1
|
Cavarzere P, Pietrobelli A, Gandini A, Munari S, Baffico AM, Maffei M, Gaudino R, Guzzo A, Arrigoni M, Coviello D, Piacentini G, Antoniazzi F. Role of genetic investigation in the diagnosis of short stature in a cohort of Italian children. J Endocrinol Invest 2024; 47:1237-1250. [PMID: 38087044 DOI: 10.1007/s40618-023-02243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/04/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND Short stature (SS) is defined as height more than 2 standard deviations below the mean for age and sex. Hypothyroidism, celiac disease, growth hormone deficiency, hormonal abnormalities, and genetic conditions are among its causes. A wide range of conditions often due to largely unknown genetic variants can elude conventional diagnostic workup. AIM We used next-generation sequencing (NGS) to better understand the etiology of SS in a cohort of Italian children. PATIENTS AND METHODS The study sample was 125 children with SS of unknown origin referred to our Institute between 2015 and 2021. All had undergone complete auxological and hormonal investigations to exclude common causes of SS. Genetic analysis was performed using a NGS panel of 104 genes. Clinical data were reviewed to clarify the pathogenicity of the variants detected. RESULTS In this cohort, 43 potentially causing variants were identified in 38 children. A syndromic genetic condition was diagnosed in 7: Noonan syndrome in 3, Leri-Weill syndrome in 3, and hypochondroplasia in 1. Moreover, 8 benign variants and other 37 like benign variants were found. In 88 children, 179 variants of uncertain significance (VUS) were identified. No variant was found in 16 children. CONCLUSION Genetic analysis is a useful tool in the diagnostic workup of patients with SS, in adapting management and treatment, and in identifying syndromes with mild atypical clinical features. The role of VUS should not be underestimated, particularly when multiple VUS with possible mutual worsening effects are present in the same child.
Collapse
Affiliation(s)
- P Cavarzere
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy.
- Department of Pediatrics, Child and Mother's Hospital, Piazzale Stefani 1, 37126, Verona, Italy.
| | - A Pietrobelli
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy
- Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Clinic, University of Verona, Verona, Italy
| | - A Gandini
- Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Clinic, University of Verona, Verona, Italy
| | - S Munari
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy
| | - A M Baffico
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - M Maffei
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - R Gaudino
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy
- Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Clinic, University of Verona, Verona, Italy
| | - A Guzzo
- Laboratory Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - M Arrigoni
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy
| | - D Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - G Piacentini
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy
- Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Clinic, University of Verona, Verona, Italy
| | - F Antoniazzi
- Pediatric Division, Department of Pediatrics, University Hospital of Verona (Full Member of European Reference Network Endo-ERN), Verona, Italy
- Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Clinic, University of Verona, Verona, Italy
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Regional Center for the Diagnosis and Treatment of Children and Adolescents with Rare Skeletal Disorders, Pediatric Clinic, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Perchard R, Murray PG, Clayton PE. Approach to the Patient With Short Stature: Genetic Testing. J Clin Endocrinol Metab 2023; 108:1007-1017. [PMID: 36355576 DOI: 10.1210/clinem/dgac637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Indexed: 11/12/2022]
Abstract
The first step in the evaluation of the short child is to decide whether growth parameters in the context of the history are abnormal or a variant of normal. If growth is considered abnormal, system and hormonal tests are likely to be required, followed by more directed testing, such as skeletal survey and/or genetic screening with karyotype or microarray. In a small percentage of short children in whom a diagnosis has not been reached, this will need to be followed by detailed genetic analysis; currently, exome sequencing using targeted panels relevant to the phenotype is the commonly used test. Clinical scenarios are presented that illustrate how such genetic testing can be used to establish a molecular diagnosis, and how that diagnosis contributes to the management of the short child. New genetic causes for short stature are being recognized on a frequent basis, while the clinical spectrum for known genes is being extended. We recommend that an international repository for short stature conditions is established for new findings to aid dissemination of knowledge, but also to help in the definition of the clinical spectrum both for new and established conditions.
Collapse
Affiliation(s)
- Reena Perchard
- Department of Developmental Biology and Medicine, University of Manchester, Manchester M13 9PL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Philip George Murray
- Department of Developmental Biology and Medicine, University of Manchester, Manchester M13 9PL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Peter Ellis Clayton
- Department of Developmental Biology and Medicine, University of Manchester, Manchester M13 9PL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Idiopathic Short Stature: What to Expect from Genomic Investigations. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Short stature is a common concern for physicians caring for children. In traditional investigations, about 70% of children are healthy, without producing clinical and laboratory findings that justify their growth disorder, being classified as having constitutional short stature or idiopathic short stature (ISS). In such scenarios, the genetic approach has emerged as a great potential method to understand ISS. Over the last 30 years, several genes have been identified as being responsible for isolated short stature, with almost all of them being inherited in an autosomal-dominant pattern. Most of these defects are in genes related to the growth plate, followed by genes related to the growth hormone (GH)–insulin-like growth factor 1 (IGF1) axis and RAS-MAPK pathway. These patients usually do not have a specific phenotype, which hinders the use of a candidate gene approach. Through multigene sequencing analyses, it has been possible to provide an answer for short stature in 10–30% of these cases, with great impacts on treatment and follow-up, allowing the application of the concept of precision medicine in patients with ISS. This review highlights the historic aspects and provides an update on the monogenic causes of idiopathic short stature and suggests what to expect from genomic investigations in this field.
Collapse
|
4
|
Hara-Isono K, Nakamura A, Fuke T, Inoue T, Kawashima S, Matsubara K, Sano S, Yamazawa K, Fukami M, Ogata T, Kagami M. Pathogenic Copy Number and Sequence Variants in Children Born SGA With Short Stature Without Imprinting Disorders. J Clin Endocrinol Metab 2022; 107:e3121-e3133. [PMID: 35583390 DOI: 10.1210/clinem/dgac319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Children born small-for-gestational-age with short stature (SGA-SS) is associated with (epi)genetic defects, including imprinting disorders (IDs), pathogenic copy number variants (PCNVs), and pathogenic variants of genes involved in growth. However, comprehensive studies evaluating these 3 factors are very limited. OBJECTIVE To clarify the contribution of PCNVs and candidate pathogenic variants to SGA-SS. DESIGN Comprehensive molecular analyses consisting of methylation analysis, copy number analysis, and multigene sequencing. METHODS We enrolled 140 patients referred to us for genetic testing for SGA-SS. Among them, we excluded 42 patients meeting Netchine-Harbison clinical scoring system criteria for Silver-Russell syndrome and 4 patients with abnormal methylation levels of the IDs-related differentially methylated regions. Consequently, we conducted copy number analysis and multigene sequencing for 86 SGA-SS patients with sufficient sample volume. We also evaluated clinical phenotypes of patients with PCNVs or candidate pathogenic variants. RESULTS We identified 8 (9.3%) and 11 (12.8%) patients with PCNVs and candidate pathogenic variants, respectively. According to the American College of Medical Genetics standards and guidelines, 5 variants were classified as pathogenic and the remaining 6 variants were classified as variants of unknown significance. Genetic diagnosis was made in 12 patients. All patients with PCNVs or candidate pathogenic variants did not correspond perfectly to characteristic clinical features of each specific genetic cause. CONCLUSION We clarified the contribution of PCNVs and pathogenic variants to SGA-SS without IDs. Comprehensive molecular analyses, including copy number analysis and multigene sequencing, should be considered for patients with unknown SGA-SS etiology.
Collapse
Affiliation(s)
- Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
5
|
Wu S, Wang C, Cao Q, Zhu Z, Liu Q, Gu X, Zheng B, Zhou W, Jia Z, Gu W, Li X. The Spectrum of ACAN Gene Mutations in a Selected Chinese Cohort of Short Stature: Genotype-Phenotype Correlation. Front Genet 2022; 13:891040. [PMID: 35620465 PMCID: PMC9127616 DOI: 10.3389/fgene.2022.891040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Mutations in the ACAN gene have been reported to cause short stature. However, the prevalence estimates of pathogenic ACAN variants in individuals with short stature vary, and the correlation between ACAN genotype and clinical phenotype remain to be evaluated. To determine the prevalence of ACAN variants among Chinese people with short stature and analyze the relationship between genotype and main clinical manifestations of short stature and advanced bone age among patients with ACAN variants. Methods: We performed next-generation sequencing-based genetic analyses on 442 individuals with short stature. ACAN variants were summarized, previously reported cases were retrospectively analyzed, and an association analysis between genotype and phenotype was conducted. Result: We identified 15 novel and two recurrent ACAN gene variants in 16 different pedigrees that included index patients with short stature. Among the patients with ACAN variants, 12 of 18 had advanced bone age and 7 of 18 received growth hormone therapy, 5 (71.4%) of whom exhibited variable levels of height standard deviation score improvement. Further analysis showed that patients with ACAN truncating variants had shorter height standard deviation scores (p = 0.0001) and larger bone age–chronological age values (p = 0.0464). Moreover, patients in this Asian population had a smaller mean bone age–chronological age value than those that have been determined in European and American populations (p = 0.0033). Conclusion: Our data suggest that ACAN mutation is a common cause of short stature in China, especially among patients with a family history of short stature but also among those who were born short for their gestational age without a family history. Patients with truncating variants were shorter in height and had more obvious advanced bone age, and the proportion of patients with advanced bone age was lower in this Asian population than in Europe and America.
Collapse
Affiliation(s)
- Su Wu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Deng S, Hou L, Xia D, Li X, Peng X, Xiao X, Zhang J, Meng Z, Zhang L, Ouyang N, Liang L. Description of the molecular and phenotypic spectrum in Chinese patients with aggrecan deficiency: Novel ACAN heterozygous variants in eight Chinese children and a review of the literature. Front Endocrinol (Lausanne) 2022; 13:1015954. [PMID: 36387899 PMCID: PMC9649928 DOI: 10.3389/fendo.2022.1015954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study analyzed eight Chinese short stature children with aggrecan deficiency, and aimed to investigate potential genotype-phenotype correlations, differences in clinical characteristics between the Chinese and the Western populations, and effectiveness of recombinant human growth hormone therapy in patients with ACAN variants through a review of the literature. METHODS Pediatric short stature patients with ACAN heterozygous variants were identified using whole-exome sequencing. Subsequently, a literature review was carried out to summarize the clinical features, genetic findings, and efficacy of growth-promoting therapy in patients with ACAN variants. RESULTS We identified seven novel ACAN mutations and one recurrent variant. Patients in our center manifested with short stature (average height SDS: -3.30 ± 0.85) with slight dysmorphic characteristics. The prevalence of dysmorphic features in the Chinese populations is significantly lower than that in the Western populations. Meanwhile, only 24.24% of aggrecan-deficient Chinese children showed significantly advanced bone age (BA). Promising therapeutic benefits were seen in the patients who received growth-promoting treatment, with an increase in growth velocity from 4.52 ± 1.00 cm/year to 8.03 ± 1.16 cm/year. CONCLUSION This study further expanded the variation spectrum of the ACAN gene and demonstrated that Chinese children with short stature who carried ACAN heterozygous variants exhibited early growth cessation, which may remain unnoticed by clinicians as most of these children had very mild dysmorphic characteristics and showed BA that was consistent with the chronological age. Genetic testing may help in the diagnosis.
Collapse
Affiliation(s)
- Shuyun Deng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lele Hou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xia
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofang Peng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Xiao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieming Zhang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhe Meng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Short stature is a common clinical manifestation in children. Yet, a cause is often unidentifiable in the majority of children with short stature by a routine screening approach. The purpose of this review is to describe the optimal genetic approach for evaluating short stature, challenges of genetic testing, and recent advances in genetic testing for short stature. RECENT FINDINGS Genetic testing, such as karyotype, chromosomal microarray, targeted gene sequencing, or exome sequencing, has served to identify the underlying genetic causes of short stature. When determining which short stature patient would benefit from genetic evaluation, it is important to consider whether the patient would have a single identifiable genetic cause. Specific diagnoses permit clinicians to predict responses to growth hormone treatment, to understand the phenotypic spectrum, and to understand any associated co-morbidities. SUMMARY The continued progress in the field of genetics and enhanced capabilities provided by genetic testing methods expands the ability of physicians to evaluate children with short stature for underlying genetic defects. Continued effort is needed to elaborate new genetic causes of linear growth disorders, therefore, we expand the list of known genes for short stature, which will subsequently increase the rate of genetic diagnosis for children with short stature.
Collapse
Affiliation(s)
- Elaine Zhou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States of America
| | - Benjamin Hauser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States of America
| | - Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States of America
| |
Collapse
|