1
|
Zhou J, Zhan P, Cheng Y, Luo Q, Chai L, Yuan L, Zhu X, Liu J. SRY-positive 45,X/46,XY karyotype in a phenotypically Turner-like Chinese adolescent female with ovarian dysgerminoma and gonadoblastoma. J Pediatr Endocrinol Metab 2024; 0:jpem-2023-0448. [PMID: 38973169 DOI: 10.1515/jpem-2023-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/13/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES 45,X/46,XY mosaicism is a rare condition with clinical and genetic heterogeneity and have a greatly increased risk of developing germ cell tumors. We describe a rare 45,X/46,XY Chinese girl with malignant tumors, especially focusing on the molecular genetics of gonadal tumor. CASE PRESENTATION We report a phenotypically Turner-like Chinese adolescent girl who presented primary amenorrhea and a pelvic mass as the chief complaint, which finally demonstrated dysgerminoma replacing the left gonad and gonadoblastoma arising from right gonad respectively. Her chromosome karyotype was 45,X(4)/46,XY(46); Y-chromosome microdeletions in AZFb regions were found on gonadal DNA rather than peripheral blood lymphocyte (PBL) DNA, while no variants were found in the promoter and coding region of SRY gene in both PBL and gonadal tissues. She underwent bilateral gonadectomy; no recurrence or serious complications were identified after 3 years of follow-up. CONCLUSIONS This case emphasizes the probable correlation between Y chromosome microdeletions in gonadal tissue and the severity of the phenotype in patients with 45,X/46,XY mosaicism and highlights the importance of clinical genetic testing at the chromosomal and molecular level.
Collapse
Affiliation(s)
- Jiahong Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou China
| | - Yang Cheng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Li Chai
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou China
| | - Lan Yuan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Xidan Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| |
Collapse
|
2
|
Barbosa LG, Siviero-Miachon AA, Souza MA, Spinola-Castro AM. Recognition of the Y chromosome in Turner syndrome using peripheral blood or oral mucosa tissue. Ann Pediatr Endocrinol Metab 2021; 26:272-277. [PMID: 34634867 PMCID: PMC8749017 DOI: 10.6065/apem.2142026.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/31/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Turner syndrome is defined as total or partial loss of the second sex chromosome in a phenotypically female patient. Due to the possibility of hidden mosaicism of fragments of the Y chromosome and development of gonadoblastoma, we evaluated the presence of such fragments in 2 tissues with different embryonic origins, peripheral blood lymphocytes (mesoderm), and oral mucosal cells (ectoderm) using multiplex polymerase chain reaction. METHODS DNA samples were collected from 109 patients, and primers for the SRY, TSPY, and AMELX genes were used. RESULTS We found 14 patients (12.8%) with positive molecular markers for the Y chromosome. The study of tissues of different embryological origin showed the same degree of agreement, sensitivity, and specificity. CONCLUSION Oral mucosa cells have a simpler method of collection that is less invasive and requires less time for DNA extraction at a lower cost.
Collapse
Affiliation(s)
- Lene Garcia Barbosa
- Division of Pediatric Endocrinology, Department of Pediatrics in Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo, Brazil,Address for correspondence: Lene Garcia Barbosa Division of Pediatric Endocrinology, Department of Pediatrics in Federal University of Sao Paulo (UNIFESPEPM), Sao Paulo, Brazil,340 José de Magalhães Street, São Paulo 04026- 090, Brazil
| | | | | | - Angela Maria Spinola-Castro
- Division of Pediatric Endocrinology, Department of Pediatrics in Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo, Brazil
| |
Collapse
|
3
|
Jung JY, Yang S, Jeong EH, Lee HC, Lee YM, Han HS, Yi KH. Mixed gonadal dysgenesis in 45,X Turner syndrome with SRY gene. Ann Pediatr Endocrinol Metab 2015; 20:226-9. [PMID: 26817010 PMCID: PMC4722163 DOI: 10.6065/apem.2015.20.4.226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023] Open
Abstract
Turner syndrome is the most common chromosomal disorder in girls. Various phenotypic features show depending upon karyotype from normal female through ambiguous genitalia to male. Usually, Turner girls containing 45,X/46,XY mosaicism, or sex-determining region Y (SRY) gene may have mixed gonadal dysgenesis with various external sexual differentiation. We experienced a short statured 45,X Turner girl with normal external genitalia. Because SRY gene was positive, laparoscopic gonadectomy was performed. The dysgenetic gonads revealed bilateral ovotesticular tissues. The authors report a mixed gonadal dysgenesis case found in clinical 45,X Turner patient with positive SRY gene. Screening for SRY gene should be done even the karyotype is 45,X monosomy and external genitalia is normal.
Collapse
Affiliation(s)
- Jae Yeop Jung
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Sohyoung Yang
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Eun-Hwan Jeong
- Department of Obstetrics & Gynecology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ho-Chang Lee
- Department of Anatomic Pathology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Yong-Moon Lee
- Department of Anatomic Pathology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Heon-Seok Han
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyung Hee Yi
- Department of Pediatrics, Wonkwang University Sanbon Medical Center, Gunpo, Korea
| |
Collapse
|
4
|
Hersmus R, Stoop H, Turbitt E, Oosterhuis JW, Drop SL, Sinclair AH, White SJ, Looijenga LH. SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal Disorders of Sex Development (DSD) patients with a mosaic karyotype. BMC MEDICAL GENETICS 2012; 13:108. [PMID: 23157850 PMCID: PMC3538515 DOI: 10.1186/1471-2350-13-108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/07/2012] [Indexed: 01/02/2023]
Abstract
Background The presence of the Y-chromosome or Y chromosome-derived material is seen in 4-60% of Turner syndrome patients (Chromosomal Disorders of Sex Development (DSD)). DSD patients with specific Y-chromosomal material in their karyotype, the GonadoBlastoma on the Y-chromosome (GBY) region, have an increased risk of developing type II germ cell tumors/cancer (GCC), most likely related to TSPY. The Sex determining Region on the Y gene (SRY) is located on the short arm of the Y-chromosome and is the crucial switch that initiates testis determination and subsequent male development. Mutations in this gene are responsible for sex reversal in approximately 10-15% of 46,XY pure gonadal dysgenesis (46,XY DSD) cases. The majority of the mutations described are located in the central HMG domain, which is involved in the binding and bending of the DNA and harbors two nuclear localization signals. SRY mutations have also been found in a small number of patients with a 45,X/46,XY karyotype and might play a role in the maldevelopment of the gonads. Methods To thoroughly investigate the presence of possible SRY gene mutations in mosaic DSD patients, we performed next generation (deep) sequencing on the genomic DNA of fourteen independent patients (twelve 45,X/46,XY, one 45,X/46,XX/46,XY, and one 46,XX/46,XY). Results and conclusions The results demonstrate that aberrations in SRY are rare in mosaic DSD patients and therefore do not play a significant role in the etiology of the disease.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhao L, Koopman P. SRY protein function in sex determination: thinking outside the box. Chromosome Res 2012; 20:153-62. [PMID: 22161124 DOI: 10.1007/s10577-011-9256-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Even though the mammalian sex-determining gene Sry has been intensively studied for the two decades since its discovery, the regions outside the conserved HMG box DNA-binding domain have received less attention due to a lack of sequence conservation and of obvious structural/functional motifs. Here, we summarize the available evidence for function beyond the HMG box, identify the known and postulated biochemical functions of the non-HMG-box domains in sex determination, and present possible explanations for the puzzling diversity of these non-HMG-box domains.
Collapse
Affiliation(s)
- Liang Zhao
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
6
|
Knower KC, Kelly S, Ludbrook LM, Bagheri-Fam S, Sim H, Bernard P, Sekido R, Lovell-Badge R, Harley VR. Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS One 2011; 6:e17751. [PMID: 21412441 PMCID: PMC3055899 DOI: 10.1371/journal.pone.0017751] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/13/2011] [Indexed: 01/21/2023] Open
Abstract
Background In human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1 and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however poorly understood. Methodology/Principal Findings We show that a human embryonal carcinoma cell line (NT2/D1) can model events in presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1, suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9 proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES. Conclusions/Significance We demonstrate how three human sex-determining factors are likely to function during gonadal development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate SOX9 transcription.
Collapse
Affiliation(s)
- Kevin C Knower
- Molecular Genetics and Development, Prince Henry's Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shahid M, Dhillon VS, Khalil HS, Haque S, Batra S, Husain SA, Looijenga LHJ. A SRY-HMG box frame shift mutation inherited from a mosaic father with a mild form of testicular dysgenesis syndrome in Turner syndrome patient. BMC MEDICAL GENETICS 2010; 11:131. [PMID: 20849656 PMCID: PMC2949616 DOI: 10.1186/1471-2350-11-131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 09/19/2010] [Indexed: 01/08/2023]
Abstract
Background Sex determining factor (SRY) located on the short arm of the Y chromosome, plays an important role in initiating male sex determination, resulting in development of testicular tissue. Presence of the SRY gene in females results in XY sex reversal and increased risk of gonadal germ cell tumours if the karyotype also includes the so-called GonadoBlastoma on the Y chromosome (GBY) region. The majority of mutations within the SRY gene are de novo affecting only a single individual in the family. The mutations within the high-mobility group (HMG) region have the potential to affect its DNA binding activity. Case Presentation We performed G- and R-banding cytogenetic analysis of the patient and her family members including her father. We also performed molecular genetic analysis of SRY gene. Cytogenetic analysis in the patient (Turner Syndrome) revealed the mosaic karyotype as 45, X/46, XY (79%/21% respectively) while her father (milder features with testicular dysgenesis syndrome) has a normal male karyotype (46, XY). Using molecular approach, we screened the patient and her father for mutations in the SRY gene. Both patient and her father showed the same deletion of cytosine within HMG box resulting in frame shift mutation (L94fsX180), the father in a mosaic pattern. Histological examination of the gonads from the patient revealed the presence of gonadoblastoma formation, while the father presented with oligoasthenozoospermia and a testicular seminoma. The frameshift mutation at this codon is novel, and may result in a mutated SRY protein. Conclusion Our results suggest that lack of a second sex chromosome in majority cells of the patient may have triggered the short stature and primary infertility, and the mutated SRY protein may be associated with the development of gonadoblastoma. It is of importance to note that mosaic patients without a SRY mutation also have a risk for malignant germ cell tumors.
Collapse
Affiliation(s)
- Mohammad Shahid
- College of Dentistry, Alkharj University, Alkharj, Kingdom of Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Ristevski S, Harley VR. SOX13 exhibits a distinct spatial and temporal expression pattern during chondrogenesis, neurogenesis, and limb development. J Histochem Cytochem 2006; 54:1327-33. [PMID: 16835393 PMCID: PMC3958117 DOI: 10.1369/jhc.6a6923.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SOX13 is a member of the SOX family of transcription factors. SOX proteins play essential roles in development, and some are associated with human genetic diseases. SOX13 maps to a multi-disease locus on chromosome 1q31-32, yet its function is unknown. Here we describe the temporal and spatial expression of SOX13 protein during mouse organogenesis. SOX13 is expressed in the three embryonic cell lineages, suggesting that it may direct various developmental processes. SOX13 is expressed in the developing central nervous system including the neural tube and the developing brain. Expression is also detected in the condensing mesenchyme and cartilage progenitor cells during endochondral bone formation in the limb as well as the somite sclerotome and its derivatives. SOX13 is also detected in the developing kidney, pancreas, and liver as well as in the visceral mesoderm of the extra-embryonic yolk sac and spongiotrophoblast layer of the placenta.
Collapse
Affiliation(s)
- Yi Wang
- Human Molecular Genetics Laboratory, Prince Henry's Institute of Medical Research, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Sika Ristevski
- Human Molecular Genetics Laboratory, Prince Henry's Institute of Medical Research, Victoria, Australia
- Monash Institute of Medical Research, Monash University, Victoria, Australia
| | - Vincent R. Harley
- Human Molecular Genetics Laboratory, Prince Henry's Institute of Medical Research, Victoria, Australia
| |
Collapse
|