1
|
Zhou Y, Zhang D, Liu B, Hu D, Shen L, Long C, Yu Y, Lin T, Liu X, He D, Wei G. Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism. Genes Dis 2019; 6:431-440. [PMID: 31832523 PMCID: PMC6889044 DOI: 10.1016/j.gendis.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array Tools to identify differentially expressed genes (DEGs) between high azoospermia risk (HAZR) patients and controls. In addition, other analytical methods were deployed, including hierarchical clustering analysis, class comparison between patients with HAZR and the normal control group, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the construction of a protein–protein interaction (PPI) network. In total, 1015 upregulated genes and 1650 downregulated genes were identified. GO and KEGG analysis revealed enrichment in terms of changes in the endoplasmic reticulum cellular component and the endoplasmic reticulum protein synthetic process in the HAZR group. Furthermore, the arachidonic acid pathway and mTOR pathway were also identified as important pathways, while RICTOR and GPX8 were indentified as key genes involved in the spermatogenic process of patients with cryptorchidism. In present study, we found that changes in the synthesis of endoplasmic reticulum proteins, arachidonic acid and the mTOR pathway are important in the incidence and spermatogenic process of cryptorchidism. GPX8 and RICTOR were also identified as key genes associated with cryptorchidism. Collectively, these data may provide novel clues with which to explore the precise etiology and mechanism underlying cryptorchidism and cryptorchidism-induced human infertility.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Bo Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Dong Hu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
2
|
Ačimovič J, Rozman D. Steroidal triterpenes of cholesterol synthesis. Molecules 2013; 18:4002-17. [PMID: 23558541 PMCID: PMC6269928 DOI: 10.3390/molecules18044002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 11/21/2022] Open
Abstract
Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24) the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km) and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions. A major reason for the standstill of detailed late cholesterol synthesis research was the lack of several steroidal triterpene standards. We aid to this efforts by summarizing commercial and laboratory standards, referring also to chemical syntheses of meiosis-activating sterols.
Collapse
Affiliation(s)
- Jure Ačimovič
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | | |
Collapse
|
3
|
Keber R, Ačimovič J, Majdič G, Motaln H, Rozman D, Horvat S. Male germ cell-specific knockout of cholesterogenic cytochrome P450 lanosterol 14α-demethylase (Cyp51). J Lipid Res 2013; 54:1653-1661. [PMID: 23509403 DOI: 10.1194/jlr.m035717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 lanosterol 14α-demethylase (CYP51) and its products, meiosis-activating sterols (MASs), were hypothesized by previous in vitro studies to have an important role in regulating meiosis and reproduction. To test this in vivo, we generated a conditional male germ cell-specific knockout of the gene Cyp51 in the mouse. High excision efficiency of Cyp51 allele in germ cells resulted in 85-89% downregulation of Cyp51 mRNA and protein levels in germ cells. Quantitative metabolic profiling revealed significantly higher levels of CYP51 substrates lanosterol and 24,25-dihydrolanosterol and substantially diminished levels of MAS, the immediate products of CYP51. However, germ cell-specific ablation of Cyp51, leading to lack of MAS, did not affect testicular morphology, daily sperm production, or reproductive performance in males. It is plausible that due to the similar structures of cholesterol intermediates, previously proposed biological function of MAS in meiosis progression can be replaced by some other yet-unidentified functionally redundant lipid molecule(s). Our results using the germ cell-specific knockout model provide first in vivo evidence that the de novo synthesis of MAS and cholesterol in male germ cells is most likely not essential for spermatogenesis and reproduction and that MASs, originating from germ cells, do not cell-autonomously regulate spermatogenesis and fertility.
Collapse
Affiliation(s)
- Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Jure Ačimovič
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia; National Institute of Chemistry, Laboratory for Biotechnology, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Abstract
Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function.
Collapse
Affiliation(s)
- Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | | | | |
Collapse
|
5
|
Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis 2011; 10:16. [PMID: 21247506 PMCID: PMC3031257 DOI: 10.1186/1476-511x-10-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins) often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced). It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high) directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct costs for the farming sector.
Collapse
|
6
|
Mourvaki E, Cardinali R, Roberti R, Dal Bosco A, Castellini C. Desmosterol, the main sterol in rabbit semen: distribution among semen subfractions and its role in the in vitro spermatozoa acrosome reaction and motility. Asian J Androl 2010; 12:862-70. [PMID: 20729867 PMCID: PMC3739068 DOI: 10.1038/aja.2010.25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/03/2010] [Accepted: 03/24/2010] [Indexed: 11/10/2022] Open
Abstract
Sterols are essential components of the cell membrane lipid bilayer that include molecules such as cholesterol and desmosterol, which are significantly found in the spermatozoa of several animal species. However, the presence of desmosterol in rabbit semen has never been investigated. The aims of this study were to characterize the sterol composition of subfractions of ejaculated rabbit semen and evaluate the in vitro effects of sterol on the spermatozoa acrosome reaction and motility. Two sterols, occurring prevalently in the free form (94.3%), were identified in whole semen collected from 10 fertile New Zealand White rabbits, specifically desmosterol (58.5% of total sterols) and cholesterol (35.9% of total sterols). Desmosterol was the predominant sterol found in all subfractions of rabbit semen, varying from 56.7% (in the prostatic secretory granules, PSGs) to 63.8% (in the seminal plasma). Spermatozoa contained an intermediate proportion of desmosterol (59.8%), which was asymmetrically distributed between the heads (52.0% of the total content of sterols) and the tails (81.8%). Results showed that both desmosterol and cholesterol can be transferred from the PSGs to the spermatozoa and are equally effective in inhibiting in vitro spermatozoa capacitation at a concentration higher than 1 mg L(-1). In contrast, neither desmosterol nor cholesterol had a significant effect on spermatozoa motility. Thus, it was concluded that, the various fractions of rabbit seminal fluid differ from each other in sterol composition and quantity, probably due to their different functional properties, and these fractions may undergo significant sterol changes depending on the stage of spermatozoa capacitation.
Collapse
Affiliation(s)
- Evangelia Mourvaki
- Department of Applied Biology, Section of Animal Science, University of Perugia, Perugia 06100, Italy.
| | | | | | | | | |
Collapse
|
7
|
Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2010; 52:6-34. [PMID: 20929975 DOI: 10.1194/jlr.r009548] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Forbes D Porter
- Program in Developmental Genetics and Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | |
Collapse
|