1
|
Nazari MA, Jha A, Kuo MJM, Patel M, Prodanov T, Rosenblum JS, Talvacchio S, Derkyi A, Charles K, Pacak K. Paediatric phaeochromocytoma and paraganglioma: A clinical update. Clin Endocrinol (Oxf) 2024; 101:446-454. [PMID: 37515400 DOI: 10.1111/cen.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Paediatric phaeochromocytomas and paragangliomas (PPGLs), though rare tumours, are associated with significant disability and death in the most vulnerable of patients early in their lives. However, unlike cryptogenic and insidious disease states, the clinical presentation of paediatric patients with PPGLs can be rather overt, allowing early diagnosis, granted that salient findings are recognized. Additionally, with prompt and effective intervention, prognosis is favourable if timely intervention is implemented. For this reason, this review focuses on four exemplary paediatric cases, succinctly emphasizing the now state-of-the-art concepts in paediatric PPGL management.
Collapse
Affiliation(s)
- Matthew A Nazari
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek Jha
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Mickey J M Kuo
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mayank Patel
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara Prodanov
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jared S Rosenblum
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Talvacchio
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Alberta Derkyi
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kailah Charles
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Developmental Endocrinology, Metabolism, Genetics and Endocrine Oncology Affinity Group, Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Cortez BN, Kuo MJM, Jha A, Patel M, Carrasquillo JA, Prodanov T, Charles KM, Talvacchio S, Derkyi A, Lin FI, Taïeb D, Del Rivero J, Pacak K. Case Series: ATRX Variants in Four Patients with Metastatic Pheochromocytoma. Front Endocrinol (Lausanne) 2024; 15:1399847. [PMID: 39351526 PMCID: PMC11439680 DOI: 10.3389/fendo.2024.1399847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 10/04/2024] Open
Abstract
Few reports have highlighted the rare presence of somatic ATRX variants in clinically aggressive, metastatic pheochromocytoma/paraganglioma (PCC/PGL); however, none have addressed detailed clinical presentation (including biochemistry and imaging) and management of these patients. Here, we address these clinical features and management based on four PCC patients with somatic ATRX variants from our National Institutes of Health PCC/PGL cohort. A total of 192 patients underwent exome sequencing (germline, somatic, or both), and four males were found to have somatic ATRX variants (with additional somatic VHL and FH oncogenic variants in patients 2 and 4, respectively). Per-lesion and per-patient comparisons were performed among functional imaging scans performed at the NIH. Biochemical phenotype and response to systemic treatment were evaluated. This mini-series supports prior studies showing aggressive/metastatic PCC in patients with somatic ATRX variants, as all developed widespread metastatic disease. All four PCC patients presented with noradrenergic biochemical phenotype, and some with significant elevation in 3-methoxytyramine. 18F-FDOPA PET/CT was found to be the superior functional imaging modality, with 100% lesion detection rate when compared to that of 68Ga-DOTATATE, 18F-FDG, 18F-FDA, and 123I-MIBG scans. While patients did not respond to chemotherapy or tyrosine kinase inhibitors, they responded to targeted radiotherapy using high-specific-activity 131I-MIBG (Azedra®) or 177Lu-DOTATATE (Lutathera®).
Collapse
Affiliation(s)
- Briana N. Cortez
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mickey J. M. Kuo
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Jorge A. Carrasquillo
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kailah M. Charles
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alberta Derkyi
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Frank I. Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital & Centre de Recherches en Cancérologie de Marseille (CERIMED) & French Institute of Health and Medical Research (Inserm) UMR1068 Marseille Cancerology Research Center, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Jaydira Del Rivero
- Developemental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Lian B, Lu J, Fang X, Zhang Y, Wang W, He Y, Yu H, Li F, Wang J, Chen W, Qi X. Genotype and clinical phenotype characteristics of MAX germline mutation-associated pheochromocytoma/paraganglioma syndrome. Front Endocrinol (Lausanne) 2024; 15:1442691. [PMID: 39279998 PMCID: PMC11392793 DOI: 10.3389/fendo.2024.1442691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Objective The aim of this study was to investigate the genotypic and clinical phenotypic characteristics of MAX germline mutation-associated pheochromocytoma (PCC) and paraganglioma (PGL). Methods We retrospectively analyzed the family investigation data and clinical genetic characteristics of six individuals from three independent families with PCC carrying MAX germline mutations from December 2005 to March 2024. A literature review was then conducted of the six carriers and another 103 carriers from the other 84 families with MAX germline mutations reported previously. Results There were 109 patients in 87 families with all five exons and 53 types of MAX germline mutations. p.R33* (c.97C>T; 21.1%), p.R75* (c.223C>T; 13.8%), and p.A67D (c.200C>A; 7.3%), which accounted for 42.2% of mutations detected, were the most common mutations. Moreover, 101 (92.7%) patients developed PCCs, including 59 bilateral PCCs and 42 unilateral PCCs, and 19 (18.8%) patients showed metastasis. The mean age at diagnosis was 32.8 ± 12.6 (13-80) years. The male-to-female ratio was 1.3:1. In 11 (10.9%) patients, the PCC was accompanied by chest or abdominal PGL, and one other patient had sole head and neck PGL. Nine (8.3%) patients also had functional pituitary adenomas, 11 (10.9%) developed other neuroendocrine tumors (NETs), and 7 (6.4%) presented with concomitant non-NET. Meanwhile, MAX-p.Q82Tfs*89 and p.E158A mutations are reported for the first time in this study. Conclusion MAX germline mutations may cause new types of multiple endocrine neoplasia. A comprehensive baseline assessment of neural crest cell-derived diseases is recommended for all individuals with MAX germline mutations. The risk of bilateral and metastatic PCCs should also be considered.
Collapse
Affiliation(s)
- Bijun Lian
- Laboratory Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Urology, Changhai Hospital, Navy Military Medical University, Shanghai, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital of Hangzhou Medical College, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Jun Lu
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital of Hangzhou Medical College, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Xudong Fang
- Laboratory Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiming Zhang
- Laboratory Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongyuan Yu
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital of Hangzhou Medical College, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Feiping Li
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital of Hangzhou Medical College, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Junwei Wang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Weiying Chen
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital of Hangzhou Medical College, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Xiaoping Qi
- Laboratory Department of Oncologic and Urologic Surgery, The 903rd PLA Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Enze Hospital of Hangzhou Medical College, Taizhou Enze Medical Center (Group), Taizhou, China
| |
Collapse
|
5
|
Pacak K, Taieb D, Lin FI, Jha A. Approach to the Patient: Concept and Application of Targeted Radiotherapy in the Paraganglioma Patient. J Clin Endocrinol Metab 2024; 109:2366-2388. [PMID: 38652045 PMCID: PMC11319006 DOI: 10.1210/clinem/dgae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Paragangliomas can metastasize, posing potential challenges both in symptomatic management and disease control. Systemic targeted radiotherapies using 131I-MIBG and 177Lu-DOTATATE are a mainstay in the treatment of metastatic paragangliomas. This clinical scenario and discussion aim to enhance physicians' knowledge of the stepwise approach to treat these patients with paraganglioma-targeted radiotherapies. It comprehensively discusses current approaches to selecting paraganglioma patients for targeted radiotherapies and how to choose between the two radiotherapies based on specific patient and tumor characteristics, when either therapy is feasible, or one is superior to another. The safety, efficacy, toxicity profiles, and optimization of these radiotherapies are also discussed, along with other therapeutic options including radiotherapies, available for patients besides these two therapies. Perspectives in radiotherapies of paraganglioma patients are outlined since they hold promising approaches in the near future that can improve patient outcomes.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| | - David Taieb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, 13385 Marseille, France
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| |
Collapse
|
6
|
K Nazar A, Basu S. Radiolabeled Somatostatin Analogs for Cancer Imaging. Semin Nucl Med 2024:S0001-2998(24)00058-8. [PMID: 39122608 DOI: 10.1053/j.semnuclmed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Somatostatin receptors (SSTR) are expressed by many tumours especially those related to neuro-endocrine origin and molecular functional imaging of SSTR expression using radiolabelled somatostatin analogs have revolutionized imaging of patients with these group of malignancies. Coming a long way from the first radiolabelled somatostatin analog 123I-Tyr-3-octreotide, there has been significant developments in terms of radionuclides used, the ligands and somatostatin derivatives. 111In-Pentetreotide extensively employed for imaging NETs at the beginning has now been replaced by 68Ga-SSA based PET-CT. SSA-PET/CT performs superior to conventional imaging modalities and has evolved in the mainframe for NET imaging. The advantages were multiple: (i) superior spatial resolution of PET versus SPECT, (ii) quantitative capabilities of PET aiding in disease activity and treatment response monitoring with better precision, (iii) shorter scan time and (iv) less patient exposure to radiation. The modality is indicated for staging, detecting the primary in CUP-NETs, restaging, treatment planning (along with FDG: the concept of dual-tracer PET-CT) as well as treatment response evaluation and follow-up of NETs. SSA PET/CT has also been incorporated in the guidelines for imaging of Pheochromocytoma-Paraganglioma, Medullary carcinoma thyroid, Meningioma and Tumor induced osteomalacia. At present, there is rising interest on (a) 18F-labelled SSA, (b) 64Cu-labelled SSA, and (c) somatostatin antagonists. 18F offers excellent imaging properties, 64Cu makes delayed imaging feasible which has implications in dosimetry and SSTR antagonists bind with the SST receptors with high affinity and specificity, providing high contrast images with less background, which can be translated to theranostics effectively. SSTR have been demonstrated in non-neuroendocrine tumours as well in the peer-reviewed literature, with studies demonstrating the potential of SSA PET/CT in Neuroblastoma, Nasopharyngeal carcinoma, carcinoma prostate (neuroendocrine differentiation) and lymphoma. This review will focus on the currently available SSAs and their history, different SPECT/PET agents, SSTR antagonists, comparison between the various imaging tracers, and their utility in both neuroendocrine and non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai.
| |
Collapse
|
7
|
Timmers HJLM, Taïeb D, Pacak K, Lenders JWM. Imaging of Pheochromocytomas and Paragangliomas. Endocr Rev 2024; 45:414-434. [PMID: 38206185 PMCID: PMC11074798 DOI: 10.1210/endrev/bnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Pheochromocytomas/paragangliomas are unique in their highly variable molecular landscape driven by genetic alterations, either germline or somatic. These mutations translate into different clusters with distinct tumor locations, biochemical/metabolomic features, tumor cell characteristics (eg, receptors, transporters), and disease course. Such tumor heterogeneity calls for different imaging strategies in order to provide proper diagnosis and follow-up. This also warrants selection of the most appropriate and locally available imaging modalities tailored to an individual patient based on consideration of many relevant factors including age, (anticipated) tumor location(s), size, and multifocality, underlying genotype, biochemical phenotype, chance of metastases, as well as the patient's personal preference and treatment goals. Anatomical imaging using computed tomography and magnetic resonance imaging and functional imaging using positron emission tomography and single photon emission computed tomography are currently a cornerstone in the evaluation of patients with pheochromocytomas/paragangliomas. In modern nuclear medicine practice, a multitude of radionuclides with relevance to diagnostic work-up and treatment planning (theranostics) is available, including radiolabeled metaiodobenzylguanidine, fluorodeoxyglucose, fluorodihydroxyphenylalanine, and somatostatin analogues. This review amalgamates up-to-date imaging guidelines, expert opinions, and recent discoveries. Based on the rich toolbox for anatomical and functional imaging that is currently available, we aim to define a customized approach in patients with (suspected) pheochromocytomas/paragangliomas from a practical clinical perspective. We provide imaging algorithms for different starting points for initial diagnostic work-up and course of the disease, including adrenal incidentaloma, established biochemical diagnosis, postsurgical follow-up, tumor screening in pathogenic variant carriers, staging and restaging of metastatic disease, theranostics, and response monitoring.
Collapse
Affiliation(s)
- Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France and European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1583, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Mallak N, O'Brien SR, Pryma DA, Mittra E. Theranostics in Neuroendocrine Tumors. Cancer J 2024; 30:185-193. [PMID: 38753753 DOI: 10.1097/ppo.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.
Collapse
Affiliation(s)
- Nadine Mallak
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| | - Sophia R O'Brien
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Erik Mittra
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| |
Collapse
|
9
|
Kiriakopoulos A, Giannakis P, Menenakos E. Pheochromocytoma: a changing perspective and current concepts. Ther Adv Endocrinol Metab 2023; 14:20420188231207544. [PMID: 37916027 PMCID: PMC10617285 DOI: 10.1177/20420188231207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
This article aims to review current concepts in diagnosing and managing pheochromocytoma and paraganglioma (PPGL). Personalized genetic testing is vital, as 40-60% of tumors are linked to a known mutation. Tumor DNA should be sampled first. Next-generation sequencing is the best and most cost-effective choice and also helps with the expansion of current knowledge. Recent advancements have also led to the increased incorporation of regulatory RNA, metabolome markers, and the NETest in PPGL workup. PPGL presentation is highly volatile and nonspecific due to its multifactorial etiology. Symptoms mainly derive from catecholamine (CMN) excess or mass effect, primarily affecting the cardiovascular system. However, paroxysmal nature, hypertension, and the classic triad are no longer perceived as telltale signs. Identifying high-risk subjects and diagnosing patients at the correct time by using appropriate personalized methods are essential. Free plasma/urine catecholamine metabolites must be first-line examinations using liquid chromatography with tandem mass spectrometry as the gold standard analytical method. Reference intervals should be personalized according to demographics and comorbidity. The same applies to result interpretation. Threefold increase from the upper limit is highly suggestive of PPGL. Computed tomography (CT) is preferred for pheochromocytoma due to better cost-effectiveness and spatial resolution. Unenhanced attenuation of >10HU in non-contrast CT is indicative. The choice of extra-adrenal tumor imaging is based on location. Functional imaging with positron emission tomography/computed tomography and radionuclide administration improves diagnostic accuracy, especially in extra-adrenal/malignant or familial cases. Surgery is the mainstay treatment when feasible. Preoperative α-adrenergic blockade reduces surgical morbidity. Aggressive metastatic PPGL benefits from systemic chemotherapy, while milder cases can be managed with radionuclides. Short-term postoperative follow-up evaluates the adequacy of resection. Long-term follow-up assesses the risk of recurrence or metastasis. Asymptomatic carriers and their families can benefit from surveillance, with intervals depending on the specific gene mutation. Trials primarily focusing on targeted therapy and radionuclides are currently active. A multidisciplinary approach, correct timing, and personalization are key for successful PPGL management.
Collapse
Affiliation(s)
- Andreas Kiriakopoulos
- Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens School of Medicine, 5th Surgical Clinic, Papadiamantopoulou 20 Str, PO: 11528, Athens 11528, Greece
| | | | | |
Collapse
|
10
|
Marcus C, Subramaniam RM. Paragangliomas and Pheochromocytomas: Positron Emission Tomography/Computed Tomography Diagnosis and Therapy. PET Clin 2023; 18:233-242. [PMID: 36585340 DOI: 10.1016/j.cpet.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular imaging evaluation of pheochromocytomas and paragangliomas depends on multiple factors, such as localized versus metastatic disease, the genetic, and biochemical profile of tumors. Positron emission tomography/computed tomography (PET/CT) imaging of these tumors outperforms Meta-Iodo-Benzyl-Guanidine (MIBG) scintigraphy in most cases. A few PET radiotracers have been studied in evaluating these patients with somatostatin receptor PET imaging and have shown superior performance compared with other agents in most of these patients. 18F-fluorodeoxyglucose PET/CT imaging is useful in select patients, such as those with succinate dehydrogenase complex subunit B-associated disease. Treatment strategy depends on multiple factors and necessitates a multidisciplinary approach.
Collapse
Affiliation(s)
- Charles Marcus
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Sciences, Emory University School of Medicine, 1364 Clifton Road Northeast, 1st Floor #E163, Atlanta, GA 30322, USA.
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, 1st Floor, Dunedin Hospital, 201 Great King Street, Dunedin 9016, New Zealand; Duke University Medical Center, Department of Radiology, 2301 Erwin Road, Box 3808, Durham, NC 27710, USA
| |
Collapse
|
11
|
Abstract
Hereditary pituitary tumorigenesis is seen in a relatively small proportion (around 5%) of patients with pituitary neuroendocrine tumors (PitNETs). The aim of the current review is to describe the main clinical and molecular features of such pituitary tumors associated with hereditary or familial characteristics, many of which have now been genetically identified. The genetic patterns of inheritance are classified into isolated familial PitNETs and the syndromic tumors. In general, the established genetic causes of familial tumorigenesis tend to present at a younger age, often pursue a more aggressive course, and are more frequently associated with growth hormone hypersecretion compared to sporadic tumors. The mostly studied molecular pathways implicated are the protein kinase A and phosphatidyl-inositol pathways, which are in the main related to mutations in the syndromes of familial isolated pituitary adenoma (FIPA), Carney complex syndrome, and X-linked acrogigantism. Another well-documented mechanism consists of the regulation of p27 or p21 proteins, with further acceleration of the pituitary cell cycle through the check points G1/S and M/G1, mostly documented in multiple endocrine neoplasia type 4. In conclusion, PitNETs may occur in relation to well-established familial germline mutations which may determine the clinical phenotype and the response to treatment, and may require family screening.
Collapse
Affiliation(s)
- Eleni Armeni
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK.
| | - Ashley Grossman
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Adnan A, Raju S, Kumar R, Basu S. An Appraisal and Update of Fluorodeoxyglucose and Non-Fluorodeoxyglucose-PET Tracers in Thyroid and Non-Thyroid Endocrine Neoplasms. PET Clin 2022; 17:343-367. [PMID: 35717097 DOI: 10.1016/j.cpet.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Endocrine neoplasms and malignancies are a diverse group of tumors with varied clinical, histopathologic, and functional features. These tumors vary from sporadic to hereditary, isolated entities to multiple neoplastic syndromes, functioning and non functioning tumors, unifocal locally invasive, and advanced to multifocal tumors with disseminated distant metastases. The presence of various specific biomarkers and specific receptor targets serves as valuable tools for diagnosis, prognosis, and management. PET-CT with FDG and a multitude of novel and specific radiotracers towards specific therapeutic targets mandates personalization of their use, so as to ensure maximum clinical benefit in the management of these neoplasms.
Collapse
Affiliation(s)
- Aadil Adnan
- Radiation Medicine Centre (B.A.R.C), Tata Memorial Centre Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Shobhana Raju
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sandip Basu
- Radiation Medicine Centre (B.A.R.C), Tata Memorial Centre Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
13
|
Nölting S, Bechmann N, Taieb D, Beuschlein F, Fassnacht M, Kroiss M, Eisenhofer G, Grossman A, Pacak K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr Rev 2022; 43:199-239. [PMID: 34147030 PMCID: PMC8905338 DOI: 10.1210/endrev/bnab019] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling-related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling-related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.,Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX2 6HG, UK.,Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK.,ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| |
Collapse
|
14
|
Nosé V, Gill A, Teijeiro JMC, Perren A, Erickson L. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 2022; 33:197-227. [PMID: 35285003 DOI: 10.1007/s12022-022-09705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.
Collapse
Affiliation(s)
- Vania Nosé
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | | | - José Manuel Cameselle Teijeiro
- Clinical University Hospital Santiago de Compostela and Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
15
|
Mahajan S, Pandit-Taskar N. Imaging in malignant adrenal cancers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Steinman JR, Thomas MH, McCartney CR, Padia SH. A novel pathogenic variant in MAX-Associated pheochromocytoma. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2021. [DOI: 10.1016/j.jecr.2021.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Carrasquillo JA, Chen CC, Jha A, Ling A, Lin FI, Pryma DA, Pacak K. Imaging of Pheochromocytoma and Paraganglioma. J Nucl Med 2021; 62:1033-1042. [PMID: 34330739 PMCID: PMC8833868 DOI: 10.2967/jnumed.120.259689] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
Imaging plays a critical role in the management of pheochromocytomas and paragangliomas and often guides treatment. The discovery of susceptibility genes associated with these tumors has led to better understanding of clinical and imaging phenotypes. Functional imaging is of prime importance because of its sensitivity and specificity in subtypes of pheochromocytoma and paraganglioma. Several radiopharmaceuticals have been developed to target specific receptors and metabolic processes seen in pheochromocytomas and paragangliomas, including 131I/123I-metaiodobenzylguanidine, 6-18F-fluoro-l-3,4-dihydroxyphenylalanine, 18F-FDG, and 68Ga-DOTA-somatostatin analogs. Two of these have consequently been adapted for therapy. This educational review focuses on the current imaging approaches used in pheochromocytomas and paragangliomas, which vary among clinical and genotypic presentations.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Clara C Chen
- Department of Radiology, Clinical Center, NIH, Bethesda, Maryland
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Alexander Ling
- Department of Radiology, Clinical Center, NIH, Bethesda, Maryland
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Daniel A Pryma
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karel Pacak
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
18
|
Sundin A, Hindié E, Avram AM, Tabarin A, Pacak K, Taïeb D. A Clinical Challenge: Endocrine and Imaging Investigations of Adrenal Masses. J Nucl Med 2021; 62:26S-33S. [PMID: 34230070 DOI: 10.2967/jnumed.120.246066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Incidentalomas are reported in 3%-4% of patients who undergo abdominal anatomic imaging, making adrenal mass evaluation a common occurrence. An adrenal mass can be caused by a variety of pathologies, such as benign cortical and medullary tumors, malignant tumors (primary or secondary), cysts, hyperplasia, hemorrhage, or more rarely infection/inflammation processes. Functioning tumors usually have increased hormonal production but they are less common. Regardless of their functional status, some tumors have the potential to behave aggressively. Anatomic and functional imaging together with biologic evaluation play a vital role in adrenal pathology subtyping. Most patients are initially evaluated by CT or MRI, which allows for tumor characterization (to a certain extent) and can rule out malignant behavior based on the absence of tumor growth during longitudinal follow-up. In the remaining patients for whom CT or MRI fail to characterize the pathogenesis of adrenal tumors, the use of specialized molecular imaging techniques should be performed after hormonal screening. This review emphasizes well-established and emerging nuclear medicine imaging modalities and describes their use across various clinical scenarios.
Collapse
Affiliation(s)
- Anders Sundin
- Section of Radiology & Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Elif Hindié
- Department of Nuclear Medicine, University Hospital of Bordeaux, Bordeaux, France
| | - Anca M Avram
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Antoine Tabarin
- Department of Endocrinology, University Hospital of Bordeaux, Bordeaux, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health, Bethesda, Maryland; and
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, France
| |
Collapse
|
19
|
Ryder SJ, Love AJ, Duncan EL, Pattison DA. PET detectives: Molecular imaging for phaeochromocytomas and paragangliomas in the genomics era. Clin Endocrinol (Oxf) 2021; 95:13-28. [PMID: 33296100 DOI: 10.1111/cen.14375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023]
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are rare tumours that arise from the adrenal medulla or extra-adrenal sympathetic or parasympathetic paraganglia. Recent advances in genetics have greatly enhanced understanding of the pathogenesis and molecular physiology of PPGL. Concomitantly, advances in molecular imaging mean four techniques are now available for use in PPGLs: [123 I]-MIBG coupled with SPECT/CT; [18 F]- FDG, [68 Ga]-DOTATATE and [18 F]-FDOPA coupled with PET/CT. Each modality relies on unique cellular uptake mechanisms that are contingent upon the tumour's molecular behaviour-which, in turn, is determined by the tumour's genetic profile. This genotype-phenotype correlation means the appropriate choice of radiotracer may depend on the known (or suspected) underlying genetic mutation, in addition to the clinical indication for the scan-whether confirming diagnosis, staging disease, surveillance or determining eligibility for radionuclide therapy. Given these rapid recent changes in genetic understanding and molecular imaging options, many clinicians find it challenging to choose the most appropriate scan for an individual with PPGL. To this end, recent guidelines published by the European Association of Nuclear Medicine and the Society of Nuclear Medicine and Molecular Imaging (EANM/SNMMI) have detailed the preferred radiotracer choices for individuals with PPGL based on their genotype and/or clinical presentation, providing timely clarity in this rapidly moving field. The current review summarizes the implications of the genotype-phenotype relationship of PPGL, specifically relating this to the performance of molecular imaging modalities, to inform and enable practising endocrinologists to provide tailored, personalized care for individuals with PPGL.
Collapse
Affiliation(s)
- Simon J Ryder
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Herston, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Amanda J Love
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Emma L Duncan
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Professor of Clinical Endocrinology, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- The Department of Endocrinology, St Thomas' Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - David A Pattison
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Department of Nuclear Medicine & Specialised PET Services, Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
20
|
Ku EJ, Kim KJ, Kim JH, Kim MK, Ahn CH, Lee KA, Lee SH, Lee YB, Park KH, Choi YM, Hong N, Hong AR, Kang SW, Park BK, Seong MW, Kim M, Jung KC, Jung CK, Cho YS, Paeng JC, Kim JH, Ryu OH, Rhee Y, Kim CH, Lee EJ. Diagnosis for Pheochromocytoma and Paraganglioma: A Joint Position Statement of the Korean Pheochromocytoma and Paraganglioma Task Force. Endocrinol Metab (Seoul) 2021; 36:322-338. [PMID: 33820394 PMCID: PMC8090459 DOI: 10.3803/enm.2020.908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 01/03/2023] Open
Abstract
Pheochromocytoma and paraganglioma (PPGLs) are rare catecholamine-secreting neuroendocrine tumors but can be life-threatening. Although most PPGLs are benign, approximately 10% have metastatic potential. Approximately 40% cases are reported as harboring germline mutations. Therefore, timely and accurate diagnosis of PPGLs is crucial. For more than 130 years, clinical, molecular, biochemical, radiological, and pathological investigations have been rapidly advanced in the field of PPGLs. However, performing diagnostic studies to localize lesions and detect metastatic potential can be still challenging and complicated. Furthermore, great progress on genetics has shifted the paradigm of genetic testing of PPGLs. The Korean PPGL task force team consisting of the Korean Endocrine Society, the Korean Surgical Society, the Korean Society of Nuclear Medicine, the Korean Society of Pathologists, and the Korean Society of Laboratory Medicine has developed this position statement focusing on the comprehensive and updated diagnosis for PPGLs.
Collapse
Affiliation(s)
- Eu Jeong Ku
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Seoul,
Korea
| | - Kyoung Jin Kim
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Jung Hee Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu,
Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju,
Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Kyeong Hye Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang,
Korea
| | - Yun Mi Choi
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong,
Korea
| | - Namki Hong
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| | - A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju,
Korea
| | - Sang-Wook Kang
- Thyroid-Endocrine Surgery Division, Department of Surgery, Yonsei University College of Medicine, Seoul,
Korea
| | - Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul,
Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Ohk-Hyun Ryu
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon,
Korea
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| | - Chong Hwa Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon,
Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
21
|
Seabrook AJ, Harris JE, Velosa SB, Kim E, McInerney-Leo AM, Dwight T, Hockings JI, Hockings NG, Kirk J, Leo PJ, Love AJ, Luxford C, Marshall M, Mete O, Pennisi DJ, Brown MA, Gill AJ, Hockings GI, Clifton-Bligh RJ, Duncan EL. Multiple Endocrine Tumors Associated with Germline MAX Mutations: Multiple Endocrine Neoplasia Type 5? J Clin Endocrinol Metab 2021; 106:1163-1182. [PMID: 33367756 DOI: 10.1210/clinem/dgaa957] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Pathogenic germline MAX variants are associated with pheochromocytoma and paraganglioma (PPGL), pituitary neuroendocrine tumors and, possibly, other endocrine and nonendocrine tumors. OBJECTIVE To report 2 families with germline MAX variants, pheochromocytomas (PCs) and multiple other tumors. METHODS Clinical, genetic, immunohistochemical, and functional studies at University hospitals in Australia on 2 families with germline MAX variants undergoing usual clinical care. The main outcome measures were phenotyping; germline and tumor sequencing; immunohistochemistry of PC and other tumors; functional studies of MAX variants. RESULTS Family A has multiple individuals with PC (including bilateral and metastatic disease) and 2 children (to date, without PC) with neuroendocrine tumors (paravertebral ganglioneuroma and abdominal neuroblastoma, respectively). One individual has acromegaly; immunohistochemistry of PC tissue showed positive growth hormone-releasing hormone staining. Another individual with previously resected PCs has pituitary enlargement and elevated insulin-like growth factor (IGF-1). A germline MAX variant (c.200C>A, p.Ala67Asp) was identified in all individuals with PC and both children, with loss of heterozygosity in PC tissue. Immunohistochemistry showed loss of MAX staining in PCs and other neural crest tumors. In vitro studies confirmed the variant as loss of function. In Family B, the proband has bilateral and metastatic PC, prolactin-producing pituitary tumor, multigland parathyroid adenomas, chondrosarcoma, and multifocal pulmonary adenocarcinomas. A truncating germline MAX variant (c.22G>T, p.Glu8*) was identified. CONCLUSION Germline MAX mutations are associated with PCs, ganglioneuromas, neuroblastomas, pituitary neuroendocrine tumors, and, possibly, parathyroid adenomas, as well as nonendocrine tumors of chondrosarcoma and lung adenocarcinoma, suggesting MAX is a novel multiple endocrine neoplasia gene.
Collapse
Affiliation(s)
- Amanda J Seabrook
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jessica E Harris
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | | | - Edward Kim
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Aideen M McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Trisha Dwight
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | | | - Judy Kirk
- Familial Cancer Service, Westmead Hospital, Sydney, Australia
| | - Paul J Leo
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Amanda J Love
- Department of Endocrinology, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Catherine Luxford
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mhairi Marshall
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - David J Pennisi
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Matthew A Brown
- Guy's and St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, King's College London, London, UK
| | - Anthony J Gill
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Gregory I Hockings
- Endocrinology Unit, Greenslopes Private Hospital, Brisbane, Australia
- University of Queensland Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
| | - Emma L Duncan
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
- University of Queensland Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London; St Thomas' Campus, London, UK
- Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Pheochromocytoma and Paraganglioma: From Clinical Findings to Diagnosis. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2020; 54:271-280. [PMID: 33312023 PMCID: PMC7729715 DOI: 10.14744/semb.2020.14826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The majority of pheochromocytoma (PCC) and paraganglioma (PGL) are endocrine active tumors, and they cause clinical symptoms by secreting excess one or more catecholamines (epinephrine, norepinephrine, and dopamine) and their inactive metabolites (metanephrine, normetanephrine, 3-metoxythromine). Although signs and symptoms regarding excess catecholamine often develop in PCC and PGL (PPGL), non-functional PPGLs may present with local compression symptoms. Persistent, sometimes worsening hypertension is the most common finding and occurs in 80-90% of the patients. Classically defined symptom triad; headache, sweating and palpitations are seen in only 25% of the patients with PCC. The difference of clinical symptoms may be related to the tumor secretion, epinephrine or norepinephrine. All patients with signs and symptoms suggestive of catecholamine excess should be screened by biochemical tests regardless of whether they have hypertension or not. Not all patients with newly diagnosed hypertension need to be screened, but only patients with additional tips for catecholamine excess should be screened. Approximately 20% of the PPGLs are diagnosed in childhood, and the male/female ratio is 2/1. 60-90% of pediatric patients present with hypertension. PPGL in pregnancy is rare, and the estimated incidence ranges between 1/15000-1/54000. Although early diagnosis is the most important factor in preventing mortality, diagnosis is not as easy as it is a rare condition. Hypertension is a common complication in pregnancy, occurring in 5-10%. Computed tomography should not be used as the imaging method during pregnancy; the first choice is magnetic resonance imaging with gadolinium or without contrast. Plasma free metanephrine or 24-hour urinary fractionated metanephrine level is recommended as a screening test for the diagnosis of PPGL in the Endocrine Society Clinical Practice Guideline. In suspicious situations, tests should be repeated. Since 40% of these patients have germline mutations, genetic tests are recommended for all patients with PPGL regardless of family history and age. Preoperative knowledge of germline mutations affects the surgical approach and the extent of adrenalectomy. After the biochemical diagnosis is made in PPGL, the tumor is localized with imaging methods to make the operation plan. In this review, we aimed to evaluate the clinical findings, diagnostic tests, and imaging studies for tumor localization in PPGL.
Collapse
|
23
|
Dahia PL, Clifton-Bligh R, Gimenez-Roqueplo AP, Robledo M, Jimenez C. HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES: Metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocr Relat Cancer 2020; 27:T41-T52. [PMID: 32069214 PMCID: PMC7334096 DOI: 10.1530/erc-19-0435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are adrenal or extra-adrenal autonomous nervous system-derived tumors. Most PPGLs are benign, but approximately 15% progress with metastases (mPPGLs). mPPGLs are more likely to occur in patients with large pheochromocytomas, sympathetic paragangliomas, and norepinephrine-secreting tumors. Older subjects, those with larger tumors and synchronous metastases, advance more rapidly. Germline mutations of SDHB, FH, and possibly SLC25A11, or somatic MAML3 disruptions relate to a higher risk for metastatic disease. However, it is unclear whether these mutations predict outcome. Once diagnosed, there are no well-established predictors of outcome in mPPGLs, and aggressive tumors have few therapeutic options and limited response. High-specific activity (HSA) metaiodine-benzyl-guanidine (MIBG) is the first FDA approved treatment and shows clinical effectiveness for MIBG-avid mPPGLs. Ongoing and future investigations should involve validation of emerging candidate outcome biomarkers, including somatic ATRX, TERT, and microRNA disruptions and identification of novel prognostic indicators. Long-term effect of HSA-MIBG and the role of other radiopharmaceuticals should be investigated. Novel trials targeting molecular events prevalent in SDHB/FH mutant tumors, such as activated hypoxia inducible factor 2 (HIF2), angiogenesis, or other mitochondrial defects that might confer unique vulnerability to these tumors should be developed and initiated. As therapeutic options are anticipated to expand, multi-institutional collaborations and well-defined clinical and molecular endpoints will be critical to achieve higher success rates in improving care for patients with mPPGLs.
Collapse
Affiliation(s)
- Patricia L.M. Dahia
- Division of Hematology and Medical Oncology, Dept Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio-TX, 78229
- to whom correspondence should be addressed: Patricia Dahia, MD, PhD, Robert Tucker Hayes Distinguished Chair in Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7880, San Antonio-TX, 78229-3900, Tel: (210) 567-4866,
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Northern Clinical School, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Anne-Paule Gimenez-Roqueplo
- Service de Génétique, Hôpital européen Georges Pompidou, INSERM UMR 970, PARCC@HEGP, 54 rue Leblanc, 75015 Paris, FRANCE
| | - Mercedes Robledo
- Human Cancer Genetics Program, Spanish National Cancer Research Center, E-28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
Tepede AA, Welch J, Lee M, Mandl A, Agarwal SK, Nilubol N, Patel D, Cochran C, Simonds WF, Weinstein LS, Jha A, Millo C, Pacak K, Blau JE. 18F-FDOPA PET/CT accurately identifies MEN1-associated pheochromocytoma. Endocrinol Diabetes Metab Case Rep 2020; 2020:EDM190156. [PMID: 32130200 PMCID: PMC7077596 DOI: 10.1530/edm-19-0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
SUMMARY Pheochromocytoma (PHEO) in multiple endocrine neoplasia type 1 (MEN1) is extremely rare. The incidence is reported as less than 2%. We report a case of a 76-year-old male with familial MEN1 who was found to have unilateral PHEO. Although the patient was normotensive and asymptomatic, routine screening imaging with CT demonstrated bilateral adrenal masses. The left adrenal mass grew from 2.5 to 3.9 cm over 4 years with attenuation values of 9 Hounsfield units (HU) pre-contrast and 15 HU post-contrast washout. Laboratory evaluation demonstrated an adrenergic biochemical phenotype. Both 18F-fluorodeoxyglucose (18F-FDG) PET/CT and 123I-metaiodobenzylguanidine (123I-mIBG) scintigraphy demonstrated bilateral adrenal uptake. In contrast, 18F-fluorodihydroxyphenylalanine (18F-FDOPA) PET/CT demonstrated unilateral left adrenal uptake (28.7 standardized uptake value (SUV)) and physiologic right adrenal uptake. The patient underwent an uneventful left adrenalectomy with pathology consistent for PHEO. Post-operatively, he had biochemical normalization. A review of the literature suggests that adrenal tumors >2 cm may be at higher risk for pheochromocytoma in patients with MEN1. Despite a lack of symptoms related to catecholamine excess, enlarging adrenal nodules should be biochemically screened for PHEO. 18F-FDOPA PET/CT may be beneficial for localization in these patients. LEARNING POINTS 18F-FDOPA PET/CT is a beneficial imaging modality for identifying pheochromocytoma in MEN1 patients. Adrenal adenomas should undergo routine biochemical workup for PHEO in MEN1 and can have serious peri-operative complications if not recognized, given that MEN1 patients undergo frequent surgical interventions. MEN1 is implicated in the tumorigenesis of PHEO in this patient.
Collapse
Affiliation(s)
- Aisha A Tepede
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - Maya Lee
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - Adel Mandl
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - Naris Nilubol
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Dhaval Patel
- National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Craig Cochran
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| | - Abhishek Jha
- Eunice Kennedy Shriver National Institute of Child Health and Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Corina Millo
- Clinical Center PET Department (CC PET), National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Jenny E Blau
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease (NIDDK)
| |
Collapse
|
25
|
Ma X, Li M, Tong A, Wang F, Cui Y, Zhang X, Zhang Y, Chen S, Li Y. Genetic and Clinical Profiles of Pheochromocytoma and Paraganglioma: A Single Center Study. Front Endocrinol (Lausanne) 2020; 11:574662. [PMID: 33362715 PMCID: PMC7761866 DOI: 10.3389/fendo.2020.574662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytoma/paraganglioma (PPGL) has a high genetic heterogeneity with 40% germline variants in known pathogenic genes. Data in Chinese on this aspect are scanty. To detect the genetic and clinical profile of Chinese PPGL patients, we examined the variants of 12 known germline pathogenic genes (SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, VHL, RET, NF1, MAX, TMEM127, and KIF1B) by next-generation sequencing and Sanger sequencing in 314 Chinese PPGL subjects. Twenty nine percent of Chinese PPGL patients had germline variants and SDHB was the most frequently mutated (14.6%). The most frequent SDHB variants were in exon 2, exon 7, and IVS 7. Pathogenic variants were more likely to occur in metastatic PPGL patients, paragangliomas, and patients under 30, with the ratio being 50.7% (35/69), 35.9% (56/156), and 49.5% (52/105), respectively. Our cohort included 314 patients from a single setting. The genetic and clinical features of Chinese PPGL patients were unique in some aspects compared to their non-Chinese counterparts. Identification of genotype-phenotype relation can serve as an effective tool for genetic prioritization and clinical decision-making.
Collapse
Affiliation(s)
- Xiaosen Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Anli Tong,
| | - Fen Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunying Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuebin Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi Chen
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People’s Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 2019; 26:R627-R652. [PMID: 31561209 PMCID: PMC7002202 DOI: 10.1530/erc-19-0165] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
In recent years, advancement in genetics has profoundly helped to gain a more comprehensive molecular, pathogenic, and prognostic picture of pheochromocytomas and paragangliomas (PPGLs). Newly discovered molecular targets, particularly those that target cell membranes or signaling pathways have helped move nuclear medicine in the forefront of PPGL precision medicine. This is mainly based on the introduction and increasing experience of various PET radiopharmaceuticals across PPGL genotypes quickly followed by implementation of novel radiotherapies and revised imaging algorithms. Particularly, 68Ga-labeled-SSAs have shown excellent results in the diagnosis and staging of PPGLs and in selecting patients for PRRT as a potential alternative to 123/131I-MIBG theranostics. PRRT using 90Y/177Lu-DOTA-SSAs has shown promise for treatment of PPGLs with improvement of clinical symptoms and/or disease control. However, more well-designed prospective studies are required to confirm these findings, in order to fully exploit PRRT's antitumoral properties to obtain the final FDA approval. Such an approval has recently been obtained for high-specific-activity 131I-MIBG for inoperable/metastatic PPGL. The increasing experience and encouraging preliminary results of these radiotherapeutic approaches in PPGLs now raises an important question of how to further integrate them into PPGL management (e.g. monotherapy or in combination with other systemic therapies), carefully taking into account the PPGLs locations, genotypes, and growth rate. Thus, targeted radionuclide therapy (TRT) should preferably be performed at specialized centers with an experienced interdisciplinary team. Future perspectives include the introduction of dosimetry and biomarkers for therapeutic responses for more individualized treatment plans, α-emitting isotopes, and the combination of TRT with other systemic therapies.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Health Technology Assessment Unit, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel) 2019; 11:cancers11101505. [PMID: 31597347 PMCID: PMC6827093 DOI: 10.3390/cancers11101505] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCC/PGLs) are rare, mostly catecholamine-producing neuroendocrine tumors of the adrenal gland (PCCs) or the extra-adrenal paraganglia (PGL). They can be separated into three different molecular clusters depending on their underlying gene mutations in any of the at least 20 known susceptibility genes: The pseudohypoxia-associated cluster 1, the kinase signaling-associated cluster 2, and the Wnt signaling-associated cluster 3. In addition to tumor size, location (adrenal vs. extra-adrenal), multiplicity, age of first diagnosis, and presence of metastatic disease (including tumor burden), other decisive factors for best clinical management of PCC/PGL include the underlying germline mutation. The above factors can impact the choice of different biomarkers and imaging modalities for PCC/PGL diagnosis, as well as screening for other neoplasms, staging, follow-up, and therapy options. This review provides a guide for practicing clinicians summarizing current management of PCC/PGL according to tumor size, location, age of first diagnosis, presence of metastases, and especially underlying mutations in the era of precision medicine.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany.
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany.
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford Ox3 7LJ, UK.
- Department of Gastroenterology, Royal Free Hospital ENETS Centre of Excellence, London NW3 2QG, UK.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
28
|
Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, Timmers HJ, Scott AT, Elojeimy S, Rubello D, Virgolini IJ, Fanti S, Balogova S, Pandit-Taskar N, Pacak K. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019; 46:2112-2137. [PMID: 31254038 PMCID: PMC7446938 DOI: 10.1007/s00259-019-04398-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Diverse radionuclide imaging techniques are available for the diagnosis, staging, and follow-up of phaeochromocytoma and paraganglioma (PPGL). Beyond their ability to detect and localise the disease, these imaging approaches variably characterise these tumours at the cellular and molecular levels and can guide therapy. Here we present updated guidelines jointly approved by the EANM and SNMMI for assisting nuclear medicine practitioners in not only the selection and performance of currently available single-photon emission computed tomography and positron emission tomography procedures, but also the interpretation and reporting of the results. METHODS Guidelines from related fields and relevant literature have been considered in consultation with leading experts involved in the management of PPGL. The provided information should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals. CONCLUSION Since the European Association of Nuclear Medicine 2012 guidelines, the excellent results obtained with gallium-68 (68Ga)-labelled somatostatin analogues (SSAs) in recent years have simplified the imaging approach for PPGL patients that can also be used for selecting patients for peptide receptor radionuclide therapy as a potential alternative or complement to the traditional theranostic approach with iodine-123 (123I)/iodine-131 (131I)-labelled meta-iodobenzylguanidine. Genomic characterisation of subgroups with differing risk of lesion development and subsequent metastatic spread is refining the use of molecular imaging in the personalised approach to hereditary PPGL patients for detection, staging, and follow-up surveillance.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 264 rue Saint-Pierre, 13005, Marseille Cedex 05, France.
| | - Rodney J Hicks
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elif Hindié
- Department of Nuclear Medicine, Hôpital Haut-Lévêque, Bordeaux University Hospitals, Pessac, France
| | - Benjamin A Guillet
- Department of Radiopharmacy, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Anca Avram
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Pietro Ghedini
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Henri J Timmers
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Saeed Elojeimy
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Transfusional Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Irène J Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefano Fanti
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Sona Balogova
- Department of Nuclear Medicine, Comenius University and St. Elisabeth Oncology Institute, Heydukova 10, 81250, Bratislava, Slovakia
- Department of Nuclear Medicine, Hôpital Tenon Assistance Publique-Hôpitaux de Paris and Sorbonne University, Paris, France
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Vermalle M, Tabarin A, Castinetti F. [Hereditary pheochromocytoma and paraganglioma: screening and follow-up strategies in asymptomatic mutation carriers]. ANNALES D'ENDOCRINOLOGIE 2018; 79 Suppl 1:S10-S21. [PMID: 30213301 DOI: 10.1016/s0003-4266(18)31234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The management of pheochromocytoma and paraganglioma has deeply evolved over the last years due to the discovery of novel genes of susceptibility, especially SDHx, MAX and TMEM127. While the modalities of diagnosis and management of patients presenting with hereditary pheochromocytoma and paraganglioma are now well defined, screening and follow-up strategies for asymptomatic mutation carriers remain a matter of debate. This raises major questions as these asymptomatic patients will require a lifelong follow-up. The aim of this review is an attempt to give insights on the optimal screening and follow-up strategies of asymptomatic carriers of SDHx, MAX and TMEM127 mutations, with additional thoughts on the forensic and psychological aspects of the management of such patients with rare diseases.
Collapse
Affiliation(s)
- Marie Vermalle
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| | - Antoine Tabarin
- Service d'endocrinologie, diabète et nutrition, USN Haut-Leveque, 33000 CHU Bordeaux, université Bordeaux, France
| | - Frederic Castinetti
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| |
Collapse
|
30
|
Han S, Suh CH, Woo S, Kim YJ, Lee JJ. Performance of 68Ga-DOTA–Conjugated Somatostatin Receptor–Targeting Peptide PET in Detection of Pheochromocytoma and Paraganglioma: A Systematic Review and Metaanalysis. J Nucl Med 2018; 60:369-376. [DOI: 10.2967/jnumed.118.211706] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023] Open
|
31
|
Alrezk R, Suarez A, Tena I, Pacak K. Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging. Front Endocrinol (Lausanne) 2018; 9:515. [PMID: 30538672 PMCID: PMC6277481 DOI: 10.3389/fendo.2018.00515] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are rare commonly benign neuroendocrine tumors that share pathology features and clinical behavior in many cases. While PCCs are chromaffin-derived tumors that arise within the adrenal medulla, PGLs are neural-crest-derived tumors that originate at the extraadrenal paraganglia. Pheochromocytoma-paraganglioma (PPGL) syndromes are rapidly evolving entities in endocrinology and oncology. Discoveries over the last decade have significantly improved our understanding of the disease. These include the finding of new hereditary forms of PPGL and their associated susceptibility genes. Additionally, the availability of new functional imaging tools and advances in targeted radionuclide therapy have improved diagnostic accuracy and provided us with new therapeutic options. In this review article, we present the most recent advances in this field and provide an update of the biochemical classification that further reflects our understanding of the disease.
Collapse
Affiliation(s)
- Rami Alrezk
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Cleveland Clinic, Adrenal Center, Endocrinology and Metabolism Institute, Cleveland, OH, United States
| | - Andres Suarez
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Provincial Hospital, Castellon, Spain
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak
| |
Collapse
|