1
|
Chhabra Y, Seiffert P, Gormal RS, Vullings M, Lee CMM, Wallis TP, Dehkhoda F, Indrakumar S, Jacobsen NL, Lindorff-Larsen K, Durisic N, Waters MJ, Meunier FA, Kragelund BB, Brooks AJ. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep 2023; 42:112490. [PMID: 37163374 DOI: 10.1016/j.celrep.2023.112490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.
Collapse
Affiliation(s)
- Yash Chhabra
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21204, USA.
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rachel S Gormal
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manon Vullings
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | | | - Tristan P Wallis
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Farhad Dehkhoda
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sowmya Indrakumar
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nina L Jacobsen
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nela Durisic
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | - Frédéric A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Andrew J Brooks
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
4
|
Zhang Y, Gc S, Patel SB, Liu Y, Paterson AJ, Kappes JC, Jiang J, Frank SJ. Growth hormone (GH) receptor (GHR)-specific inhibition of GH-Induced signaling by soluble IGF-1 receptor (sol IGF-1R). Mol Cell Endocrinol 2019; 492:110445. [PMID: 31100495 PMCID: PMC6613819 DOI: 10.1016/j.mce.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
Human growth hormone (GH) binds and activates GH receptor (GHR) and prolactin (PRL) receptor (PRLR). LNCaP human prostate cancer cells express only GHR. A soluble fragment of IGF-1 receptor (IGF-1R) extracellular domain (sol IGF-1R) interacts with GHR and blocks GH signaling. We now explore sol IGF-1R's specificity for inhibiting GH signaling via GHR vs. PRLR and test GHR and PRLR extracellular domain inhibition determinants. Although T47D human breast cancer cells express GHR and PRLR, GH signaling is largely PRLR-mediated. In T47D, sol IGF-1R inhibited neither GH- nor PRL-induced STAT5 activation. However, sol IGF-1R inhibited GH-induced STAT5 activation in T47D-shPRLR cells, which harbor reduced PRLR. In MIN6 mouse β-cells, bovine GH (bGH) activates mouse GHR, not PRLR, while human GH activates mouse GHR and PRLR. In MIN6, sol IGF-1R inhibited bGH-induced STAT5 activation, but partially inhibited human GH-induced STAT5 activation. These findings suggest sol IGF-1R's inhibition is GHR-specific. Using a cellular reconstitution system, we compared effects of sol IGF-1R on signaling through GHR, PRLR, or chimeras in which extracellular subdomains 2 (S2) of the receptors were swapped. Sol IGF-1R inhibited GH-induced STAT5 activation in GHR-expressing, not PRLR-expressing cells, consistent with GHR specificity of sol IGF-1R. Interestingly, we found that GHR S2 (which harbors the GHR-GHR dimer interface) was required, but not sufficient for sol IGF-1R inhibition of GHR signaling. These results suggest sol IGF-1R specifically inhibits GH-induced GHR-mediated signaling, possibly through interaction with GHR S1 and S2 domains. Our findings have implications for GH antagonist development.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sajina Gc
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sweta B Patel
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ying Liu
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Andrew J Paterson
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John C Kappes
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jing Jiang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Sawada T, Arai D, Jing X, Miyajima M, Frank SJ, Sakaguchi K. Molecular interactions of EphA4, growth hormone receptor, Janus kinase 2, and signal transducer and activator of transcription 5B. PLoS One 2017; 12:e0180785. [PMID: 28686668 PMCID: PMC5501605 DOI: 10.1371/journal.pone.0180785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
We previously reported that EphA4, a member of the Eph family of receptor tyrosine kinases, is an important modulator of growth hormone (GH) signaling, leading to augmented synthesis of insulin-like growth factor 1 (IGF1) for postnatal body growth. In the present study, we report the molecular interactions of EphA4, GH receptor (GHR), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 5B (STAT5B). EphA4 binds to GHR at both its extracellular and intracellular domains and phosphorylates GHR when stimulated with a ligand. The cytoplasmic domain of EphA4 binds to the carboxy-terminus of JAK2 in contrast to the known binding of GHR to the amino-terminus. STAT5B binds to the amino-terminal kinase domain of EphA4. Ligand-activated EphA4 and JAK2 phosphorylate each other and STAT5B, but JAK2 does not appear to phosphorylate EphA4-bound STAT5B. Ligand-activated EphA4 induces the nuclear translocation of STAT5B in a JAK2-independent manner. GHR expression is required for the activation of STAT5B signaling, even via the JAK2-independent pathway. Various ephrins that have affinity for EphA4 induce STAT5B phosphorylation. These findings suggest the molecular mechanisms by which ephrin/EphA4 signaling enhances the canonical GH-IGF1 axis.
Collapse
Affiliation(s)
- Takahiro Sawada
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Daiki Arai
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Xuefeng Jing
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Stuart J. Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham VA Medical Center, Birmingham, Alabama, United States of America
| | - Kazushige Sakaguchi
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| |
Collapse
|
7
|
Bugge K, Papaleo E, Haxholm GW, Hopper JTS, Robinson CV, Olsen JG, Lindorff-Larsen K, Kragelund BB. A combined computational and structural model of the full-length human prolactin receptor. Nat Commun 2016; 7:11578. [PMID: 27174498 PMCID: PMC4869255 DOI: 10.1038/ncomms11578] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.
Collapse
Affiliation(s)
- Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Gitte W. Haxholm
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jonathan T. S. Hopper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Johan G. Olsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Zhang Y, Wang X, Loesch K, May LA, Davis GE, Jiang J, Frank SJ. TIMP3 Modulates GHR Abundance and GH Sensitivity. Mol Endocrinol 2016; 30:587-99. [PMID: 27075707 DOI: 10.1210/me.2015-1302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH receptor (GHR) binds GH at the cell surface via its extracellular domain and initiates intracellular signal transduction, resulting in important anabolic and metabolic actions. GH signaling is subject to dynamic regulation, which in part is exerted by modulation of cell surface GHR levels. Constitutive and inducible metalloprotease-mediated cleavage of GHR regulate GHR abundance and thereby modulate GH action. We previously demonstrated that GHR proteolysis is catalyzed by the TNF-α converting enzyme (TACE; ADAM17). Tissue inhibitors of metalloproteases-3 (TIMP3) is a natural specific inhibitor of TACE, although mechanisms underlying this inhibition are not yet fully understood. In the current study, we use two model cell lines to examine the relationships between cellular TACE, TIMP3 expression, GHR metalloproteolysis, and GH sensitivity. These two cell lines exhibited markedly different sensitivity to inducible GHR proteolysis, which correlated directly to their relative levels of mature TACE vs unprocessed TACE precursor and indirectly to their levels of cellular TIMP3. Our results implicate TIMP3 as a modulator of cell surface GHR abundance and the ability of GH to promote cellular signaling; these modulatory effects may be conferred by endogenous TIMP3 expression as well as exogenous TIMP3 exposure. Furthermore, our analysis suggests that TIMP3, in addition to regulating the activity of TACE, may also modulate the maturation of TACE, thereby affecting the abundance of the active form of the enzyme.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Xiangdong Wang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Kimberly Loesch
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Larry A May
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - George E Davis
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Jing Jiang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Stuart J Frank
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
9
|
Nespital T, van der Velden LM, Mensinga A, van der Vaart ED, Strous GJ. Fos-Zippered GH Receptor Cytosolic Tails Act as Jak2 Substrates and Signal Transducers. Mol Endocrinol 2016; 30:290-301. [PMID: 26859362 DOI: 10.1210/me.2015-1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Members of the Janus kinase (Jak) family initiate the majority of downstream signaling events of the cytokine receptor family. The prevailing principle is that the receptors act in dimers: 2 Jak2 molecules bind to the cytosolic tails of a cytokine receptor family member and initiate Jak-signal transducer and activator of transcription signaling upon a conformational change in the receptor complex, induced by the cognate cytokine. Due to the complexity of signaling complexes, there is a strong need for in vitro model systems. To investigate the molecular details of the Jak2 interaction with the GH receptor (GHR), we used cytosolic tails provided with leucine zippers derived from c-Fos to mimic the dimerized state of GHR. Expressed together with Jak2, fos-zippered tails, but not unzippered tails, were stabilized. In addition, the Jak-signal transducer and activator of transcription signaling pathway was activated by the fos-zippered tails. The stabilization depended also on α-helix rotation of the zippers. Fos-zippered GHR tails and Jak2, both purified from baculovirus-infected insect cells, interacted via box1 with a binding affinity of approximately 40nM. As expected, the Jak kinase inhibitor Ruxolitinib inhibited the stabilization but did not affect the c-Fos-zippered GHR tail-Jak2 interaction. Analysis by blue-native gel electrophoresis revealed high molecular-weight complexes containing both Jak2 and nonphosphorylated GHR tails, whereas Jak2-dissociated tails were highly phosphorylated and monomeric, implying that Jak2 detaches from its substrate upon phosphorylation.
Collapse
Affiliation(s)
- Tobias Nespital
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Lieke M van der Velden
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Anneloes Mensinga
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Elisabeth D van der Vaart
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Ger J Strous
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
10
|
Liu Y, Berry PA, Zhang Y, Jiang J, Lobie PE, Paulmurugan R, Langenheim JF, Chen WY, Zinn KR, Frank SJ. Dynamic analysis of GH receptor conformational changes by split luciferase complementation. Mol Endocrinol 2014; 28:1807-19. [PMID: 25188449 DOI: 10.1210/me.2014-1153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transmembrane GH receptor (GHR) exists at least in part as a preformed homodimer on the cell surface. Structural and biochemical studies suggest that GH binds GHR in a 1:2 stoichiometry to effect acute GHR conformational changes that trigger the activation of the receptor-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signaling. Despite information about GHR-GHR association derived from elegant fluorescence resonance energy transfer/bioluminescence resonance energy transfer studies, an assessment of the dynamics of GH-induced GHR conformational changes has been lacking. To this end, we used a split luciferase complementation assay that allowed detection in living cells of specific ligand-independent GHR-GHR interaction. Furthermore, GH treatment acutely augmented complementation of enzyme activity between GHRs fused, respectively, to N- and C-terminal fragments of firefly luciferase. Analysis of the temporal pattern of GH-induced complementation changes, pharmacological manipulation, genetic alteration of JAK2 levels, and truncation of the GHR intracellular domain (ICD) tail suggested that GH acutely enhances proximity of the GHR homodimer partners independent of the presence of JAK2, phosphorylation of GHR-luciferase chimeras, or an intact ICD. However, subsequent reduction of complementation requires JAK2 kinase activity and the ICD tail. This conclusion is in contrast to existing models of the GHR activation process.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine (Y.L., P.A.B., Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Departments of Radiology (K.R.Z.), and Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; Cancer Science Institute of Singapore and Department of Pharmacology (P.E.L.), National University of Singapore, Singapore 119077; Department of Radiology (R.P.), Stanford University School of Medicine, Palo Alto, California 94304; Department of Biological Sciences (J.F.L., W.Y.C.), Clemson University, Clemson, South Carolina 29634; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carbone CJ, Fuchs SY. Eliminative signaling by Janus kinases: role in the downregulation of associated receptors. J Cell Biochem 2014; 115:8-16. [PMID: 23959845 DOI: 10.1002/jcb.24647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Activation of cytokine receptor-associated Janus kinases (JAKs) mediates most, if not all, of the cellular responses to peptide hormones and cytokines. Consequently, JAKs play a paramount role in homeostasis and immunity. Members of this family of tyrosine kinases control the cytokine/hormone-induced alterations in cell gene expression program. This function is largely mediated through an ability to signal toward activation of the signal transducer and activator of transcription proteins (STAT), as well as toward some other pathways. Importantly, JAKs are also instrumental in tightly controlling the expression of associated cytokine and hormone receptors, and, accordingly, in regulating the cell sensitivity to these cytokines and hormones. This review highlights the enzymatic and non-enzymatic mechanisms of this regulation and discusses the importance of the ambidextrous nature of JAK as a key signaling node that integrates the combining functions of forward signaling and eliminative signaling. Attention to the latter aspect of JAK function may contribute to emancipating our approaches to the pharmacological modulation of JAKs.
Collapse
Affiliation(s)
- Christopher J Carbone
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | |
Collapse
|
12
|
Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, Parker MW, Sierecki E, Gambin Y, Gomez GA, Alexandrov K, Wilson IA, Doxastakis M, Mark AE, Waters MJ. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 2014; 344:1249783. [PMID: 24833397 DOI: 10.1126/science.1249783] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.
Collapse
Affiliation(s)
- Andrew J Brooks
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| | - Wei Dai
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Megan L O'Mara
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Daniel Abankwa
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yash Chhabra
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Rebecca A Pelekanos
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Olivier Gardon
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kathryn A Tunny
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kristopher M Blucher
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Craig J Morton
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W Parker
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Emma Sierecki
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Yann Gambin
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Guillermo A Gomez
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia
| | - Ian A Wilson
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA
| | - Alan E Mark
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia.
| |
Collapse
|
13
|
Affiliation(s)
- James A Wells
- Pharmaceutical Chemistry; Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| | - Anthony A Kossiakoff
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Xu J, Sun D, Jiang J, Deng L, Zhang Y, Yu H, Bahl D, Langenheim JF, Chen WY, Fuchs SY, Frank SJ. The role of prolactin receptor in GH signaling in breast cancer cells. Mol Endocrinol 2012. [PMID: 23192981 DOI: 10.1210/me.2012-1297] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH and prolactin (PRL) are structurally related hormones that exert important effects in disparate target tissues. Their receptors (GHR and PRLR) reside in the cytokine receptor superfamily and share signaling pathways. In humans, GH binds both GHR and PRLR, whereas PRL binds only PRLR. Both hormones and their receptors may be relevant in certain human and rodent cancers, including breast cancer. GH and PRL promote signaling in human T47D breast cancer cells that express both GHR and PRLR. Furthermore, GHR and PRLR associate in a fashion augmented acutely by GH, even though GH primarily activates PRLR, rather than GHR, in these cells. To better understand PRLR's impact, we examined the effects of PRLR knockdown on GHR availability and GH sensitivity in T47D cells. T47D-ShPRLR cells, in which PRLR expression was reduced by stable short hairpin RNA (shRNA) expression, were compared with T47D-SCR control cells. PRLR knockdown decreased the rate of GHR proteolytic turnover, yielding GHR protein increase and ensuing sensitization of these cells to GHR signaling events including phosphorylation of GHR, Janus kinase 2, and signal transducer and activator of transcription 5 (STAT5). Unlike in T47D-SCR cells, acute GH signaling in T47D-ShPRLR cells was not blocked by the PRLR antagonist G129R but was inhibited by the GHR-specific antagonist, anti-GHR(ext-mAb). Thus, GH's use of GHR rather than PRLR was manifested when PRLR was reduced. In contrast to acute effects, GH incubation for 2 h or longer yielded diminished STAT5 phosphorylation in T47D-ShPRLR cells compared with T47D-SCR, a finding perhaps explained by markedly greater GH-induced GHR down-regulation in cells with diminished PRLR. However, when stimulated with repeated 1-h pulses of GH separated by 3-h washout periods to more faithfully mimic physiological GH pulsatility, T47D-ShPRLR cells exhibited greater transactivation of a STAT5-responsive luciferase reporter than did T47D-SCR cells. Our data suggest that PRLR's presence meaningfully affects GHR use in breast cancer cells.
Collapse
Affiliation(s)
- Jie Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deng L, Jiang J, Frank SJ. Growth hormone-induced JAK2 signaling and GH receptor down-regulation: role of GH receptor intracellular domain tyrosine residues. Endocrinology 2012; 153:2311-22. [PMID: 22416081 PMCID: PMC3339656 DOI: 10.1210/en.2011-1452] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH receptor (GHR) mediates important somatogenic and metabolic effects of GH. A thorough understanding of GH action requires intimate knowledge of GHR activation mechanisms, as well as determinants of GH-induced receptor down-regulation. We previously demonstrated that a GHR mutant in which all intracellular tyrosine residues were changed to phenylalanine was defective in its ability to activate signal transducer and activator of transcription (STAT)5 and deficient in GH-induced down-regulation, but able to allow GH-induced Janus family of tyrosine kinase 2 (JAK2) activation. We now further characterize the signaling and trafficking characteristics of this receptor mutant. We find that the mutant receptor's extracellular domain conformation and its interaction with GH are indistinguishable from the wild-type receptor. Yet the mutant differs greatly from the wild-type in that GH-induced JAK2 activation is augmented and far more persistent in cells bearing the mutant receptor. Notably, unlike STAT5 tyrosine phosphorylation, GH-induced STAT1 tyrosine phosphorylation is retained and augmented in mutant GHR-expressing cells. The defective receptor down-regulation and persistent JAK2 activation of the mutant receptor do not depend on the sustained presence of GH or on the cell's ability to carry out new protein synthesis. Mutant receptors that exhibit resistance to GH-induced down-regulation are enriched in the disulfide-linked form of the receptor, which reflects the receptor's activated conformation. Furthermore, acute GH-induced internalization, a proximal step in down-regulation, is markedly impaired in the mutant receptor compared to the wild-type receptor. These findings are discussed in the context of determinants and mechanisms of regulation of GHR down-regulation.
Collapse
Affiliation(s)
- Luqin Deng
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, 1530 3 Avenue South, Birmingham, Alabama 35294-0012, USA
| | | | | |
Collapse
|
16
|
Jiang J, Wan Y, Wang X, Xu J, Harris JM, Lobie PE, Zhang Y, Zinn KR, Waters MJ, Frank SJ. Inhibitory GH receptor extracellular domain monoclonal antibodies: three-dimensional epitope mapping. Endocrinology 2011; 152:4777-88. [PMID: 21990310 PMCID: PMC3230063 DOI: 10.1210/en.2011-1336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH receptor (GHR) mediates the anabolic and metabolic effects of GH. We previously characterized a monoclonal antibody (anti-GHR(ext-mAb)) that reacts with subdomain 2 of the rabbit GHR extracellular domain (ECD) and is a conformation-specific inhibitor of GH signaling in cells bearing rabbit or human GHR. Notably, this antibody has little effect on GH binding and also inhibits inducible metalloproteolysis of the GHR that occurs in the perimembranous ECD stem region. In the current study, we demonstrate that anti-GHR(ext-mAb) inhibits GH-dependent cellular proliferation and also inhibits hepatic GH signaling in vivo in mice that adenovirally express rabbit GHR, as assessed with our noninvasive bioluminescence hepatic signaling assay. A separate monoclonal antibody (anti-GHR(mAb 18.24)) is a sister clone of anti-GHR(ext-mAb). Here, we demonstrate that anti-GHR(mAb 18.24) also inhibits rabbit and human GHR signaling and inducible receptor proteolysis. Further, we use a random PCR-generated mutagenic expression system to map the three-dimensional epitopes in the rabbit GHR ECD for both anti-GHR(ext-mAb) and anti-GHR(mAb 18.24). We find that each of the two antibodies has similar, but nonidentical, discontinuous epitopes that include regions of subdomain 2 encompassing the dimerization interface. These results have fundamental implications for understanding the role of the dimerization interface and subdomain 2 in GHR activation and regulated GHR metalloproteolysis and may inform development of therapeutics that target GHR.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ma F, Wei Z, Shi C, Gan Y, Lu J, Frank SJ, Balducci J, Huang Y. Signaling cross talk between growth hormone (GH) and insulin-like growth factor-I (IGF-I) in pancreatic islet β-cells. Mol Endocrinol 2011; 25:2119-33. [PMID: 22034225 DOI: 10.1210/me.2011-1052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dysfunction and destruction of pancreatic islet β-cells is a hallmark of diabetes. Better understanding of cell signals regulating β-cell growth and antiapoptosis will allow development of therapeutic strategies for diabetes by preservation and expansion of β-cell mass. GH and IGF-I share a complicated physiological relationship and have both been implicated in β-cell function. GH and IGF-I exert their biological effects through binding to respective receptors (GHR and IGF-IR) and subsequently engaging downstream signaling pathways. However, their collaborative roles in modulation of β-cell mass and the underlying molecular mechanisms remain poorly understood. In this study, we demonstrate that cultured β-cells are appealing systems for investigating potential GH-IGF-I signaling cross talk. We uncover that GH specifically promotes formation of a protein complex containing GHR, Janus kinase 2 (a nonreceptor kinase coupled to GH/GHR signaling), and IGF-IR. More importantly, GH and IGF-I synergistically activate both signal transducer and activator of transcription 5 and Akt pathways. Concomitantly, β-cells proliferate more robustly and are better protected from serum deprivation-induced apoptosis when exposed to GH and IGF-I in combination vs. GH or IGF-I alone. The augmented proliferative effects by GH and IGF-I are confirmed in isolated islets. Taken together, our findings strongly suggest that there exists a novel signaling relationship between GH/GHR and IGF-I/IGF-IR systems in β-cells, i.e. IGF-IR may serve as a proximal component of GH/GHR signaling, contributing to enhancement of β-cell mass and function. In support of this, IGF-IR knockdown in β-cells resulted in the desensitization of acute GH-induced signal transducer and activator of transcription 5 activation.
Collapse
Affiliation(s)
- Fanxin Ma
- Laboratory of Signal Transduction, Department of Obstetrics and Gynecology, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sayyah J, Gnanasambandan K, Kamarajugadda S, Tsuda S, Caldwell-Busby J, Sayeski PP. Phosphorylation of Y372 is critical for Jak2 tyrosine kinase activation. Cell Signal 2011; 23:1806-15. [PMID: 21726629 DOI: 10.1016/j.cellsig.2011.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023]
Abstract
Jak2 tyrosine kinase plays an important role in cytokine mediated signal transduction. There are 49 tyrosine residues in Jak2 and phosphorylation of some of these are known to play important roles in the regulation of Jak2 kinase activity. Here, using mass spectrometry, we identified tyrosine residues Y372 and Y373 as novel sites of Jak2 phosphorylation. Mutation of Y372 to F (Y372F) significantly inhibited Jak2 phosphorylation, including that of Y1007, whereas the Jak2-Y373F mutant displayed only modest reduction in phosphorylation. Relative to Jak2-WT, the ability of Jak2-Y372F to bind to and phosphorylate STAT1 was decreased, resulting in reduced Jak2-mediated downstream gene transcription. While the Y372F mutation had no effect on receptor-independent, hydrogen peroxide-mediated Jak2 activation, it impaired interferon-gamma (IFNγ) and epidermal growth factor (EGF)-dependent Jak2 activation. Interestingly however, the Y372F mutant exhibited normal receptor binding properties. Finally, co-expression of SH2-Bβ only partially restored the activation of the Jak2-Y372F mutant suggesting that the mechanism whereby phosphorylation of Y372 is important for Jak2 activation is via dimerization. As such, our results indicate that Y372 plays a critical yet differential role in Jak2 activation and function via a mechanism involving Jak2 dimerization and stabilization of the active conformation.
Collapse
Affiliation(s)
- Jacqueline Sayyah
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
19
|
Putters J, da Silva Almeida AC, van Kerkhof P, van Rossum AGSH, Gracanin A, Strous GJ. Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor. PLoS One 2011; 6:e14676. [PMID: 21347402 PMCID: PMC3036580 DOI: 10.1371/journal.pone.0014676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/13/2011] [Indexed: 12/04/2022] Open
Abstract
Background Length and intensity of signal transduction via cytokine receptors is precisely regulated. Degradation of certain cytokine receptors is mediated by the ubiquitin ligase SCF(βTrCP). In several instances, Janus kinase (Jak) family members can stabilise their cognate cytokine receptors at the cell surface. Principal Findings In this study we show in Hek293 cells that Jak2 binding to the growth hormone receptor prevents endocytosis in a non-catalytic manner. Following receptor activation, the detachment of phosphorylated Jak2 induces down-regulation of the growth hormone receptor by SCF(βTrCP). Using γ2A human fibroblast cells we show that both growth hormone-induced and constitutive growth hormone receptor endocytosis depend on the same factors, strongly suggesting that the modes of endocytosis are identical. Different Jak2 RNA levels in HepG2, IM9 and Hek293 cells indicate the importance of cellular concentration on growth hormone receptor function. Both Jak2 and βTrCP bind to neighbouring linear motifs in the growth hormone receptor tail without the requirement of modifications, indicating that growth hormone sensitivity is regulated by the cellular level of non-committed Jak2. Conclusions/Significance As signal transduction of many cytokine receptors depends on Jak2, the study suggests an integrative role of Jak2 in cytokine responses based on its enzyme activity as well as its stabilising properties towards the receptors.
Collapse
Affiliation(s)
- Joyce Putters
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana C. da Silva Almeida
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Peter van Kerkhof
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnes G. S. H. van Rossum
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- Drug Discovery Factory BV, Bussum, The Netherlands
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Ger J. Strous
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Abstract
Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors.
Collapse
Affiliation(s)
- Andrew J Brooks
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Qld 4072, Australia.
| | | |
Collapse
|
21
|
Gan Y, Zhang Y, Digirolamo DJ, Jiang J, Wang X, Cao X, Zinn KR, Carbone DP, Clemens TL, Frank SJ. Deletion of IGF-I receptor (IGF-IR) in primary osteoblasts reduces GH-induced STAT5 signaling. Mol Endocrinol 2010; 24:644-56. [PMID: 20133448 DOI: 10.1210/me.2009-0357] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GH promotes longitudinal growth and regulates multiple cellular functions in humans and animals. GH signals by binding to GH receptor (GHR) to activate the tyrosine kinase, Janus kinase 2 (JAK2), and downstream pathways including signal transducer and activator of transcription 5 (STAT5), thereby regulating expression of genes including IGF-I. GH exerts effects both directly and via IGF-I, which signals by activating the IGF-I receptor (IGF-IR). IGF-IR is a cell surface receptor that contains intrinsic tyrosine kinase activity within its intracellular domain. In this study, we examined the potential role of IGF-IR in facilitating GH-induced signal transduction, using mouse primary calvarial osteoblasts with Lox-P sites flanking both IGF-IR alleles. These cells respond to both GH and IGF-I and in vitro infection with an adenovirus that drives expression of Cre recombinase (Ad-Cre) dramatically reduces IGF-IR abundance without affecting the abundance of GHR, JAK2, STAT5, or ERK. Notably, infection with Ad-Cre, but not a control adenovirus, markedly inhibited acute GH-induced STAT5 activity (more than doubling the ED(50) and reducing the maximum activity by nearly 50%), while sparing GH-induced ERK activity, and markedly inhibited GH-induced transactivation of a STAT5-dependent luciferase reporter. The effect of Ad-Cre on GH signaling was specific, as platelet-derived growth factor-induced signaling was unaffected by Ad-Cre-mediated reduction of IGF-IR. Ad-Cre-mediated inhibition of GH signaling was reversed by adenoviral reexpression of IGF-IR, but not by infection with an adenovirus that drives expression of a hemagglutination-tagged somatostatin receptor, which drives expression of the unrelated somatostatin receptor, and Ad-Cre infection of nonfloxed osteoblasts did not affect GH signaling. Notably, infection with an adenovirus encoding a C-terminally truncated IGF-IR that lacks the tyrosine kinase domain partially rescued both acute GH-induced STAT5 activity and GH-induced IGF-I gene expression in cells in which endogenous IGF-IR was reduced. These data, in concert with our earlier findings that GH induces a GHR-JAK2-IGF-IR complex, suggest a novel function for IGF-IR. In addition to its role as a key IGF-I signal transducer, this receptor may directly facilitate acute GH signaling. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Yujun Gan
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Growth hormone receptor targeting to lipid rafts requires extracellular subdomain 2. Biochem Biophys Res Commun 2010; 391:414-8. [DOI: 10.1016/j.bbrc.2009.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 11/21/2022]
|
23
|
Clevenger CV, Gadd SL, Zheng J. New mechanisms for PRLr action in breast cancer. Trends Endocrinol Metab 2009; 20:223-9. [PMID: 19535262 DOI: 10.1016/j.tem.2009.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 12/23/2022]
Abstract
Prolactin (PRL) is a pleiotrophic hormone that contributes to the growth of normal and malignant breast tissues. PRL signals through its receptor (PRLr), a transmembrane receptor that belongs to the cytokine receptor family. The mechanism of how the PRL:PRLr interaction triggers activation of signaling networks remains enigmatic. This review examines the effect of ligand binding on PRLr and the processes that initiate receptor-associated signaling. Evidence for PRLr predimerization in the absence of ligand and the actions of the prolyl isomerase cyclophilin A in ligand-induced activation of PRLr-associated Jak2 kinase are discussed. These studies reveal that ligand-induced conformational change of the PRLr complex is necessary for its function and open avenues for therapies to inhibit PRLr action in breast cancer.
Collapse
Affiliation(s)
- Charles V Clevenger
- Department of Pathology and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
24
|
Zheng J, Koblinski JE, Dutson LV, Feeney YB, Clevenger CV. Prolyl isomerase cyclophilin A regulation of Janus-activated kinase 2 and the progression of human breast cancer. Cancer Res 2008; 68:7769-78. [PMID: 18829531 DOI: 10.1158/0008-5472.can-08-0639] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activation of the Janus-activated kinase 2 (Jak2) tyrosine kinase following ligand binding has remained incompletely characterized at the mechanistic level. We report that the peptidyl-prolyl isomerase (PPI) cyclophilin A (CypA), which is implicated in the regulation of protein conformation, is necessary for the prolactin (PRL)-induced activation of Jak2 and the progression of human breast cancer. A direct correlation was observed between the levels or activity of CypA and the extent of PRL-induced signaling and gene expression. Loss of PRLr-CypA binding, following treatment with the PPI inhibitor cyclosporine A (CsA), or overexpression of a dominant-negative PRLr mutant (P334A) resulted in a loss of PRLr/Jak2-mediated signaling. In vitro, CsA treatment of breast cancer cells inhibited their growth, motility, invasion, and soft agar colony formation. In vivo, CsA treatment of nude mice xenografted with breast cancer cells induced tumor necrosis and completely inhibited metastasis. These studies reveal that a CypA-mediated conformational change within the PRLr/Jak2 complex is required for PRL-induced transduction and function and indicate that the inhibition of prolyl isomerases may be a novel therapeutic strategy in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Jiamao Zheng
- Department of Pathology, Breast Cancer Program, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
25
|
Li X, Huang Y, Jiang J, Frank SJ. ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cell Signal 2008; 20:2145-55. [PMID: 18762250 DOI: 10.1016/j.cellsig.2008.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/03/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Epidermal growth factor (EGF) signaling is critical in normal and aberrant cellular behavior. Extracellular signal-regulated kinase (ERK) mediates important downstream aspects of EGF signaling. Additionally, EGFR undergoes MEK1-dependent ERK consensus site phosphorylation in response to EGF or cytokines such as growth hormone (GH) and prolactin (PRL). GH- or PRL-induced EGFR phosphorylation alters subsequent EGF-induced EGFR downregulation and signal characteristics in an ERK-dependent fashion. We now use reconstitution to study mutation of the sole EGFR ERK phosphorylation consensus residue, (669)T. CHO-GHR cells, which lack EGFR and express GHR, were stably transfected to express human wild-type or T669A ((669)T changed to alanine) EGFRs at similar abundance. Treatment of cells with GH or EGF caused phosphorylation of WT, but not T669A EGFR, in an ERK activity-dependent fashion that was detected with an antibody that recognizes phosphorylation of ERK consensus sites, indicating that (669)T is required for this phosphorylation. Notably, EGF-induced downregulation of EGFR abundance was much more rapid in cells expressing EGFR T669A vs. WT EGFR. Further, pretreatment with the MEK1/ERK inhibitor PD98059 enhanced EGF-induced EGFR loss in cells expressing WT EGFR, but not EGFR T669A, suggesting that the ERK-dependent effects on EGFR downregulation required phosphorylation of (669)T. In signaling experiments, EGFR T669A displayed enhanced acute (15 min) EGFR tyrosine phosphorylation (reflecting EGFR kinase activity) compared to WT EGFR. Further, acute EGF-induced ubiquitination of WT EGFR was markedly enhanced by PD98059 pretreatment and was increased in EGFR T669A-expressing cells independent of PD98059. These signaling data suggest that ERK-mediated (669)T phosphorylation negatively modulates EGF-induced EGFR kinase activity. We furthered these investigations using a human fibrosarcoma cell line that endogenously expresses EGFR and ErbB-2 and also harbors an activating Ras mutation. In these cells, EGFR was constitutively detected with the ERK consensus site phosphorylation-specific antibody and EGF-induced EGFR downregulation was modest, but was substantially enhanced by pretreatment with MEK1/ERK inhibitor. Collectively, these data indicate that ERK activity, by phosphorylation of a threonine residue in the EGFR juxtamembrane cytoplasmic domain, modulates EGFR trafficking and signaling.
Collapse
Affiliation(s)
- Xin Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, United States
| | | | | | | |
Collapse
|
26
|
Frank SJ, Fuchs SY. Modulation of growth hormone receptor abundance and function: roles for the ubiquitin-proteasome system. Biochim Biophys Acta Mol Basis Dis 2008; 1782:785-94. [PMID: 18586085 DOI: 10.1016/j.bbadis.2008.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 05/27/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
Abstract
Growth hormone plays an important role in regulating numerous functions in vertebrates. Several pathways that negatively regulate the magnitude and duration of its signaling (including expression of tyrosine phosphatases, SOCS and PIAS proteins) are shared between signaling induced by growth hormone itself and by other cytokines. Here we overview downregulation of the growth hormone receptor as the most specific and potent mechanism of restricting cellular responses to growth hormone and analyze the role of several proteolytic systems and, specifically, ubiquitin-dependent pathways in this regulation.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA.
| | | |
Collapse
|
27
|
Frank SJ. Mechanistic aspects of crosstalk between GH and PRL and ErbB receptor family signaling. J Mammary Gland Biol Neoplasia 2008; 13:119-29. [PMID: 18236142 DOI: 10.1007/s10911-008-9065-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 11/27/2022] Open
Abstract
Growth hormone (GH) and prolactin (PRL) are anterior pituitary hormones that have multiple roles in growth and metabolism. Both hormones are important in mammary development and breast cancer. The epidermal growth factor (EGF) family of peptides and the receptors that they activate (the ErbB family) are also major players in mammary biology and pathophysiology. Recent studies in signal transduction have highlighted the interplay between signaling pathways referred to as crosstalk. In this review, cell biological and signaling studies related to crosstalk between GH and PRL and the ErbB family are discussed. In particular, the role of GH- and PRL-induced phosphorylation of ErbB receptors in regulating EGF responsiveness is highlighted with attention to potential pathophysiological relevance.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Cell Biology and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA.
| |
Collapse
|
28
|
Yang N, Langenheim JF, Wang X, Jiang J, Chen WY, Frank SJ. Activation of growth hormone receptors by growth hormone and growth hormone antagonist dimers: insights into receptor triggering. Mol Endocrinol 2007; 22:978-88. [PMID: 18096690 DOI: 10.1210/me.2007-0424] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH binds dimerized GH receptors (GHRs) to form a trimolecular complex and induces downstream signaling events. The mechanism by which GH binding converts the inactive predimerized GHR to its active signaling conformation is uncertain. GH has no axis of symmetry. Its interaction with GHR is mediated by two asymmetric binding sites on GH, each with distinct affinity. Site 1 is of high affinity and is thought to mediate the first binding step. Mutation of binding site 2 (as in the human GH mutant, G120R) disrupts the second binding but leaves site 1 binding intact. G120R is a GH antagonist; it binds only one GHR and thus fails to signal, and it prevents productive GHR binding by normal GH. We previously demonstrated that prolactin receptor signaling was achieved by a dimeric version of a prolactin antagonist. We now employ assays of cellular signaling and receptor conformational changes to examine whether GH molecules harboring two site 1 regions can trigger GHR activation. We used recombinantly produced GH-GH and G120R-G120R dimers in which monomers in tandem are connected by a short linker peptide. Rabbit GHR-expressing human fibrosarcoma cells (C14) were treated with GH, G120R, GH-GH, or G120R-G120R. As expected, GH and GH-GH, but not G120R, induced GHR disulfide linkage, as assessed by anti-GHR blotting of cell extracts resolved by SDS-PAGE under nonreducing conditions. Disulfide linkage of GHRs reflects attainment of the active signaling conformation. Likewise, GH and GH-GH, but not G120R, caused Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) activation. Notably, G120R-G120R, despite its lack of an intact site 2 in either dimer partner, also promoted GHR disulfide linkage and JAK2 and STAT5 activation, albeit less potently than either GH or GH-GH. Time-course responses of the three agonists were similar in terms of JAK2 and STAT5 activation. Pretreatment of cells with our conformation-sensitive inhibitory monoclonal antibody, anti-GHR ext-mAb, prevented ligand-induced receptor activation for all three agonists. GHR was also rendered less immunoprecipitable by anti-GHR ext-mAb after treatment with these agonists. These results are important in that they indicate that a ligand with two intact binding sites 1 causes GHR to adopt similar conformational changes as does GH and thus triggers activation of JAK2 and downstream signaling. Furthermore, we infer that there is substantial flexibility in the GHR extracellular domain, such that it productively accommodates GH dimers that are much larger than GH.
Collapse
Affiliation(s)
- Ning Yang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | |
Collapse
|
29
|
Asa SL, Digiovanni R, Jiang J, Ward ML, Loesch K, Yamada S, Sano T, Yoshimoto K, Frank SJ, Ezzat S. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res 2007; 67:7505-11. [PMID: 17671221 DOI: 10.1158/0008-5472.can-07-0219] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pituitary tumors are a diverse group of neoplasms that are classified based on clinical manifestations, hormone excess, and histomorphologic features. Those that cause growth hormone (GH) excess and acromegaly are subdivided into morphologic variants that have not yet been shown to have pathogenetic significance or predictive value for therapy and outcome. Here, we identify a selective somatic histidine-to-leucine substitution in codon 49 of the extracellular domain of the GH receptor (GHR) in a morphologic subtype of human GH-producing pituitary tumors that is characterized by the presence of cytoskeletal aggresomes. This GHR mutation significantly impairs glycosylation-mediated receptor processing, maturation, ligand binding, and signaling. Pharmacologic GH antagonism recapitulates the morphologic phenotype of pituitary tumors from which this mutation was identified, inducing the formation of cytoskeletal keratin aggresomes. This novel GHR mutation provides evidence for impaired hormone autofeedback in the pathogenesis of these pituitary tumors. It explains the lack of responsiveness to somatostatin analogue therapy of this tumor type, in contrast to the exquisite sensitivity of tumors that lack aggresomes, and has therapeutic implications for the safety of GH antagonism as a therapeutic modality in acromegaly.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network and Toronto Medical Laboratories, Mount Sinai Hospital, Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ravid O, Shams I, Ben Califa N, Nevo E, Avivi A, Neumann D. An extracellular region of the erythropoietin receptor of the subterranean blind mole rat Spalax enhances receptor maturation. Proc Natl Acad Sci U S A 2007; 104:14360-5. [PMID: 17724331 PMCID: PMC1964849 DOI: 10.1073/pnas.0706777104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythropoietic functions of erythropoietin (EPO) are mediated by its receptor (EPO-R), which is present on the cell surface of erythroid progenitors and induced by hypoxia. We focused on EPO-R from Spalax galili (sEPO-R), one of the four Israeli species of the subterranean blind mole rat, Spalax ehrenbergi superspecies, as a special natural animal model of high tolerance to hypoxia. Led by the intriguing observation that most of the mouse EPO-R (mEPO-R) is retained in the endoplasmic reticulum (ER), we hypothesized that sEPO-R is expressed at higher levels on the cell surface, thus maximizing the response to elevated EPO, which has been reported in this species. Indeed, we found increased cell-surface levels of sEPO-R as compared with mEPO-R by using flow cytometry analysis of BOSC cells transiently expressing HA-tagged EPO-Rs (full length or truncated). We then postulated that unique extracellular sEPO-R sequence features contribute to its processing and cell-surface expression. To map these domains of the sEPO-R that augment receptor maturation, we generated EPO-R derivatives in which parts of the extracellular region of mEPO-R were replaced with the corresponding fragments of sEPO-R. We found that an extracellular portion of sEPO-R, harboring the N-glycosylation site, conferred enhanced maturation and increased transport to the cell surface of the respective chimeric receptor. Taken together, we demonstrate higher surface expression of sEPO-R, attributed at least in part to increased ER exit, mediated by an extracellular region of this receptor. We speculate that these sEPO-R sequence features play a role in the adaptation of Spalax to extreme hypoxia.
Collapse
Affiliation(s)
- Orly Ravid
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
| | - Imad Shams
- Laboratory for Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Nathalie Ben Califa
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
| | - Eviatar Nevo
- Laboratory for Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
- To whom correspondence may be addressed. E-mail: , , or
| | - Aaron Avivi
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
- To whom correspondence may be addressed. E-mail: , , or
| | - Drorit Neumann
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
31
|
Rojas-Gil AP, Ziros PG, Kanetsis E, Papathanassopoulou V, Nikolakopoulou NM, He K, Frank SJ, Papavassiliou AG, Spiliotis BE. Combined effect of mutations of the GH1 gene and its proximal promoter region in a child with growth hormone neurosecretory dysfunction (GHND). J Mol Med (Berl) 2007; 85:1005-13. [PMID: 17479231 DOI: 10.1007/s00109-007-0200-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Mutational analysis of the growth hormone 1 (GH1) gene and its promoter in a patient with GH neurosecretory dysfunction (GHND) revealed a heterozygous new deletion of one base 7-bp downstream from the 3'-splice site of exon 4 (IVS4'del+7) of the GH1 gene and two new heterozygous mutations at sites -135 and -138 of the GH1 promoter. In addition, two polymorphisms at sites -301 and -308 of the GH1 promoter were observed. All other family members had either the -301/-308 polymorphisms or the IVS4'del+7 mutation, but none had both. The IVS4'del+7 mutation located close to the splice donor site possibly interferes with the success of the splicing process, or the mutant transcripts are highly unstable because of nonsense-mediated mRNA decay. The -135/-138 mutations, albeit in close proximity to a putative Pit-1 recognition site, do not seem to affect binding of this transcription factor. The combination of the two polymorphisms, -301/-308, results in significantly reduced DNA-binding activity as monitored by electrophoretic mobility-shift assay. Transcription factor recognition site analysis of the GH1 promoter (MatInspector) revealed that HES1, one of the effectors of the Notch signalling system, is the only transcription factor whose binding is expected to be disrupted by each haplotype or by their combination. We provide evidence that the combination of -301/-308 polymorphisms with the IVS4'del+7 mutation in a GHND patient probably accounts for the reduced amount of growth hormone spontaneously secreted from his pituitary gland and for the severe growth delay.
Collapse
Affiliation(s)
- Andrea Paola Rojas-Gil
- Laboratory of Molecular Pediatric Endocrinology, Division of Pediatric Endocrinology, Department of Pediatrics, University of Patras School of Medicine, 26504, Rio-Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang N, Wang X, Jiang J, Frank SJ. Role of the growth hormone (GH) receptor transmembrane domain in receptor predimerization and GH-induced activation. Mol Endocrinol 2007; 21:1642-55. [PMID: 17456794 DOI: 10.1210/me.2006-0458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The GH receptor (GHR) mediates GH effects by activating the GHR-associated cytoplasmic tyrosine kinase, Janus kinase 2. Recent studies indicate that GHRs exist as dimers independently of GH binding. Some authors suggest that receptor predimerization is mediated by the transmembrane domain (TMD) and that GH binding initiates signaling by triggering changes in the orientation of the two GHRs within the dimer. In this study, we investigate the role of GHR TMD in GH-independent receptor dimerization and ligand-induced activation. We prepared a GHR mutant, GHR(LDLR), in which the TMD is replaced with the TMD of the human low-density lipoprotein receptor (LDLR). The resultant chimera has a TMD two residues shorter than the native GHR TMD; thus, in addition to possessing a different TMD, the altered GHR(LDLR) TMD helical register may change positions of the GHR extracellular domain (ECD) and intracellular domain relative to the TMD when compared with the wild-type (WT) receptor. When each was coexpressed with an intracellular domain-truncated GHR mutant, GHR(1-274-Myc), both WT GHR and GHR(LDLR) were specifically coprecipitated with GHR(1-274-Myc), indicating that the GHR TMD was not required for GHR heterodimerization with GHR(1-274-Myc). We further examined the contribution of the so-called "dimerization interface," a GHR ECD region that is critical for GH-induced signaling, to receptor predimerization. Coimmunoprecipitation experiments with either WT GHR, a dimerization interface mutant (GHR-H150D), or a control mutant (GHR-T147D) with GHR(1-274-Myc) showed dramatically reduced coprecipitation of GHR-H150D with GHR(1-274-Myc) when compared with WT GHR or GHR-T147K. This result suggests that, in contrast to some recent models, the dimerization interface contributes to GHR predimerization. We also compared WT GHR with GHR(LDLR) and GHR(LDLRDelta4) (a chimera in which the LDLR TMD has an internal deletion of four residues) with regard to response to GH stimulation. Although the chimeras had similar GH dose responses and time courses for signaling as WT GHR, they were markedly less sensitive to inhibition of signaling by a conformation-sensitive GHR ECD monoclonal antibody. Further, the chimeras were much less sensitive to inducible metalloprotease cleavage than was WT GHR, implying that the ECD conformations of the chimera receptors differ from WT GHR. Collectively, our data indicate that the composition and/or length of the TMD affect some aspects of GHR function, but do not affect receptor predimerization or GH-induced GHR activation. Further, they suggest that the GHR ECD-TMD is more flexible than previously thought in terms of the ability to achieve the active conformation in response to GH.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cell Biology, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38104, USA.
| |
Collapse
|
34
|
Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 2006; 25:4763-72. [PMID: 17024180 PMCID: PMC1618111 DOI: 10.1038/sj.emboj.7601365] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/30/2006] [Indexed: 01/17/2023] Open
Abstract
The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site. In these studies, we demonstrate that the phosphorylation of Y(119) in response to Epo downregulates Jak2 kinase activity. Using a phosphorylation mimic mutation (Y(119)E), downregulation is shown to involve dissociation of Jak2 from the receptor complex. Conversely, a Y(119)F mutant is more stably associated with the receptor complex. Thus, in cytokine responses, ligand binding induces activation of receptor associated Jak2, autophosphorylation of Y(119) in the FERM domain and the subsequent dissociation of the activated Jak2 from the receptor and degradation. This regulation occurs with the receptors for Epo, thrombopoietin and growth hormone but not with the receptor for interferon-gamma.
Collapse
Affiliation(s)
| | - Stephane Pelletier
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tadashi Matsuda
- Department of Immunology, Hokkaido University, Sapporo, Japan
| | - Evan Parganas
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James N Ihle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38120, USA. Tel.: +1 901 495 3422; Fax: +1 901 525 8025; E-mail:
| |
Collapse
|
35
|
Pelletier S, Gingras S, Funakoshi-Tago M, Howell S, Ihle JN. Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function. Mol Cell Biol 2006; 26:8527-38. [PMID: 16982687 PMCID: PMC1636781 DOI: 10.1128/mcb.01035-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biochemical and genetic studies have shown that Jak2 is an essential component of EpoR signal transduction which is required for normal erythropoiesis. However, whether Jak2 is the sole direct mediator of EpoR signal transduction remains controversial. To address this issue, we have used an extensive and systematic mutational analysis across the EpoR cytoplasmic tail and transmembrane domain with the goal of determining whether mutants that negatively affected EpoR biological activity but retained Jak2 activation could be identified. Analysis of over 40 mutant receptors established that two large domains in the membrane-proximal region, which include the previously defined Box1 and Box2 domains as well as a highly conserved glycine among cytokine receptors, are required for Jak2 binding and activation and to sustain biological activity of the receptor. Importantly, none of the mutants that lost the ability to activate Jak2 retained the ability to bind Jak2, thus questioning the validity of models of receptor reorientation for Jak2 activation. Also, no correlation was made between cell surface expression of the receptor and its ability to bind Jak2, thus questioning the role of Jak2 in trafficking the receptor to the plasma membrane. Collectively, the results suggest that Jak2 is the sole direct signaling molecule downstream of EpoR required for biological activity.
Collapse
Affiliation(s)
- Stéphane Pelletier
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
36
|
Zhang F, Zhang Q, Tengholm A, Sjöholm A. Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+and insulin secretion. Am J Physiol Cell Physiol 2006; 291:C466-75. [PMID: 16597920 DOI: 10.1152/ajpcell.00418.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We previously reported that human growth hormone (hGH) increases cytoplasmic Ca2+concentration ([Ca2+]i) and proliferation in pancreatic β-cells (Sjöholm Å, Zhang Q, Welsh N, Hansson A, Larsson O, Tally M, and Berggren PO. J Biol Chem 275: 21033–21040, 2000) and that the hGH-induced rise in [Ca2+]iinvolves Ca2+-induced Ca2+release facilitated by tyrosine phosphorylation of ryanodine receptors (Zhang Q, Kohler M, Yang SN, Zhang F, Larsson O, and Berggren PO. Mol Endocrinol 18: 1658–1669, 2004). Here we investigated the tyrosine kinases that convey the hGH-induced rise in [Ca2+]iand insulin release in BRIN-BD11 β-cells. hGH caused tyrosine phosphorylation of Janus kinase (JAK)2 and c-Src, events inhibited by the JAK2 inhibitor AG490 or the Src kinase inhibitor PP2. Although hGH-stimulated rises in [Ca2+]iand insulin secretion were completely abolished by AG490 and JAK2 inhibitor II, the inhibitors had no effect on insulin secretion stimulated by a high K+concentration. Similarly, Src kinase inhibitor-1 and PP2, but not its inactive analog PP3, suppressed [Ca2+]ielevation and completely abolished insulin secretion stimulated by hGH but did not affect responses to K+. Ovine prolactin increased [Ca2+]iand insulin secretion to a similar extent as hGH, effects prevented by the JAK2 and Src kinase inhibitors. In contrast, bovine GH evoked a rise in [Ca2+]ibut did not stimulate insulin secretion. Neither JAK2 nor Src kinase inhibitors influenced the effect of bovine GH on [Ca2+]i. Our study indicates that hGH stimulates rise in [Ca2+]iand insulin secretion mainly through activation of the prolactin receptor and JAK2 and Src kinases in rat insulin-secreting cells.
Collapse
Affiliation(s)
- Fan Zhang
- Research Center, Karolinska Institute, Stockholm South Hospital, SE-11883 Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Frenzel K, Wallace TA, McDoom I, Xiao HD, Capecchi MR, Bernstein KE, Sayeski PP. A functional Jak2 tyrosine kinase domain is essential for mouse development. Exp Cell Res 2006; 312:2735-44. [PMID: 16887119 DOI: 10.1016/j.yexcr.2006.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 12/19/2022]
Abstract
Jak2 is a member of the Janus family of tyrosine kinases and is involved in cytokine signaling. As a part of a study to determine biological functions of Jak2, we used molecular modeling to identify W1038 as a residue that is critical for tyrosine kinase function. Mutation of W1038, in tandem with E1046, generates a dominant-negative form of the Jak2 protein. Mice that were engineered to express two copies of this dominant-negative Jak2 protein died in utero. Additionally, heterozygous mice expressing Jak2 with kinase activity that is moderately reduced when compared to wild-type activity appear phenotypically normal. Collectively, these data suggest that Jak2 kinase activity is essential for normal mammalian development.
Collapse
Affiliation(s)
- Kristen Frenzel
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Radtke S, Jörissen A, de Leur HSV, Heinrich PC, Behrmann I. Three Dileucine-like Motifs within the Interbox1/2 Region of the Human Oncostatin M Receptor Prevent Efficient Surface Expression in the Absence of an Associated Janus Kinase. J Biol Chem 2006; 281:4024-34. [PMID: 16286453 DOI: 10.1074/jbc.m511779200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The oncostatin M receptor (OSMR) is part of receptor complexes for oncostatin M and interleukin-31. Signaling events are triggered by Jaks (Janus kinases) that constitutively bind to membrane-proximal receptor regions. Besides their established role in signaling, Jaks are involved in the regulation of the surface expression of several cytokine receptors. Here, we analyzed the structural requirements within the human OSMR that underlie its limited surface expression in the absence of associated Jaks. We identified three dileucine-like motifs within the Jak-binding region of the OSMR that control receptor surface and overall expression. A receptor mutant in which all three motifs were mutated to alanine displayed markedly increased surface expression. Although the surface half-life of this mutant was increased compared with that of the wild-type receptor, no difference in the internalization rate was detectable, implying that these receptors differ in their post-endocytic fate. The protein stability of the wild-type receptor was markedly lower than that of mutant receptors, but could be strongly increased in the presence of the lysosomal inhibitor chloroquine. Our data are consistent with the dileucine motifs being involved in destabilization of receptors devoid of associated Jaks as part of a quality control ensuring signaling competence of OSMRs.
Collapse
Affiliation(s)
- Simone Radtke
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Germany
| | | | | | | | | |
Collapse
|
39
|
Frago LM, Chowen JA. Basic Physiology of the Growth Hormone/Insulin-Like Growth Factor Axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:1-25. [PMID: 16370134 DOI: 10.1007/0-387-26274-1_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura M Frago
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Departamento de Endocrinología, Spain
| | | |
Collapse
|
40
|
He K, Loesch K, Cowan JW, Li X, Deng L, Wang X, Jiang J, Frank SJ. Janus kinase 2 enhances the stability of the mature growth hormone receptor. Endocrinology 2005; 146:4755-65. [PMID: 16081639 DOI: 10.1210/en.2005-0514] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The abundance of surface GH receptor (GHR) is an important determinant of cellular GH sensitivity and is regulated at both transcriptional and posttranscriptional levels. In previous studies of GHR-expressing Janus kinase 2 (JAK2)-deficient human fibrosarcoma cells (gamma2A-GHR), we demonstrated that stable transfection with JAK2 resulted in increased steady-state levels of mature GHR (endoH-resistant; relative molecular mass, 115-140 kDa) relative to precursor GHR (endoH-sensitive; relative molecular mass, 100 kDa). We now examine further the effects of JAK2 on GHR trafficking by comparing gamma2A-GHR to gamma2A-GHR cells stably reconstituted with JAK2 (C14 cells). In the presence of JAK2, GHR surface expression was increased, as assessed by surface biotinylation, 125I-labeled human GH cell surface binding, and immunofluorescence microscopy assays. Although the absence of JAK2 precluded GH-stimulated signaling, GH-induced GHR disulfide linkage (a proxy for the GH-induced conformational changes in the GHR dimer) proceeded independent of JAK2 expression, indicating that the earliest steps in GH-induced GHR triggering are not prevented by the absence of JAK2. RNA interference-mediated knockdown of JAK2 in C14 cells resulted in a decreased mature to precursor ratio, supporting a primary role for JAK2 either in enhancing GHR biogenesis or dampening mature GHR degradation. To address these potential mechanisms, metabolic pulse-chase labeling experiments and experiments in which the fate of previously synthesized GHR was followed by anti-GHR immunoblotting after cycloheximide treatment (cycloheximide chase experiments) were performed. These indicated that the presence of JAK2 conferred modest enhancement (1.3- to 1.5-fold) in GHR maturation but substantially prolonged the t1/2 of the mature GHR, suggesting a predominant effect on mature GHR stability. Cycloheximide chase experiments with metalloprotease, proteasome, and lysosome inhibitors indicated that the enhanced stability of mature GHR conferred by JAK2 is not related to effects on constitutive receptor metalloproteolysis but rather is a result of reduced constitutive endosomal/lysosomal degradation of the mature GHR. These results are discussed in the context of emerging information on how JAK-family members modulate surface expression of other cytokine receptors.
Collapse
Affiliation(s)
- Kai He
- Endocrinology Section Medical Service, Veterans Affairs Medical Center, and Department of Medicine, University of Alabama at Birmingham, 1530 3rd Avenue South, BDB 861, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, Rossjohn J. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2005; 107:176-83. [PMID: 16174768 DOI: 10.1182/blood-2005-06-2413] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JAK2, a member of the Janus kinase (JAK) family of protein tyrosine kinases (PTKs), is an important intracellular mediator of cytokine signaling. Mutations of the JAK2 gene are associated with hematologic cancers, and aberrant JAK activity is also associated with a number of immune diseases, including rheumatoid arthritis. Accordingly, the development of JAK2-specific inhibitors has tremendous clinical relevance. Critical to the function of JAK2 is its PTK domain. We report the 2.0 A crystal structure of the active conformation of the JAK2 PTK domain in complex with a high-affinity, pan-JAK inhibitor that appears to bind via an induced fit mechanism. This inhibitor, the tetracyclic pyridone 2-tert-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-1, was buried deep within a constricted ATP-binding site, in which extensive interactions, including residues that are unique to JAK2 and the JAK family, are made with the inhibitor. We present a structural basis of high-affinity JAK-specific inhibition that will undoubtedly provide an invaluable tool for the further design of novel, potent, and specific therapeutics against the JAK family.
Collapse
Affiliation(s)
- Isabelle S Lucet
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, van den Berg TK. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol 2005; 25:7181-92. [PMID: 16055727 PMCID: PMC1190262 DOI: 10.1128/mcb.25.16.7181-7192.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal regulatory protein alpha (SIRPalpha) is a glycoprotein receptor that recruits and signals via the tyrosine phosphatases SHP-1 and SHP-2. In macrophages SIRPalpha can negatively regulate the phagocytosis of host cells and the production of tumor necrosis factor alpha. Here we provide evidence that SIRPalpha can also stimulate macrophage activities, in particular the production of nitric oxide (NO) and reactive oxygen species. Ligation of SIRPalpha by antibodies or soluble CD47 triggers inducible nitric oxide synthase expression and production of NO. This was not caused by blocking negative-regulatory SIRPalpha-CD47 interactions. SIRPalpha-induced NO production was prevented by inhibition of the tyrosine kinase JAK2. JAK2 was found to associate with SIRPalpha in macrophages, particularly after SIRPalpha ligation, and SIRPalpha stimulation resulted in JAK2 and STAT1 tyrosine phosphorylation. Furthermore, SIRPalpha-induced NO production required the generation of hydrogen peroxide (H(2)O(2)) by a NADPH oxidase (NOX) and the phosphatidylinositol 3-kinase (PI3-K)-dependent activation of Rac1, an intrinsic NOX component. Finally, SIRPalpha ligation promoted SHP-1 and SHP-2 recruitment, which was both JAK2 and PI3-K dependent. These findings demonstrate that SIRPalpha ligation induces macrophage NO production through the cooperative action of JAK/STAT and PI3-K/Rac1/NOX/H(2)O(2) signaling pathways. Therefore, we propose that SIRPalpha is able to function as an activating receptor.
Collapse
Affiliation(s)
- Jacqueline Alblas
- Department of Molecular Cell Biology and Immunology, VU Medical Center, MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Cowan JW, Wang X, Guan R, He K, Jiang J, Baumann G, Black RA, Wolfe MS, Frank SJ. Growth Hormone Receptor Is a Target for Presenilin-dependent γ-Secretase Cleavage. J Biol Chem 2005; 280:19331-42. [PMID: 15743767 DOI: 10.1074/jbc.m500621200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone receptor (GHR) is a cytokine receptor superfamily member that binds growth hormone (GH) via its extracellular domain and signals via interaction of its cytoplasmic domain with JAK2 and other signaling molecules. GHR is a target for inducible metalloprotease-mediated cleavage in its perimembranous extracellular domain, a process that liberates the extracellular domain as the soluble GH-binding protein and leaves behind a cell-associated GHR remnant protein containing the transmembrane and cytoplasmic domains. GHR metalloproteolysis can be catalyzed by tumor necrosis factor-alpha-converting enzyme (ADAM-17) and is associated with down-modulation of GH signaling. We now study the fate of the GHR remnant protein. By anti-GHR cytoplasmic domain immunoblotting, we observed that the remnant induced in response to phorbol ester or platelet-derived growth factor has a reliable pattern of appearance and disappearance in both mouse preadipocytes endogenously expressing GHR and transfected fibroblasts expressing rabbit GHR. Lactacystin, a specific proteasome inhibitor, did not appreciably change the time course of remnant appearance or clearance but allowed detection of the GHR stub, a receptor fragment slightly smaller than the remnant but containing the C terminus of the remnant (receptor cytoplasmic domain). In contrast, MG132, another (less specific) proteasome inhibitor, strongly inhibited remnant clearance and prevented stub appearance. Inhibitors of gamma-secretase, an aspartyl protease, also prevented the appearance of the stub, even in the presence of lactacystin, and concomitantly inhibited remnant clearance in the same fashion as MG132. In addition, mouse embryonic fibroblasts derived from presenilin 1 and 2 (PS1/2) knockouts recapitulated the gamma-secretase inhibitor studies, as compared with their littermate controls (PS1/2 wild type). Confocal microscopy indicated that the GHR cytoplasmic domain became localized to the nucleus in a fashion dependent on PS1/2 activity. These data indicate that the GHR is subject to sequential proteolysis by metalloprotease and gamma-secretase activities and may suggest GH-independent roles for the GHR.
Collapse
Affiliation(s)
- Jon W Cowan
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Matsuda T, Feng J, Witthuhn BA, Sekine Y, Ihle JN. Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun 2004; 325:586-94. [PMID: 15530433 DOI: 10.1016/j.bbrc.2004.10.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Indexed: 11/23/2022]
Abstract
Janus kinases are the key enzymes involved in the initial transmission of signals in response to type I and II cytokines. Activation of the signal begins with the transphosphorylation of Jak kinases. Substrates that give rise to downstream events are recruited to the receptor complex in part by interactions with phosphorylated tyrosines. The identity of many of the phosphotyrosines responsible for recruitment has been elucidated as being receptor-based tyrosines. The ability of Jaks to recruit substrates through their own phosphotyrosines has been demonstrated for tyrosines in the kinase activation loop. Recent studies demonstrate that other tyrosines have implications in regulatory roles of Jak kinase activity. In this study, baculovirus-produced Jak2 was utilized to demonstrate that transphosphorylation of Jak kinases occurs on multiple residues throughout the protein. We demonstrate that among the tyrosines phosphorylated, those in the kinase domain occur as expected, but many other sites are also phosphorylated. The tyrosines conserved in the Jak family are the object of this study, although many of them are phosphorylated, many are not. This result suggests that conservation of tyrosines is perhaps as important in maintaining structure of the Jak family. Additionally, non-Jak family conserved tyrosines are phosphorylated suggesting that the individual Jaks ability to phosphorylated specific tyrosines may influence signals emitting from activated Jaks.
Collapse
Affiliation(s)
- Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
45
|
Wallace TA, VonDerLinden D, He K, Frank SJ, Sayeski PP. Microarray analyses identify JAK2 tyrosine kinase as a key mediator of ligand-independent gene expression. Am J Physiol Cell Physiol 2004; 287:C981-91. [PMID: 15189810 DOI: 10.1152/ajpcell.00085.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice lacking a functional Janus kinase 2 (JAK2) allele die embryonically, indicating the mandatory role of JAK2 in basic developmental cellular transcription. Currently, however, the downstream target genes of JAK2 are largely unknown. Here, in vitro conditions were created using a cell line lacking JAK2 expression. Microarray analysis was then used to identify genes that are differentially expressed as a result of the presence, or absence, of JAK2. The data identified 621 JAK2-dependent genes as having at least a twofold change in expression. Surprisingly, these genes did not require ligand-dependent activation of JAK2 but merely its expression in the cell. Thirty-one of these genes were found to have a greater than sevenfold change in expression levels, and a subset of these were further characterized. These genes represent a diverse cluster of ontological functions including transcription factors, signaling molecules, and cell surface receptors. The expression levels of these genes were validated by Northern blot and/or quantitative RT-PCR analysis in both the JAK2 null cells and cells expressing a JAK2-dominant negative allele. As such, this work demonstrates for the first time that, in addition to being a key mediator of ligand-activated gene transcription, JAK2 can perhaps also be viewed as a critical mediator of basal level gene expression.
Collapse
Affiliation(s)
- Tiffany A Wallace
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
46
|
Argetsinger LS, Kouadio JLK, Steen H, Stensballe A, Jensen ON, Carter-Su C. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol 2004; 24:4955-67. [PMID: 15143187 PMCID: PMC416404 DOI: 10.1128/mcb.24.11.4955-4967.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2.
Collapse
Affiliation(s)
- Lawrence S Argetsinger
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | |
Collapse
|
47
|
Huang Y, Kim SO, Yang N, Jiang J, Frank SJ. Physical and functional interaction of growth hormone and insulin-like growth factor-I signaling elements. Mol Endocrinol 2004; 18:1471-85. [PMID: 15044591 DOI: 10.1210/me.2003-0418] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH and IGF-I are critical regulators of growth and metabolism. GH interacts with the GH receptor (GHR), a cytokine superfamily receptor, to activate the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), and initiate intracellular signaling cascades. IGF-I, produced in part in response to GH, binds to the heterotetrameric IGF-I receptor (IGF-IR), which is an intrinsic tyrosine kinase growth factor receptor that triggers proliferation, antiapoptosis, and other biological actions. Previous in vitro and overexpression studies have suggested that JAKs may interact with IGF-IR and that IGF-I stimulation may activate JAKs. In this study, we explore interactions between GHR-JAK2 and IGF-IR signaling pathway elements utilizing the GH and IGF-I-responsive 3T3-F442A and 3T3-L1 preadipocyte cell lines, which endogenously express both the GHR and IGF-IR. We find that GH induces formation of a complex that includes GHR, JAK2, and IGF-IR in these preadipocytes. The assembly of this complex in intact cells is rapid, GH concentration dependent, and can be prevented by a GH antagonist, G120K. However, it is not inhibited by the kinase inhibitor, staurosporine, which markedly inhibits GHR tyrosine phosphorylation. Moreover, complex formation does not appear dependent on GH-induced activation of the ERK or phosphatidylinositol 3-kinase signaling pathways or on the tyrosine phosphorylation of GHR, JAK2, or IGF-IR. These results suggest that GH-induced formation of the GHR-JAK2-IGF-IR complex is governed instead by GH-dependent conformational change(s) in the GHR and/or JAK2. We further demonstrate that GH and IGF-I can synergize in acute aspects of signaling and that IGF-I enhances GH-induced assembly of conformationally active GHRs. These findings suggest the existence of previously unappreciated relationships between these two hormones.
Collapse
Affiliation(s)
- Yao Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | |
Collapse
|
48
|
Yang N, Huang Y, Jiang J, Frank SJ. Caveolar and lipid raft localization of the growth hormone receptor and its signaling elements: impact on growth hormone signaling. J Biol Chem 2004; 279:20898-905. [PMID: 15010456 DOI: 10.1074/jbc.m400625200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth hormone receptor (GHR) is a cell surface receptor that mediates the somatogenic and metabolic effects of the growth hormone (GH). GHR signaling is transduced via the receptor-associated cytoplasmic tyrosine kinase called Janus protein kinase 2 (JAK2). The major intracellular signaling systems activated by JAK2 in response to GH include the signal transducer and activator of transcription (STAT) 5 and extracellular signal-regulated kinase (ERK)-1 and -2 pathways. In this report, we investigate the role of cholesterol-rich plasma membrane microdomains (caveolae and lipid rafts) in GH signaling. By subcellular fractionation of the GH-responsive 3T3-F442A murine preadipocyte, we found dramatic enrichment (6.7-fold) of plasma membrane GHR in the caveolae membranes (CM). JAK2 was also represented in the CM fraction, but was less enriched (2.5-fold) than GHR. ERK1/2 and the important ERK pathway upstream small adaptor protein, Grb2 (growth factor receptor-bound protein 2), were also enriched in caveolae (2.3- and 8.3-fold, respectively), but STAT5 was barely detected in the same fraction. Correspondingly, GH-induced tyrosine-phosphorylated GHR, JAK2, and ERK1/2 were highly represented in the CM fraction, whereas tyrosine-phosphorylated STAT5 was enriched in the non-membranous fraction of the post-nuclear supernatant. Additionally, GH induced further accumulation of GHR, Grb2, and SHC proteins in the CM fraction. Interestingly, treatment of the cells with the caveolae-disrupting agent, methyl-beta-cyclodextrin (mbetaCD), selectively inhibited GH-induced ERK1/2 activation but not STAT5 phosphorylation; repletion of cholesterol in mbetaCD-treated cells restored GH-induced ERK activation. Comparison of 3T3-F442A cells with the GHR-expressing human IM-9 lymphoblasts revealed similar enrichment of GHR in the lipid raft fraction of IM-9 as in the CM fraction of 3T3-F442A, but there were dramatic differences in the ERKs and Grb2. The IM-9 cell, in which ERKs are not activated by GH, displayed no enrichment of ERKs and Grb2 in the lipid raft fraction. Our results suggest that localization of GHRs in the CM fraction of the plasma membrane plays important roles in signaling.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cell Biology, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|