1
|
Pleić N, Babić Leko M, Gunjača I, Boutin T, Torlak V, Matana A, Punda A, Polašek O, Hayward C, Zemunik T. Genome-Wide Association Analysis and Genomic Prediction of Thyroglobulin Plasma Levels. Int J Mol Sci 2022; 23:ijms23042173. [PMID: 35216288 PMCID: PMC8876738 DOI: 10.3390/ijms23042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Thyroglobulin (Tg) is an iodoglycoprotein produced by thyroid follicular cells which acts as an essential substrate for thyroid hormone synthesis. To date, only one genome-wide association study (GWAS) of plasma Tg levels has been performed by our research group. Utilizing recent advancements in computation and modeling, we apply a Bayesian approach to the probabilistic inference of the genetic architecture of Tg. We fitted a Bayesian sparse linear mixed model (BSLMM) and a frequentist linear mixed model (LMM) of 7,289,083 variants in 1096 healthy European-ancestry participants of the Croatian Biobank. Meta-analysis with two independent cohorts (total n = 2109) identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) within the ST6GAL1 gene (p<5×10-8). BSLMM revealed additional association signals on chromosomes 1, 8, 10, and 14. For ST6GAL1 and the newly uncovered genes, we provide physiological and pathophysiological explanations of how their expression could be associated with variations in plasma Tg levels. We found that the SNP-heritability of Tg is 17% and that 52% of this variation is due to a small number of 16 variants that have a major effect on Tg levels. Our results suggest that the genetic architecture of plasma Tg is not polygenic, but influenced by a few genes with major effects.
Collapse
Affiliation(s)
- Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (T.B.); (C.H.)
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia; (V.T.); (A.P.)
| | - Antonela Matana
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia; (V.T.); (A.P.)
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia;
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (T.B.); (C.H.)
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
- Correspondence: ; Tel.: +385-2155-7888
| |
Collapse
|
2
|
Ząbczyńska M, Kozłowska K, Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int J Mol Sci 2018; 19:E2792. [PMID: 30227620 PMCID: PMC6163523 DOI: 10.3390/ijms19092792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/08/2023] Open
Abstract
The key proteins responsible for hormone synthesis in the thyroid are glycosylated. Oligosaccharides strongly affect the function of glycosylated proteins. Both thyroid-stimulating hormone (TSH) secreted by the pituitary gland and TSH receptors on the surface of thyrocytes contain N-glycans, which are crucial to their proper activity. Thyroglobulin (Tg), the protein backbone for synthesis of thyroid hormones, is a heavily N-glycosylated protein, containing 20 putative N-glycosylated sites. N-oligosaccharides play a role in Tg transport into the follicular lumen, where thyroid hormones are produced, and into thyrocytes, where hyposialylated Tg is degraded. N-glycans of the cell membrane transporters sodium/iodide symporter and pendrin are necessary for iodide transport. Some changes in glycosylation result in abnormal activity of the thyroid and alteration of the metabolic clearance rate of hormones. Alteration of glycan structures is a pathological process related to the progression of chronic diseases such as thyroid cancers and autoimmunity. Thyroid carcinogenesis is accompanied by changes in sialylation and fucosylation, β1,6-branching of glycans, the content and structure of poly-LacNAc chains, as well as O-GlcNAcylation, while in thyroid autoimmunity the main processes affected are sialylation and fucosylation. The glycobiology of the thyroid gland is an intensively studied field of research, providing new data helpful in understanding the role of the sugar component in thyroid protein biology and disorders.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Williamson PR. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 1994; 176:656-64. [PMID: 8300520 PMCID: PMC205102 DOI: 10.1128/jb.176.3.656-664.1994] [Citation(s) in RCA: 269] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Melanin production is a major virulence factor for Cryptococcus neoformans, an organism causing life-threatening infections in an estimated 10% of AIDS patients. In order to characterize the events involved in melanin synthesis, an enzyme having diphenol oxidase activity was purified and its gene was cloned. The enzyme was purified as a glycosylated 75-kDa protein which migrated at 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after deglycosylation by endoglycosidase F. Substrate specificity resembled that of a laccase in that it oxidized multiple diphenolic and diamino compounds. Dopamine was shown by mass spectroscopy to be oxidized to decarboxy dopachrome, an intermediate of melanin synthesis. The enzyme contained 4.1 +/- 0.1 mol of copper per mol. It resembled a laccase in its absorbance spectrum, containing a peak of 610 nm and the shoulder at 320 nm, corresponding to the absorbance of a type I and type III copper, respectively. The cloned gene of C. neoformans laccase (CNLAC1) contained a single open reading frame encoding a polypeptide 624 amino acids in length. The encoded polypeptide contained a presumptive leader sequence, on the basis of its relative hydrophobicity and by comparison of the sequence to that of the N-terminal sequence of the purified enzyme. CNLAC1 also contained 14 introns ranging from 52 to 340 bases long. Transcriptional activity of CNLAC1 was found to be derepressed in the absence of glucose and to correspond to an increase in enzymatic activity.
Collapse
Affiliation(s)
- P R Williamson
- Clinical Mycology Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Williamson PR, Huber MA, Bennett JE. Role of maltase in the utilization of sucrose by Candida albicans. Biochem J 1993; 291 ( Pt 3):765-71. [PMID: 8489504 PMCID: PMC1132434 DOI: 10.1042/bj2910765] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two isoenzymes of maltase (EC 3.2.1.20) were purified to homogeneity from Candida albicans. Isoenzymes I and II were found to have apparent molecular masses of 63 and 66 kDa on SDS/PAGE with isoelectric points of 5.0 and 4.6 respectively. Both isoenzymes resembled each other in similar N-terminal sequence, specificity for the alpha(1-->4) glycosidic linkage and immune cross-reactivity on Western blots using a maltase II antigen-purified rabbit antibody. Maltase was induced by growth on sucrose whereas beta-fructofuranosidase activity could not be detected under similar conditions. Maltase I and II were shown to be unglycosylated enzymes by neutral sugar assay, and more than 90% of alpha-glucosidase activity was recoverable from spheroplasts. These data, in combination with other results from this laboratory [Geber, Williamson, Rex, Sweeney and Bennett (1992) J. Bacteriol. 174, 6992-6996] showing lack of a plausible leader sequence in genomic or mRNA transcripts, suggest an intracellular localization of the enzyme. To establish further the mechanism of sucrose assimilation by maltase, the existence of a sucrose-inducible H+/sucrose syn-transporter was demonstrated by (1) the kinetics of sucrose-induced [14C]sucrose uptake, (2) recovery of intact [14C]sucrose from ground cells by t.l.c. and (3) transport of 0.83 mol of H+/mol of [14C]sucrose. In total, the above is consistent with a mechanism whereby sucrose is transported into C. albicans to be hydrolysed by an intracellular maltase.
Collapse
Affiliation(s)
- P R Williamson
- Clinical Mycology Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|