1
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutiérrez-Uzquiza A, Fuster G, Bragado P. Role of Semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co/receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutiérrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Shen J, Gong L, Sun Y, Lin J, Hu W, Wei J, Miao X, Gao T, Suo J, Xu J, Chai Y, Bao B, Qian Y, Zheng X. Semaphorin3C identified as mediator of neuroinflammation and microglia polarization after spinal cord injury. iScience 2024; 27:109649. [PMID: 38638567 PMCID: PMC11025009 DOI: 10.1016/j.isci.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Excessive neuroinflammation after spinal cord injury (SCI) is a major hurdle during nerve repair. Although proinflammatory macrophage/microglia-mediated neuroinflammation plays important roles, the underlying mechanism that triggers neuroinflammation and aggravating factors remain unclear. The present study identified a proinflammatory role of semaphorin3C (SEMA3C) in immunoregulation after SCI. SEMA3C expression level peaked 7 days post-injury (dpi) and decreased by 14 dpi. In vivo and in vitro studies revealed that macrophages/microglia expressed SEMA3C in the local microenvironment, which induced neuroinflammation and conversion of proinflammatory macrophage/microglia. Mechanistic experiments revealed that RAGE/NF-κB was downstream target of SEMA3C. Inhibiting SEMA3C-mediated RAGE signaling considerably suppressed proinflammatory cytokine production, reversed polarization of macrophages/microglia shortly after SCI. In addition, inhibition of SEMA3C-mediated RAGE signaling suggested that the SEMA3C/RAGE axis is a feasible target to preserve axons from neuroinflammation. Taken together, our study provides the first experimental evidence of an immunoregulatory role for SEMA3C in SCI via an autocrine mechanism.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Liangzhi Gong
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Wencheng Hu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jiabao Wei
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xin Miao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jinlong Suo
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Yun Qian
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
3
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
4
|
Yu Y, Papukashvili D, Ren R, Rcheulishvili N, Feng S, Bai W, Zhang H, Xi Y, Lu X, Xing N. siRNA-based approaches for castration-resistant prostate cancer therapy targeting the androgen receptor signaling pathway. Future Oncol 2023; 19:2055-2073. [PMID: 37823367 DOI: 10.2217/fon-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Androgen deprivation therapy is a common treatment method for metastatic prostate cancer through lowering androgen levels; however, this therapy frequently leads to the development of castration-resistant prostate cancer (CRPC). This is attributed to the activation of the androgen receptor (AR) signaling pathway. Current treatments targeting AR are often ineffective mostly due to AR gene overexpression and mutations, as well as the presence of splice variants that accelerate CRPC progression. Thus there is a critical need for more specific medication to treat CRPC. Small interfering RNAs have shown great potential as a targeted therapy. This review discusses prostate cancer progression and the role of AR signaling in CRPC, and proposes siRNA-based targeted therapy as a promising strategy for CRPC.
Collapse
Affiliation(s)
- Yanling Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | | | - Ruimin Ren
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Urology, Taiyuan, 030032, China
| | | | - Shunping Feng
- Southern University of Science & Technology, Shenzhen, 518000, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Huanhu Zhang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Nianzeng Xing
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
5
|
Kong P, Zhang L, Zhang Z, Feng K, Sang Y, Duan X, Liu C, Sun T, Tao Z, Liu W. Emerging Proteins in CRPC: Functional Roles and Clinical Implications. Front Oncol 2022; 12:873876. [PMID: 35756667 PMCID: PMC9226405 DOI: 10.3389/fonc.2022.873876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men in the western world, but the lack of specific and sensitive markers often leads to overtreatment of prostate cancer which eventually develops into castration-resistant prostate cancer (CRPC). Novel protein markers for diagnosis and management of CRPC will be promising. In this review, we systematically summarize and discuss the expression pattern of emerging proteins in tissue, cell lines, and serum when castration-sensitive prostate cancer (CSPC) progresses to CRPC; focus on the proteins involved in CRPC growth, invasion, metastasis, metabolism, and immune microenvironment; summarize the current understanding of the regulatory mechanisms of emerging proteins in CSPC progressed to CRPC at the molecular level; and finally summarize the clinical applications of emerging proteins as diagnostic marker, prognostic marker, predictive marker, and therapeutic marker.
Collapse
Affiliation(s)
- Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengliang Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kangle Feng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Zhang D, Lindstrom A, Kim EJ, Hwang CI, Hall ML, Lin TY, Li Y. SEMA3C Supports Pancreatic Cancer Progression by Regulating the Autophagy Process and Tumor Immune Microenvironment. Front Oncol 2022; 12:890154. [PMID: 35785187 PMCID: PMC9243227 DOI: 10.3389/fonc.2022.890154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
To date, driver genes for pancreatic cancer treatment are difficult to pursue therapeutically. Targeting mutated KRAS, the most renowned driver gene in pancreatic cancer, is an active area of study. We discovered a gene named SEMA3C was highly expressed in pancreatic cancer cell lines and patients with a G12D mutation in KRAS. High expression of SEMA3C in patients was significantly associated with the decreased survival of pancreatic cancer patients based on the TCGA database. In pancreatic cancer cells, SEMA3C knockdown or inhibition exhibited growth/colony inhibition and cell cycle arrest. In addition, SEMA3C inhibition sensitized KRAS or MEK1/2 inhibition in pancreatic cancer cells. Overexpression of SEMA3C resulted in the induction of autophagy, whereas depletion of SEMA3C compromised induction of autophagy. SEMA3C modified the PD-L1 expression in tumor and immune cells and is correlated with the M2-like macrophage marker ARG1/CD163 expression, which could reshape the tumor microenvironment. Inhibition of SEMA3C decreased tumor formation in the xenograft model in vivo. Taken together, our data suggest that SEMA3C plays a substantial role in promoting cancer cell survival by regulating the autophagy process and impacting the tumor environment immune response. SEMA3C can be used as a novel target or marker with therapeutic or diagnostic potential in pancreatic cancer especially in tumors harboring the specific KRAS G12D mutation.
Collapse
Affiliation(s)
- Dalin Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
| | - Edward J Kim
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis, Sacramento, CA, United States
| | - Chang-il Hwang
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Madison Lee Hall
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Tzu-Yin Lin
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States,*Correspondence: Yuanpei Li,
| |
Collapse
|
7
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
8
|
The Role of Semaphorins in Metabolic Disorders. Int J Mol Sci 2020; 21:ijms21165641. [PMID: 32781674 PMCID: PMC7460634 DOI: 10.3390/ijms21165641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a family originally identified as axonal guidance molecules. They are also involved in tumor growth, angiogenesis, immune regulation, as well as other biological and pathological processes. Recent studies have shown that semaphorins play a role in metabolic diseases including obesity, adipose inflammation, and diabetic complications, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, diabetic wound healing, and diabetic osteoporosis. Evidence provides mechanistic insights regarding the role of semaphorins in metabolic diseases by regulating adipogenesis, hypothalamic melanocortin circuit, immune responses, and angiogenesis. In this review, we summarize recent progress regarding the role of semaphorins in obesity, adipose inflammation, and diabetic complications.
Collapse
|
9
|
The role of semaphorins in small vessels of the eye and brain. Pharmacol Res 2020; 160:105044. [PMID: 32590102 DOI: 10.1016/j.phrs.2020.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.
Collapse
|
10
|
Liu R, Shuai Y, Luo J, Zhang Z. SEMA3C Promotes Cervical Cancer Growth and Is Associated With Poor Prognosis. Front Oncol 2019; 9:1035. [PMID: 31649890 PMCID: PMC6794562 DOI: 10.3389/fonc.2019.01035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Aberrant activation of Semaphorin3C(SEMA3C) is widespread in human cancers. We aimed to analyze SEMA3C expression in cervical cancer and investigate the role of SEMA3C in cervical cancer and its underlying mechanism, which is important for exploring new therapeutic targets and prognostic factors. Materials and Methods: The expression of SEMA3C was examined in paraffin-embedded cervical cancer specimens. In vivo and in vitro assays were performed to validate the effect of SEMA3C on cervical cancer cell proliferation and p-ERK pathway activation. Gene Set Enrichment Analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) data set. Results: SEMA3C expression was associated with poor survival in both the TCGA cohort and our cohort. Silencing of SEMA3C suppressed cervical cancer cell proliferation, colony formation ability, and the activation of the p-ERK signaling pathway in vitro. SEMA3C depletion inhibited tumor growth in vitro. GSEA also showed that the epithelial mesenchymal transition (EMT), TGFβ signaling pathway, angiogenesis, and extracellular matrix (ECM) receptor interactions are associated with a high SEMA3C expression phenotype. Conclusion: SEMA3C is correlated with poor prognosis of cervical cancer patients and promotes tumor growth via the activation of the p-ERK pathway.
Collapse
Affiliation(s)
- Ruoyan Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjie Shuai
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jingtao Luo
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ze Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
11
|
Leclerc M, Voilin E, Gros G, Corgnac S, de Montpréville V, Validire P, Bismuth G, Mami-Chouaib F. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun 2019; 10:3345. [PMID: 31350404 PMCID: PMC6659631 DOI: 10.1038/s41467-019-11280-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Neuropilin-1 (Nrp-1) is a marker for murine CD4+FoxP3+ regulatory T (Treg) cells, a subset of human CD4+ Treg cells, and a population of CD8+ T cells infiltrating certain solid tumours. However, whether Nrp-1 regulates tumour-specific CD8 T-cell responses is still unclear. Here we show that Nrp-1 defines a subset of CD8+ T cells displaying PD-1hi status and infiltrating human lung cancer. Interaction of Nrp-1 with its ligand semaphorin-3A inhibits migration and tumour-specific lytic function of cytotoxic T lymphocytes. In vivo, Nrp-1+PD-1hi CD8+ tumour-infiltrating lymphocytes (TIL) in B16F10 melanoma are enriched for tumour-reactive T cells exhibiting an exhausted state, expressing Tim-3, LAG-3 and CTLA-4 inhibitory receptors. Anti-Nrp-1 neutralising antibodies enhance the migration and cytotoxicity of Nrp-1+PD-1hi CD8+ TIL ex vivo, while in vivo immunotherapeutic blockade of Nrp-1 synergises with anti-PD-1 to enhance CD8+ T-cell proliferation, cytotoxicity and tumour control. Thus, Nrp-1 could be a target for developing combined immunotherapies. Neuropilin-1 (Nrp-1) is a marker for CD4 + regulatory T cells. Here the authors show that Nrp-1 is co-expressed with PD-1 on a subset of CD8 tumour-infiltrating T lymphocytes and inhibits T-cell migration and cytotoxicity when bound by its ligand semaphorin-3A, while blockade of Nrp-1 synergises with anti-PD-1 to promote antitumour immunity in mouse tumour models.
Collapse
Affiliation(s)
- Marine Leclerc
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Voilin
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Vincent de Montpréville
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Centre chirurgical Marie-Lannelongue, Service d'Anatomie Pathologie, 92350, Le-Plessis-Robinson, France
| | - Pierre Validire
- Institut Mutualiste Montsouris, Service d'Anatomie pathologique, 75014, Paris, France
| | - Georges Bismuth
- INSERM U1016, Institut Cochin, 75014, Paris, France.,CNRS, Unité mixte de Recherche 8104, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
12
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|