1
|
Beaver LM, Prati M, Gilman KE, Luo T, Shay NF, Branscum AJ, Turner RT, Iwaniec UT. Diet composition influences the effect of high fat diets on bone in growing male mice. Bone 2023; 176:116888. [PMID: 37652285 DOI: 10.1016/j.bone.2023.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The effect of diet-induced obesity on bone in rodents is variable, with bone mass increases, decreases, and no impact reported. The goal of this study was to evaluate whether the composition of obesogenic diet may influence bone independent of its effect on body weight. As proof-of-principle, we used a mouse model to compare the skeletal effects of a commonly used high fat 'Western' diet and a modified high fat diet. The modified high fat diet included ground English walnut and was isocaloric for macronutrients, but differed in fatty acid composition and contained nutrients (e.g. polyphenols) not present in the standard 'Western' diet. Eight-week-old mice were randomized into 1 of 3 dietary treatments (n = 8/group): (1) low fat control diet (LF; 10 % kcal fat); (2) high fat 'Western' diet (HF; 46 % kcal fat as soybean oil and lard); or (3) modified high fat diet supplemented with ground walnuts (HF + walnut; 46 % kcal fat as soybean oil, lard, and walnut) and maintained on their respective diets for 9 weeks. Bone response in femur was then evaluated using dual energy x-ray absorptiometry, microcomputed tomography, and histomorphometry. Consumption of both obesogenic diets resulted in increased weight gain but differed in impact on bone and bone marrow adiposity in distal femur metaphysis. Mice consuming the high fat 'Western' diet exhibited a tendency for lower cancellous bone volume fraction and connectivity density, and had lower osteoblast-lined bone perimeter (an index of bone formation) and higher bone marrow adiposity than low fat controls. Mice fed the modified high fat diet did not differ from mice fed control (low fat) diet in cancellous bone microarchitecture, or osteoblast-lined bone perimeter, and exhibited lower bone marrow adiposity compared to mice fed the 'Western' diet. This proof-of-principal study demonstrates that two obesogenic diets, similar in macronutrient distribution and induction of weight gain, can have different effects on cancellous bone in distal femur metaphysis. Because the composition of the diets used to induce obesity in rodents does not recapitulate a common human diet, our finding challenges the translatability of rodent studies evaluating the impact of diet-induced obesity on bone.
Collapse
Affiliation(s)
- Laura M Beaver
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maud Prati
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Kristy E Gilman
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Ting Luo
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Neil F Shay
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
2
|
Ostos Mendoza KC, Garay Buenrostro KD, Kanabar PN, Maienschein-Cline M, Los NS, Arbieva Z, Raut NA, Lawal TO, López AM, Cabada-Aguirre P, Luna-Vital DA, Mahady GB. Peonidin-3- O-glucoside and Resveratrol Increase the Viability of Cultured Human hFOB Osteoblasts and Alter the Expression of Genes Associated with Apoptosis, Osteoblast Differentiation and Osteoclastogenesis. Nutrients 2023; 15:3233. [PMID: 37513651 PMCID: PMC10383121 DOI: 10.3390/nu15143233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
High-throughput RNA-sequencing can determine the impact of nutrients and their combinations on gene transcription levels in osteocytes, and clarify the biological pathways associated with their impact on bone tissues. Previously, we reported that resveratrol (RES) and peonidin-3-O-glucoside (POG) increased osteoblastogenesis, as well as reduced osteoclastogenesis in transgenic teleost fish models. Here, we perform whole-genome transcriptomic profiling of osteoblasts treated with POG or RES to provide a comprehensive understanding of alterations in gene expression and the molecular mechanisms involved. Cultured human fetal osteoblastic hFOB 1.19 cells were treated with the test compounds, and then RNA was used to prepare RNA-seq libraries, that were sequenced using a NovaSeq 6000. Treatment with POG or RES increased osteoblast proliferation and reduced apoptosis. Transcriptomic profiling showed that of the 29,762 genes investigated, 3177 were differentially expressed (1481 upregulated, 1696 downregulated, FDR ≤ 0.05) in POG-treated osteoblasts. In the RES-treated osteoblasts, 2288 genes were differentially expressed (DGEs, 1068 upregulated, 1220 downregulated, FDR ≤ 0.05). Ingenuity® Pathway Analysis (IPA) of DGEs from RES or POG-treated osteoblasts revealed significant downregulation of the apoptosis, osteoarthritis and HIF1α canonical pathways, and a significant reduction in Rankl mRNA expression. The data suggest that RES and POG have both anabolic and anticlastogenic effects.
Collapse
Affiliation(s)
- Keila C Ostos Mendoza
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Av. Ignacio Morones Prieto 3000, Sertoma, Monterrey 64710, N.L., Mexico
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Karen D Garay Buenrostro
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Av. Ignacio Morones Prieto 3000, Sertoma, Monterrey 64710, N.L., Mexico
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pinal N Kanabar
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nina S Los
- Core Genomics Facility, Research Resource Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zarema Arbieva
- Core Genomics Facility, Research Resource Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nishikant A Raut
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Temitope O Lawal
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan 200132, Nigeria
| | - Alice M López
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Chemistry and Nanotechnology, Tecnológico de Monterrey, Ave Eugenio Garza Sada 2501, Monterrey 64710, N.L., Mexico
| | - Paulina Cabada-Aguirre
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Chemistry and Nanotechnology, Tecnológico de Monterrey, Ave Eugenio Garza Sada 2501, Monterrey 64710, N.L., Mexico
| | - Diego A Luna-Vital
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey 64710, N.L., Mexico
| | - Gail B Mahady
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Wang SY, Jiang JH, Liu SY, Zhang J, Gao X, Liu H, Ke KX, Jiang Y, Liu L, He BC. Interleukin 6 promotes BMP9-induced osteoblastic differentiation through Stat3/mTORC1 in mouse embryonic fibroblasts. Aging (Albany NY) 2023; 15:718-733. [PMID: 36750182 PMCID: PMC9970304 DOI: 10.18632/aging.204504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Interleukin 6 (IL-6) plays a dual role in regulating bone metabolism, although the concrete mechanism is unclear. Bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic inducers, and a promising alternative for bone tissue engineering. The relationship between IL-6 and BMP9 in osteogenic differentiation remains to be elucidated, and the osteoblastic potential of BMP9 needs to be enhanced to overcome certain shortcomings of BMP9. In this study, we used real-time PCR, western blot, immunofluorescent stain, fetal limb culture and cranial defects repair model to explore the IL-6 role in BMP9-induced osteogenic differentiation in mouse embryonic fibroblasts (MEFs). We found that the rat serum level of IL-6 was increased in the dexamethasone-induced osteoporosis model, and IL-6 expression was detectable in several progenitor cells and MEFs. BMP9 upregulated IL-6 in MEFs, and the BMP9-induced osteoblastic markers were elevated by IL-6, but reduced by IL-6 knockdown. BMP9 and/or IL-6 both activated mTOR, and the IL-6 effect on BMP9-induced osteoblastic markers and bone formation were reduced greatly by mTOR inhibition. Raptor was up-regulated by IL-6 and/or BMP9 specifically, and the osteoblastic markers induced by IL-6 and/or BMP9 were reduced by Raptor knockdown. Meanwhile, Stat-3 was activated by IL-6 and/or BMP9, and the increase of Raptor or osteoblastic markers by IL-6 and/or BMP9 were reduced by Stat-3 inhibition. The Raptor promoter activity was regulated by p-Stat-3. Our finding suggested that IL-6 can promote the BMP9 osteoblastic potential, which may be mediated through activating Stat-3/mTORC1 pathway.
Collapse
Affiliation(s)
- Shi-Yu Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Hai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Si-Yuan Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Hang Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Kai-Xin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Phung K, McAdam L, Ma J, McMillan HJ, Jackowski S, Scharke M, Matzinger MA, Shenouda N, Koujok K, Jaremko JL, Smit K, Walker S, Hartigan C, Khan N, Konji VN, MacLeay L, Page M, Sykes E, Robinson ME, Alos N, Cummings EA, Ho J, Sbrocchi AM, Stein R, Saleh D, Craven BC, Dang UJ, Siminoski K, Rauch F, Ward LM. Risk factors associated with prevalent vertebral fractures in Duchenne muscular dystrophy. Osteoporos Int 2023; 34:147-160. [PMID: 36342539 DOI: 10.1007/s00198-022-06578-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Patients with Duchenne muscular dystrophy (DMD) have a high fracture burden due to progressive myopathy and steroid-induced osteoporosis. This study in males with DMD showed that markers of systemic glucocorticoid exposure including shorter stature, greater bone age delay, and lower lumbar spine bone mineral density were associated with spine fragility. INTRODUCTION Fragility fractures are frequent in DMD. The purpose of this study was to identify clinical factors associated with prevalent vertebral fractures (VF) in boys, teens/young adults with Duchenne muscular dystrophy (DMD). METHODS This was a cross-sectional study of males aged 4-25 years with DMD. VF were evaluated using the modified Genant semi-quantitative method on T4-L4 lateral spine radiographs. Areal bone mineral density (aBMD) was measured at the lumbar spine (LS) and used to estimate volumetric BMD (vBMD). Clinical factors were analyzed for their association with the Spinal Deformity Index (SDI, the sum of the Genant grades). RESULTS Sixty participants were enrolled (mean age 11.5 years, range 5.4-19.5). Nineteen participants (32%) had a total of 67 VF; 23/67 VF (34%) were moderate or severe. Participants with VF were shorter (mean height Z-score ± standard deviation: - 3.1 ± 1.4 vs. - 1.8 ± 1.4, p = 0.001), had longer glucocorticoid exposure (mean duration 6.0 ± 3.3 vs. 3.9 ± 3.3 years, p = 0.027), greater bone age (BA) delay (mean BA to chronological age difference - 3.2 ± 3.4 vs. - 1.3 ± 1.2 years, p = 0.035), and lower LSaBMD Z-scores (mean - 3.0 ± 1.0 vs. - 2.2 ± 1.2, p = 0.023). There was no difference in LSvBMD Z-scores. Multivariable Poisson regression showed that every 0.1 mg/kg/day increment in average glucocorticoid daily dose was associated with a 1.4-fold SDI increase (95% confidence interval: 1.1-1.7, p = 0.013). Greater BA delay (p < 0.001), higher weight Z-score (p = 0.004), decreased height Z-score (p = 0.025), and lower LSvBMD Z-score (p = 0.025) were also associated with SDI increase. CONCLUSION Readily measurable clinical variables were associated with prevalent VF in males with glucocorticoid-treated DMD. These variables may be useful to identify candidates for primary osteoporosis prevention after glucocorticoid initiation.
Collapse
Affiliation(s)
- Kim Phung
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Laura McAdam
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Stefan Jackowski
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Maya Scharke
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | | | - Nazih Shenouda
- Department of Medical Imaging, University of Ottawa, Ottawa, ON, Canada
| | - Khaldoun Koujok
- Department of Medical Imaging, University of Ottawa, Ottawa, ON, Canada
| | - Jacob L Jaremko
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Kevin Smit
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Scott Walker
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Colleen Hartigan
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Nasrin Khan
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Victor N Konji
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Lynn MacLeay
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Marika Page
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Elizabeth Sykes
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Marie-Eve Robinson
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Alos
- CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | | | - Josephine Ho
- Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | | | - Robert Stein
- London Health Sciences Centre, Western University, London, ON, Canada
| | - David Saleh
- Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - B Catharine Craven
- Department of Medicine, Temerty Faculty of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Utkarsh J Dang
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Kerry Siminoski
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Frank Rauch
- Shriners Hospital for Children, McGill University, Montreal, QC, Canada
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
5
|
Nowaczyk A, Szwedowski D, Dallo I, Nowaczyk J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int J Mol Sci 2022; 23:1566. [PMID: 35163488 PMCID: PMC8835883 DOI: 10.3390/ijms23031566] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) can be defined as the result of pathological processes of various etiologies leading to damage to the articular structures. Although the mechanism of degenerative changes has become better understood due to the plethora of biochemical and genetic studies, the drug that could stop the degenerative cascade is still unknown. All available forms of OA therapy are based on symptomatic treatment. According to actual guidelines, comprehensive treatment of OA should always include a combination of various therapeutic options aimed at common goals, which are pain relief in the first place, and then the improvement of function. Local treatment has become more common practice, which takes place between rehabilitation and pharmacological treatment in the hierarchy of procedures. Only in the case of no improvement and the presence of advanced lesions visible in imaging tests, should surgery be considered. Currently, an increasing number of studies are being published suggesting that intra-articular injections may be as effective or even more effective than non-steroidal anti-inflammatory drugs (NSAIDs) and result in fewer systemic adverse events. The most commonly used preparations are hyaluronic acid (HA), glucocorticosteroids (GS), and also platelet-rich plasma (PRP) in recent years. This review aims to present the mechanism of action and clinical effectiveness of different pharmacological options in relieving pain and improving functions in OA as well as the emerging approach in intra-articular treatment with PRP.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, LudwikRydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87-100 Toruń, Poland;
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Ignacio Dallo
- Unit of Biological Therapies, SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, 41013 Seville, Spain;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
6
|
Wang R, Li R, Liu R. An intron SNP rs2069837 in IL-6 is associated with osteonecrosis of the femoral head development. BMC Med Genomics 2022; 15:5. [PMID: 34986839 PMCID: PMC8734317 DOI: 10.1186/s12920-021-01142-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic polymorphisms play a crucial role in the development of osteonecrosis of the femoral head (ONFH). This study mainly explored the association of IL-6 variants and ONFH susceptibility among the Chinese Han population. Methods Two variants (rs2069837, and rs13306435) in the IL-6 gene were identified and genotyped from 566 patients with ONFH and 566 healthy controls. The associations between IL-6 polymorphisms and ONFH susceptibility were assessed using odds ratio (OR) and 95% confidence interval (95% CI) via logistic regression. The potential function of these two variants was predicted by the HaploReg online database. Results The results of the overall analysis revealed that IL-6 rs2069837 was correlated with decreased risk of ONFH among the Chinese Han population (p < 0.05). In stratified analysis, rs2069837 also reduced the susceptibility to ONFH in older people (> 51 years), males, nonsmokers, and nondrinkers (p < 0.05). However, no associations between rs13306435 and ONFH susceptibility were observed (p > 0.05). Conclusions To sum up, we suggested that rs2069837 G>A polymorphism in the IL-6 gene was significantly associated with a decreased risk of ONFH among the Chinese Hans. These findings underscored the crucial role of IL-6 rs2069837 in the occurrence of ONFH. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01142-3.
Collapse
Affiliation(s)
- Ruisong Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,Department of orthopedics, Xi'an Fifth Hospital, Xi'an, 710082, China
| | - Rui Li
- Department of rheumatology, Xi'an Fifth Hospital, Xi'an, 710082, China
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
7
|
Bandeira F, de Oliveira LB, Caldeira RB, Toscano LS. Skeletal consequences of heart failure. WOMEN'S HEALTH (LONDON, ENGLAND) 2022; 18:17455057221135501. [PMID: 36321835 PMCID: PMC9634191 DOI: 10.1177/17455057221135501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Heart failure (HF) is a prevalent clinical syndrome that causes significant physical limitations. Osteoporosis is also an important cause of loss of functionality, and it mainly affects women. There are several reports linking HF and osteoporosis, and both share risk factors. Most of the data available so far point to bone fragility as a consequence of HF, and several mechanisms have been identified to explain this relationship. Among the proposed pathophysiological mechanisms are the hyperactivation of the renin-angiotensin-aldosterone system and the increase in parathyroid hormone, functional limitation, production of inflammatory mediators and the use of drugs for HF. The role of osteoprotegerin has gained attention owing to its cardiovascular and skeletal effects, its observed deficiency during the postmenopausal period along with its compensatory increases in HF and severe osteoporosis. The objective of this review was to perform a literature search for the main evidence on skeletal impairment in HF, with emphasis on women. As for epidemiological studies, we selected data from 3 meta-analyses and 20 individual observational studies, which together showed the interrelationship between the two clinical conditions in terms of both decreased bone density and increased fracture risk. In conclusion, HF and osteoporosis are interrelated conditions mediated by complex pathophysiological mechanisms which may be more relevant for postmenopausal women, considered to be a vulnerable population for both cardiovascular diseases and bone fragility.
Collapse
Affiliation(s)
- Francisco Bandeira
- Division of Endocrinology and Diabetes, Agamenon
Magalhães Hospital, Faculty of Medical Sciences, University of Pernambuco (UPE),
Recife, Brazil
| | - Lucian Batista de Oliveira
- Division of Endocrinology and Diabetes, Agamenon
Magalhães Hospital, Faculty of Medical Sciences, University of Pernambuco (UPE),
Recife, Brazil
| | - Rodrigo Botelho Caldeira
- Division of Endocrinology and Diabetes, Agamenon
Magalhães Hospital, Faculty of Medical Sciences, University of Pernambuco (UPE),
Recife, Brazil
| | - Leticia Saldanha Toscano
- Division of Endocrinology and Diabetes, Agamenon
Magalhães Hospital, Faculty of Medical Sciences, University of Pernambuco (UPE),
Recife, Brazil
| |
Collapse
|