1
|
Yamaguchi T, Morimoto S, Suda C, Ichihara A, Ishihara N, Nakamura S, Tanaka S, Watanabe Y, Imamura H, Ohira M, Shimizu N, Saiki A, Tatsuno I. Soluble (Pro)Renin Receptor Level in Patients with Severe Obesity Is Associated with Visceral Adiposity and Is Involved with Insulin Resistance and Renal Injury. Obes Facts 2023; 16:335-343. [PMID: 37231878 PMCID: PMC10427953 DOI: 10.1159/000531076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION High soluble (pro)renin receptor (s[P]RR) level in circulation is reported in obese patients; however, it is unclear which body composition components are responsible for it. In this study, the authors examined blood s(P)RR levels and ATP6AP2 gene expression levels in visceral and subcutaneous adipose tissue (VAT, SAT) in severely obese patients who underwent laparoscopic sleeve gastrectomy (LSG), with the aim of clarifying the relationship with body composition and metabolic factors. METHODS Seventy five cases who underwent LSG between 2011 and 2015 and were postoperatively followed-up for 12 months at the Toho University Sakura Medical Center were included in the analysis of the cross-sectional survey at baseline, and 33 cases were included in the analysis of the longitudinal survey during the 12 months after LSG. We evaluated body composition, glycolipid parameters, liver/renal function, as well as serum s(P)RR level and ATP6AP2 mRNA expression level in VAT and SAT. RESULTS The mean serum s(P)RR level at baseline was 26.1 ng/mL, this value was considered higher than values in healthy subjects. There was no significant difference in the expression level of ATP6AP2 mRNA between VAT and SAT. At baseline, multiple regression analysis for the association between s(P)RR and variables identified that visceral fat area, HOMA2-IR, and UACR showed the independent relationships with s(P)RR. During the 12 months after LSG, body weight, serum s(P)RR level showed a significant decrease (from 30.0 ± 7.0 to 21.9 ± 4.3). Multiple regression analysis for the association between the change in s(P)RR and variables showed that changes in visceral fat area, and alanine transaminase were independently related to the change in s(P)RR. CONCLUSION This study showed that blood s(P)RR level was high in severely obese patients, decreased with weight loss by LSG, and was associated with visceral fat area in both pre- and postoperative changes. The results suggest that blood s(P)RR levels in obese patients may reflect the involvement of visceral adipose (P)RR in insulin resistance and renal damage mechanisms associated with obesity.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Womens’ Medical University, Tokyo, Japan
| | - Chikahito Suda
- Department of Endocrinology and Hypertension, Tokyo Womens’ Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Womens’ Medical University, Tokyo, Japan
| | - Noriko Ishihara
- Clinical Laboratory Program, Faculty of Science, Toho University, Chiba, Japan
| | - Shoko Nakamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Sho Tanaka
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Yasuhiro Watanabe
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Haruki Imamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Masahiro Ohira
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Medical Center, Tokyo, Japan
| | - Naomi Shimizu
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Ichiro Tatsuno
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
- Chiba Prefectural University of Health Science, Chiba, Japan
| |
Collapse
|
2
|
Mishima S, Mitsui T, Tani K, Ooba H, Mitoma T, Ohira A, Maki J, Kirino S, Eto E, Hayata K, Masuyama H. Endothelin-1 production via placental (pro)renin receptor in a mouse model of preeclampsia. Placenta 2023; 138:44-50. [PMID: 37167782 DOI: 10.1016/j.placenta.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Preeclampsia (PE) pathogenesis is explained by the two-stage disorder theory. However, mechanisms underlying hypertension and proteinuria in PE remain unclear. The role of (pro)renin receptor (PRR) in PE pathology has received special attention. We examined endothelin-1 (ET-1) production via placental PRR in a PE mouse model. METHODS At 14.5 day-post-coitum (DPC), we performed a reduced uterine perfusion pressure (RUPP) operation, ligating the uterine arteriovenous vessels in female mice. We also infused these mice with a PRR inhibitor, decoy peptide in the handle region of prorenin (HRP) for mice (NH2-RIPLKKMPSV-COOH). At 18.5 DPC, blood, urine, and placenta were collected; fetus and placenta were weighed. We evaluated placental hypoxia using quantitative polymerase chain reaction (PCR), with hypoxia-inducible factor-1α (HIF-1α) as index. We also evaluated PRR, transforming growth factor-β1 (TGF-β1), and ET-1 expression in the placenta using quantitative PCR and western blotting. ET-1 concentration in blood plasma was assessed using enzyme-linked immunosorbent assay. RESULTS Blood pressure and proteinuria significantly increased, and fetal and placental weights decreased in RUPP mice. HIF-1α, PRR, TGF-β1, and ET-1 expressions considerably increased in RUPP mice placentas. ET-1 concentration in RUPP mice blood plasma was markedly increased. PRR inhibitor suppressed these changes. DISCUSSION In PE model mice that underwent RUPP treatment, placental hypoxia increased PRR and ET-1 expression suggesting a causative relationship between ET-1 and intracellular PRR signaling. RUPP treatment, when combined with HRP, reversed the effect of elevated ET-1 levels in the model. This study may help to elucidate the pathogenesis of PE considering PRR and ET-1.
Collapse
Affiliation(s)
- Sakurako Mishima
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Takashi Mitsui
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Kazumasa Tani
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Hikaru Ooba
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Tomohiro Mitoma
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Akiko Ohira
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Jota Maki
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Satoe Kirino
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Eriko Eto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Kei Hayata
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama, 700-8558, Japan.
| |
Collapse
|
3
|
Nichols K, Yiannikouris F. The Role of (Pro)Renin Receptor in the Metabolic Syndrome. Curr Hypertens Rev 2022; 18:117-124. [PMID: 35170416 DOI: 10.2174/1573402118666220216104816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
The prorenin receptor (PRR) is a complex multi-functional single transmembrane protein receptor that is ubiquitously expressed in organs and tissues throughout the body. PRR is involved in different cellular mechanisms that comprise the generation of Angiotensin II, the activation of Wnt/β-catenin signaling, the stimulation of ERK 1/2 pathway, and the proper functioning of the vacuolar H+-ATPase. Evidence supports the role of PRR and its soluble form, sPRR, in the classical features of the metabolic syndrome, including obesity, hypertension, diabetes, and disruption of lipid homeostasis. This review summarizes our current knowledge and highlights new advances in the pathophysiological function of PRR and sPRR in adipogenesis, adipocyte differentiation, lipolysis, glucose and insulin resistance, lipid homeostasis, energy metabolism, and blood pressure regulation.
Collapse
Affiliation(s)
- Kellea Nichols
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Frederique Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Sasaki N, Morimoto S, Suda C, Shimizu S, Ichihara A. Urinary soluble (pro)renin receptor excretion is associated with urine pH in humans. PLoS One 2021; 16:e0254688. [PMID: 34310595 PMCID: PMC8312976 DOI: 10.1371/journal.pone.0254688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
The (pro)renin receptor [(P)RR] binds to renin and its precursor prorenin to activate the tissue renin-angiotensin system. It is cleaved to generate soluble (P)RR and M8–9, a residual hydrophobic truncated protein. The (pro)renin receptor also functions as an intracellular accessory protein of vacuolar-type H+-ATPase, which plays an essential role in controlling the intracellular vesicular acid environment. Thus, in the kidney, (P)RR may play a role in transporting H+ to urine in the collecting duct. Although blood soluble (P)RR has been recognized as a biomarker reflecting the status of the tissue renin-angiotensin system and/or tissue (P)RR, the significance of urinary soluble (P)RR excretion has not been determined. Therefore, this study aimed to investigate the characteristics of urinary soluble (P)RR excretion. Urinary soluble (P)RR excretion was measured, and its association with background factors was investigated in 441 patients. Relationships between changes in urine pH due to vitamin C treatment, which reduce urine pH, and urinary soluble (P)RR excretion were investigated in 10 healthy volunteers. Urinary soluble (P)RR excretion was 1.46 (0.44–2.92) ng/gCre. Urine pH showed a significantly positive association with urinary soluble (P)RR excretion, independent of other factors. Changes in urine pH and urinary soluble (P)RR excretion due to vitamin C treatment were significantly and positively correlated (ρ = 0.8182, p = 0.0038). These data showed an association between urinary soluble (P)RR excretion and urine pH in humans, suggesting that (P)RR in the kidney might play a role in urine pH regulation.
Collapse
Affiliation(s)
- Nobukazu Sasaki
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| | - Chikahito Suda
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoru Shimizu
- School of Arts and Sciences, Tokyo Woman’s Christian University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|