenter
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Dezhi Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - John Ness
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Madisen S Murphy
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Andrea Gillis
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL. https://twitter.com/herbchen
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic Jacksonville, Jacksonville, FL
| | | | - Ricardo V Lloyd
- Department of Pathology, University of Wisconsin-Madison, Madison, WI
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL. https://twitter.com/lapisuzanne
| | | |
Collapse
|
6
|
Jungels C, Pita JM, Costante G. Anaplastic thyroid carcinoma: advances in molecular profiling and targeted therapy. Curr Opin Oncol 2023; 35:1-9. [PMID: 36398690 DOI: 10.1097/cco.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE OF REVIEW Anaplastic thyroid carcinomas (ATCs) are rare cancers with a globally very poor prognosis, because of their immensely aggressive behaviour, resulting in predominantly advanced stage of disease at diagnosis. Response to available therapies is still disappointing. Aim of the present review is to illustrate the diverse new strategies under investigation, to improve the poor outcome of these patients. RECENT FINDINGS Applying molecular analysis in ATC is unravelling potentially actionable targets of therapy. If a mutation of BRAF V600E is found, a combination of Dabrafenib and Trametinib is the recommended treatment. In the presence of another druggable mutation, a specific targeted therapy may be proposed. In the absence of druggable mutations, immunotherapy is an alternative approach, especially in case of significant PD-L1 expression. SUMMARY The molecular profiling of tumour samples is elucidating the genetic alterations involved in ATC development, and new preclinical models are under study to define innovative approaches for individualized treatment of such patients. Hopefully this approach could improve ATC prognosis.
Collapse
Affiliation(s)
- Christiane Jungels
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jaime Miguel Pita
- Institute of Interdisciplinary Research (IRIBHM) and ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Giuseppe Costante
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Endocrinology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Maniakas A, Henderson YC, Hei H, Peng S, Chen Y, Jiang Y, Ji S, Cardenas M, Chiu Y, Bell D, Williams MD, Hofmann MC, Scherer SE, Wheeler DA, Busaidy NL, Dadu R, Wang JR, Cabanillas ME, Zafereo M, Johnson FM, Lai SY. Novel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity. J Clin Endocrinol Metab 2021; 106:e4652-e4665. [PMID: 34147031 PMCID: PMC8530744 DOI: 10.1210/clinem/dgab453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Anaplastic thyroid cancer (ATC) is a rare, aggressive, and deadly disease. Robust preclinical thyroid cancer models are needed to adequately develop and study novel therapeutic agents. Patient-derived xenograft (PDX) models may resemble patient tumors by recapitulating key genetic alterations and gene expression patterns, making them excellent preclinical models for drug response evaluation. OBJECTIVE We developed distinct ATC PDX models concurrently with cell lines and characterized them in vitro and in vivo. METHODS Fresh thyroid tumor from patients with a preoperative diagnosis of ATC was surgically collected and divided for concurrent cell line and PDX model development. Cell lines were created by generating single cells through enzymatic digestion. PDX models were developed following direct subcutaneous implantation of fresh tumor on the flank of immune compromised/athymic mice. RESULTS Six ATC PDX models and 4 cell lines were developed with distinct genetic profiles. Mutational characterization showed one BRAF/TP53/CDKN2A, one BRAF/CDKN2A, one BRAF/TP53, one TP53 only, one TERT-promoter/HRAS, and one TERT-promoter/KRAS/TP53/NF2/NFE2L2 mutated phenotype. Hematoxylin-eosin staining comparing the PDX models to the original patient surgical specimens show remarkable resemblance, while immunohistochemistry stains for important biomarkers were in full concordance (cytokeratin, TTF-1, PAX8, BRAF). Short tandem repeats DNA fingerprinting analysis of all PDX models and cell lines showed strong concordance with the original tumor. PDX successful establishment rate was 32%. CONCLUSION We have developed and characterized 6 novel ATC PDX models with 4 matching cell lines. Each PDX model harbors a distinct genetic profile, making them excellent tools for preclinical therapeutic trials.
Collapse
Affiliation(s)
- Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Division of Oto-rhino-laryngology-Head and Neck Surgery, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, H1T 2M4, Canada
| | - Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hu Hei
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Shaohua Peng
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shuangxi Ji
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Steve E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen Y Lai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Correspondence: Stephen Y. Lai, MD, PhD, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1445, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Liu CL, Hsu YC, Lee JJ, Chen MJ, Lin CH, Huang SY, Cheng SP. Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in thyroid cancer cells. Mol Cell Endocrinol 2020; 499:110595. [PMID: 31563469 DOI: 10.1016/j.mce.2019.110595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The pentose phosphate pathway (PPP) plays an important role in the biosynthesis of ribonucleotide precursor and NADPH. Cancer cells frequently increase the flux of glucose into the PPP to support the anabolic demands and regulate oxidative stress. Consistently, metabolomic analyses indicate an upregulation of the PPP in thyroid cancer. In the present study, we found that the combination of glucose-6-phosphate dehydrogenase (G6PD) and transketolase inhibitors (6-aminonicotinamide and oxythiamine) exerted an additive or synergistic effect on cell growth inhibition in thyroid cancer cells. Targeting PPP significantly increased cellular reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress and apoptosis. Suppressed cell viability could be partially rescued with treatment with the ROS scavenger or apoptosis inhibitor but not ER-stress inhibitor. Taken together, dual PPP blockade leads to pharmacologic additivity or synergism and causes ROS-mediated apoptosis in thyroid cancer cells.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City,Taiwan, ROC
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Shih-Yuan Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
9
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
10
|
Wei W, Hardin H, Luo QY. Targeting autophagy in thyroid cancers. Endocr Relat Cancer 2019; 26:R181-R194. [PMID: 30667364 DOI: 10.1530/erc-18-0502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Thyroid cancer is one of the most common endocrine malignancies. Although the prognosis for the majority of thyroid cancers is relatively good, patients with metastatic, radioiodine-refractory or anaplastic thyroid cancers have an unfavorable outcome. With the gradual understanding of the oncogenic events in thyroid cancers, molecularly targeted therapy using tyrosine kinase inhibitors (TKIs) is greatly changing the therapeutic landscape of radioiodine-refractory differentiated thyroid cancers (RR-DTCs), but intrinsic and acquired drug resistance, as well as adverse effects, may limit their clinical efficacy and use. In this setting, development of synergistic treatment options is of clinical significance, which may enhance the therapeutic effect of current TKIs and further overcome the resultant drug resistance. Autophagy is a critical cellular process involved not only in protecting cells and organisms from stressors but also in the maintenance and development of various kinds of cancers. Substantial studies have explored the complex role of autophagy in thyroid cancers. Specifically, autophagy plays important roles in mediating the drug resistance of small-molecular therapeutics, in regulating the dedifferentiation process of thyroid cancers and also in affecting the treatment outcome of radioiodine therapy. Exploring how autophagy intertwines in the development and dedifferentiation process of thyroid cancers is essential, which will enable a more profound understanding of the physiopathology of thyroid cancers. More importantly, these advances may fuel future development of autophagy-targeted therapeutic strategies for patients with thyroid cancers. Herein, we summarize the most recent evidence uncovering the role of autophagy in thyroid cancers and highlight future research perspectives in this regard.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
11
|
Landa I, Pozdeyev N, Korch C, Marlow LA, Smallridge RC, Copland JA, Henderson YC, Lai SY, Clayman GL, Onoda N, Tan AC, Garcia-Rendueles MER, Knauf JA, Haugen BR, Fagin JA, Schweppe RE. Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin Cancer Res 2019; 25:3141-3151. [PMID: 30737244 DOI: 10.1158/1078-0432.ccr-18-2953] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Thyroid cancer cell lines are valuable models but have been neglected in pancancer genomic studies. Moreover, their misidentification has been a significant problem. We aim to provide a validated dataset for thyroid cancer researchers. EXPERIMENTAL DESIGN We performed next-generation sequencing (NGS) and analyzed the transcriptome of 60 authenticated thyroid cell lines and compared our findings with the known genomic defects in human thyroid cancers. RESULTS Unsupervised transcriptomic analysis showed that 94% of thyroid cell lines clustered distinctly from other lineages. Thyroid cancer cell line mutations recapitulate those found in primary tumors (e.g., BRAF, RAS, or gene fusions). Mutations in the TERT promoter (83%) and TP53 (71%) were highly prevalent. There were frequent alterations in PTEN, PIK3CA, and of members of the SWI/SNF chromatin remodeling complex, mismatch repair, cell-cycle checkpoint, and histone methyl- and acetyltransferase functional groups. Copy number alterations (CNA) were more prevalent in cell lines derived from advanced versus differentiated cancers, as reported in primary tumors, although the precise CNAs were only partially recapitulated. Transcriptomic analysis showed that all cell lines were profoundly dedifferentiated, regardless of their derivation, making them good models for advanced disease. However, they maintained the BRAFV600E versus RAS-dependent consequences on MAPK transcriptional output, which correlated with differential sensitivity to MEK inhibitors. Paired primary tumor-cell line samples showed high concordance of mutations. Complete loss of p53 function in TP53 heterozygous tumors was the most prominent event selected during in vitro immortalization. CONCLUSIONS This cell line resource will help inform future preclinical studies exploring tumor-specific dependencies.
Collapse
Affiliation(s)
- Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Robert C Smallridge
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida.,Division of Endocrinology, Internal Medicine Department, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Naoyoshi Onoda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Aik Choon Tan
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bryan R Haugen
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
12
|
Schweppe RE, Pozdeyev N, Pike LA, Korch C, Zhou Q, Sams SB, Sharma V, Pugazhenthi U, Raeburn C, Albuja-Cruz MB, Reigan P, LaBarbera DV, Landa I, Knauf JA, Fagin JA, Haugen BR. Establishment and Characterization of Four Novel Thyroid Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E, or RASQ61R as Drivers. Mol Cancer Res 2019; 17:1036-1048. [PMID: 30733375 DOI: 10.1158/1541-7786.mcr-18-1026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/12/2018] [Accepted: 02/04/2019] [Indexed: 01/04/2023]
Abstract
Cancer cell lines are critical models to study tumor progression and response to therapy. In 2008, we showed that approximately 50% of thyroid cancer cell lines were redundant or not of thyroid cancer origin. We therefore generated new authenticated thyroid cancer cell lines and patient-derived xenograft (PDX) models using in vitro and feeder cell approaches, and characterized these models in vitro and in vivo. We developed four thyroid cancer cell lines, two derived from 2 different patients with papillary thyroid cancer (PTC) pleural effusions, CUTC5, and CUTC48; one derived from a patient with anaplastic thyroid cancer (ATC), CUTC60; and one derived from a patient with follicular thyroid cancer (FTC), CUTC61. One PDX model (CUTC60-PDX) was also developed. Short tandem repeat (STR) genotyping showed that each cell line and PDX is unique and match the original patient tissue. The CUTC5 and CUTC60 cells harbor the BRAF (V600E) mutation, the CUTC48 cell line expresses the RET/PTC1 rearrangement, and the CUTC61 cells have the HRAS (Q61R) mutation. Moderate to high levels of PAX8 and variable levels of NKX2-1 were detected in each cell line and PDX. The CUTC5 and CUTC60 cell lines form tumors in orthotopic and flank xenograft mouse models. IMPLICATIONS: We have developed the second RET/PTC1-expressing PTC-derived cell line in existence, which is a major advance in studying RET signaling. We have further linked all cell lines to the originating patients, providing a set of novel, authenticated thyroid cancer cell lines and PDX models to study advanced thyroid cancer.
Collapse
Affiliation(s)
- Rebecca E Schweppe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nikita Pozdeyev
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura A Pike
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher Korch
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Qiong Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon B Sams
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vibha Sharma
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Umarani Pugazhenthi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher Raeburn
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maria B Albuja-Cruz
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Bryan R Haugen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|