1
|
Asa SL, Mete O, Ezzat S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:3-16. [PMID: 33433883 DOI: 10.1007/s12022-021-09663-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shereen Ezzat
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Lucia K, Wu Y, Garcia JM, Barlier A, Buchfelder M, Saeger W, Renner U, Stalla GK, Theodoropoulou M. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene 2020; 39:3367-3380. [PMID: 32111982 PMCID: PMC7160059 DOI: 10.1038/s41388-020-1223-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted.
Collapse
Affiliation(s)
- Kristin Lucia
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin, Berlin, Germany.,Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Yonghe Wu
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Anne Barlier
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Michael Buchfelder
- Department of Neurosurgery, Klinikum der Universität Erlangen, Erlangen, Germany
| | - Wolfgang Saeger
- Department of Neuropathology, Universität Hamburg, Hamburg, Germany
| | - Ulrich Renner
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Günter K Stalla
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Munich, Germany. .,Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
3
|
Shen AJJ, King J, Scott H, Colman P, Yates CJ. Insights into pituitary tumorigenesis: from Sanger sequencing to next-generation sequencing and beyond. Expert Rev Endocrinol Metab 2019; 14:399-418. [PMID: 31793361 DOI: 10.1080/17446651.2019.1689120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Introduction: This review explores insights provided by next-generation sequencing (NGS) of pituitary tumors and the clinical implications.Areas covered: Although syndromic forms account for just 5% of pituitary tumours, past Sanger sequencing studies pragmatically focused on them. These studies identified mutations in MEN1, CDKN1B, PRKAR1A, GNAS and SDHx causing Multiple Endocrine Neoplasia-1 (MEN1), MEN4, Carney Complex-1, McCune Albright Syndrome and 3P association syndromes, respectively. Furthermore, linkage analysis of single-nucleotide polymorphisms identified AIP mutations in 20% with familial isolated pituitary adenomas (FIPA). NGS has enabled further investigation of sporadic tumours. Thus, mutations of USP8 and CABLES1 were identified in corticotrophinomas, BRAF in papillary craniopharyngiomas and CTNNB1 in adamantinomatous craniopharyngiomas. NGS also revealed that pituitary tumours occur in the DICER1 syndrome, due to DICER1 mutations, and CDH23 mutations occur in FIPA. These discoveries revealed novel therapeutic targets and studies are underway of BRAF inhibitors for papillary craniopharyngiomas, and EGFR and USP8 inhibitors for corticotrophinomas.Expert opinion: It has become apparent that single-nucleotide variants and small insertion/deletion DNA mutations cannot explain all pituitary tumorigenesis. Integrated and improved analyses including whole-genome sequencing, copy number, and structural variation analyses, RNA sequencing and epigenomic analyses, with improved genomic technologies, are likely to further define the genomic landscape.
Collapse
Affiliation(s)
| | - James King
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Peter Colman
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher J Yates
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
4
|
Ezzat S, Cheng S, Asa SL. Epigenetics of pituitary tumors: Pathogenetic and therapeutic implications. Mol Cell Endocrinol 2018; 469:70-76. [PMID: 28711607 DOI: 10.1016/j.mce.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
Genetic mutations involving oncogenes or tumor suppressor genes are relatively uncommon in human sporadic pituitary tumors. Instead, increasing evidence has highlighted frequent epigenetic alterations including DNA methylation, histone modifications, and enhanced miRNA expression. This review covers some of this evidence as it illuminates mechanisms of tumorigenesis and highlights therapeutic opportunities.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, The Endocrine Oncology Site Group, Princess Margaret Cancer Centre, and The Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.
| | - Sonia Cheng
- Department of Medicine, University of Toronto, The Endocrine Oncology Site Group, Princess Margaret Cancer Centre, and The Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Sylvia L Asa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, The Endocrine Oncology Site Group, Princess Margaret Cancer Centre, and The Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Shen Z, Asa SL, Ezzat S. The retrotransposon gag domain containing protein Rgag4 is an Ikaros target in the pituitary. Mol Cell Endocrinol 2018; 461:188-193. [PMID: 28919299 DOI: 10.1016/j.mce.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022]
Abstract
Previous studies have established the common and critical involvement of the zinc finger protein Ikaros in lymphoid and pituitary cell development and expansion. Key to the assembly of several transcriptional networks, we have demonstrated up-regulation of Ikaros and its interacting partner the C-terminal Binding Protein (CtBP) in response to hypoxia. This prompted us to explore common transcriptional targets using a chromatin immunoprecipitate (ChIP) screen of DNA from pituitary corticotroph cells. This strategy yielded a finite list of targets common to both transcription factors that included the metalloprotease ADAMTS10. In this report, we focus on validation of a second candidate target, the retrotransposon gag domain containing protein Rgag4. We identified the ability of Ikaros to bind the Rgag4 promoter, influence its transcriptional activity, and induce endogenous gene expression. Robust expression of Rgag4 was noted in the anterior lobe of the pituitary gland which was diminished in Ikaros knockout mice. Down-regulation of Rgag4 resulted in profound reduction of hormone gene expression with diminished ACTH secretion, recapitulating the effect of Ikaros deficiency in knockout mice. The results introduce Rgag4 to the repertoire of effectors serving to couple the chromatin remodeler Ikaros with the hormonal stress response.
Collapse
Affiliation(s)
- Zhongyi Shen
- Departments of Medicine, Toronto, Ontario, M5G 2M9, Canada; University of Toronto, University Health Network and the Ontario Cancer Institute, Toronto, Ontario, M5G 2M9, Canada
| | - Sylvia L Asa
- Laboratory Medicine & Pathobiology, Toronto, Ontario, M5G 2M9, Canada; University of Toronto, University Health Network and the Ontario Cancer Institute, Toronto, Ontario, M5G 2M9, Canada
| | - Shereen Ezzat
- Departments of Medicine, Toronto, Ontario, M5G 2M9, Canada; University of Toronto, University Health Network and the Ontario Cancer Institute, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|
6
|
Li Q, Hegge R, Bridges PJ, Matthews JC. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages. PLoS One 2017; 12:e0184612. [PMID: 28902910 PMCID: PMC5597216 DOI: 10.1371/journal.pone.0184612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.
Collapse
Affiliation(s)
- Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Raquel Hegge
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - James C. Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
7
|
Shen Z, Asa SL, Ezzat S. Ikaros and its interacting partner CtBP target the metalloprotease ADAMTS10 to modulate pituitary cell function. Mol Cell Endocrinol 2017; 439:126-132. [PMID: 27815209 DOI: 10.1016/j.mce.2016.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
We have previously described the expression and up-regulation of the C-terminal Binding Protein (CtBP) in response to pituitary hypoxia. This co-repressor interacts with the hematopoietic factor Ikaros to target several components implicated in cellular growth and apoptotic pathways. To identify common transcriptional pituitary targets we performed promoter arrays using Ikaros and CtBP chromatin immunoprecipitated (ChIP) DNA from pituitary AtT20 cells. This approach yielded a finite list of gene targets common to both transcription factors. Of these, the metalloprotease ADAMTS10 emerged as a validated target. We show the ability of Ikaros to bind the ADAMTS10 promoter, influence its transfected activity, and induce endogenous gene expression. ADAMTS10 is expressed in primary pituitary cells and is down-regulated in Ikaros null mice. Further, knockdown of ADAMTS10 in AtT20 cells recapitulates the impact of Ikaros deficiency on POMC/ACTH hormone expression. These results uncover a novel role for the metalloprotease ADAMTS10 in the pituitary. Additionally, they position this metalloprotease as a potential functional integrator of the Ikaros-CtBP chromatin remodeling network.
Collapse
Affiliation(s)
- Zhongyi Shen
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario M5G 2M9, Canada; University Health Network and the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | - Sylvia L Asa
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario M5G 2M9, Canada; University Health Network and the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | - Shereen Ezzat
- Dept. of Medicine, University of Toronto, Toronto, Ontario M5G 2M9, Canada; University Health Network and the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
8
|
Theodros D, Patel M, Ruzevick J, Lim M, Bettegowda C. Pituitary adenomas: historical perspective, surgical management and future directions. CNS Oncol 2015; 4:411-29. [PMID: 26497533 DOI: 10.2217/cns.15.21] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pituitary adenomas are among the most common central nervous system tumors. They represent a diverse group of neoplasms that may or may not secrete hormones based on their cell of origin. Epidemiologic studies have documented the incidence of pituitary adenomas within the general population to be as high as 16.7%. A growing body of work has helped to elucidate the pathogenesis of these tumors. Each subtype has been shown to demonstrate unique cellular changes potentially leading to tumorigenesis. Surgical advancements over several decades have included microsurgery and the employment of the endoscope for surgical resection. These advancements increase the likelihood of gross-total resection and have resulted in decreased patient morbidity.
Collapse
Affiliation(s)
- Debebe Theodros
- The Johns Hopkins University School of Medicine, The Johns Hopkins University Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Mira Patel
- The Johns Hopkins University School of Medicine, The Johns Hopkins University Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jacob Ruzevick
- The Johns Hopkins University School of Medicine, The Johns Hopkins University Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Michael Lim
- The Johns Hopkins University School of Medicine, The Johns Hopkins University Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chetan Bettegowda
- The Johns Hopkins University School of Medicine, The Johns Hopkins University Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
9
|
Ellestad LE, Puckett SA, Porter TE. Mechanisms involved in glucocorticoid induction of pituitary GH expression during embryonic development. Endocrinology 2015; 156:1066-79. [PMID: 25560830 PMCID: PMC4330307 DOI: 10.1210/en.2014-1686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022]
Abstract
Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types.
Collapse
Affiliation(s)
- Laura E Ellestad
- Molecular and Cell Biology Program (L.E.E, T.E.P.) and Department of Animal and Avian Sciences (L.E.E., S.A.P., T.E.P.), University of Maryland, College Park, Maryland 20742
| | | | | |
Collapse
|
10
|
Abstract
The genetic mutations underlying familial syndromes that include pituitary tumors are rarely noted in the majority of sporadic adenohypophyseal adenomas. In contrast, epigenetic dysregulation is common, resulting in differential expression of cell cycle and apoptosis regulators, adhesion molecules, growth factors, and metabolic determinants of cell function. Here, we discuss the diagnostic and therapeutic implications of these findings as the landscape of pituitary tumor defects unfolds.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, Ontario, Canada, M5G 2C4,
| | | |
Collapse
|
11
|
Mechanisms of pituitary tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Pease M, Ling C, Mack WJ, Wang K, Zada G. The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature. PLoS One 2013; 8:e82619. [PMID: 24367530 PMCID: PMC3867353 DOI: 10.1371/journal.pone.0082619] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/25/2013] [Indexed: 01/10/2023] Open
Abstract
Background Pituitary adenomas (PAs) are commonly occurring neoplasms with diverse endocrine and neurological effects. Although somatic gene mutations are uncommon in sporadic PAs, recent studies lend support to epigenetic modification as a potential cause of tumorigenesis and tumor progression. Methods A systematic literature review of the PubMed and Google Scholar databases was conducted to identify abstracts (n=1,082) pertaining to key targets and mechanisms implicated in epigenetic dysregulation of PAs published between 1993-2013. Data regarding histopathological subtype, target genes, mode of epigenetic modification, and clinical correlation were recorded and analyzed. Results Of the 47 that studies met inclusion criteria and focused on epigenomic assessment of PAs, only 2 were genome-scale analyses. Current evidence supports epigenetic alteration in at least 24 PA genes, which were categorized into four groups based on function and epigenetic alteration: 1) Sixteen tumor suppressor genes silenced via DNA methylation; 2) Two oncogenes overexpressed via histone acetylation and hypomethylation; 3) Three imprinted genes with selective allelic silencing; and 4) One epigenome writer inducing abnormal genome-scale activity and 5) Two transcription regulators indirectly modifying the genome. Of these, 5 genes (CDKN2A, GADD45y, FGFR2, caspase-8, and PTAG) showed particular susceptibility to epigenetic modification, with abnormal DNA methylation in >50% of PA samples. Several genes displayed correlations between epigenetic modification and clinically relevant parameters, including invasiveness (CDKN2A; DAPK; Rb1), sex (MAGE-A3), tumor size (GNAS1), and histopathological subtype (CDKN2A; MEG3; p27; RASSF1A; Rb1). Conclusions Epigenetic modification of selected PA genes may play a key role in tumorigenesis and progression, which may translate into important diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chao Ling
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - William J. Mack
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kai Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Monteserin-Garcia J, Al-Massadi O, Seoane LM, Alvarez CV, Shan B, Stalla J, Paez-Pereda M, Casanueva FF, Stalla GK, Theodoropoulou M. Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB J 2013; 27:1561-71. [PMID: 23292070 DOI: 10.1096/fj.12-220129] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth hormone (GH) is a major anabolic hormone and the primary regulator of organism growth. Its transcription is triggered by GH-releasing hormone (GHRH) through the transcription factor cAMP response element-binding protein (CREB) and by caloric intake. In contrast, the deacetylase Sirt1 is activated by caloric restriction. Therefore, the present study investigates how Sirt1 affects CREB function and GH synthesis. Sirt1 pharmacological activation with resveratrol (IC₅₀=87 μM) suppressed GHRH-induced GH secretion from rat anterior pituitary cells in vivo and in vitro, while vehicle controls showed no effect. Resveratrol's effects were abolished after knocking down Sirt1 with RNA interference, but not in control scrambled siRNA-transfected rat somatotrophs, confirming the Sirt1 specificity. Sirt1 activation and overexpression suppressed forskolin-induced CREB-Ser(133) phosphorylation, but no effect was seen with vehicle and empty plasmid controls. The deacetylase-dead mutant Sirt1 retained CREB-Ser(133) phosphorylation by keeping protein phosphatase protein phosphatase 1 activity low. Sirt1 activation suppressed glycogen synthase kinase 3 β acetylation, and a mutation on the GSK3β-Lys(205) residue mimicking a hypoacetylated form revealed increased activity. In summary, this is a novel mechanism through which Sirt1 intercepts the cAMP pathway by suppressing CREB transcriptional activation, resulting in decreased GH synthesis.
Collapse
|
14
|
Ryan MM, Mason-Parker SE, Tate WP, Abraham WC, Williams JM. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2012; 21:541-53. [PMID: 20108223 DOI: 10.1002/hipo.20770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The canonical view of the maintenance of long-term potentiation (LTP), a widely accepted experimental model for memory processes, is that new gene transcription contributes to its consolidation; however, the gene networks involved are unknown. To address this issue, we have used high-density Rat 230.2 Affymetrix arrays to establish a set of genes induced 20-min post-LTP, and using Ingenuity Pathway network analysis tools we have investigated how these early responding genes are interrelated. This analysis identified LTP-induced regulatory networks in which the transcription factors (TFs) nuclear factor-KB and serum response factor, which, to date, have not been widely recognized as coordinating the early gene response, play a key role alongside the more well-known TFs cyclic AMP response element-binding protein, and early growth response 1. Analysis of gene-regulatory promoter sites and chromosomal locations of the genes within the dataset reinforced the importance of these molecules in the early gene response and predicted that the coordinated action might arise from gene clustering on particular chromosomes. We have also identified a transcription-based response that affects mitogen-activated protein kinase signaling pathways and protein synthesis during the stabilization of the LTP response. Furthermore, evidence from biological function, networks, and regulatory analyses showed convergence on genes related to development, proliferation, and neurogenesis, suggesting that these functions are regulated early following LTP induction. This raises the interesting possibility that LTP-related gene expression plays a role in both synaptic reorganization and neurogenesis.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
15
|
Dorman K, Shen Z, Yang C, Ezzat S, Asa SL. CtBP1 interacts with Ikaros and modulates pituitary tumor cell survival and response to hypoxia. Mol Endocrinol 2012; 26:447-57. [PMID: 22301782 DOI: 10.1210/me.2011-1095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
C-terminal binding protein (CtBP) is a transcriptional corepressor that plays an important role in mammalian development and tumorigenesis. We demonstrate that CtBP is expressed in adenohypophyseal cells and is expressed at high levels in human corticotroph, somatotroph, and lactotroph pituitary adenomas. CtBP interacts with Ikaros isoforms in GH4 and AtT20 pituitary tumor cells. Ikaros and CtBP1 expression is coordinately induced by hypoxia, and this response is abrogated by CtBP1 deficiency. Forced reduction of CtBP1 leads to reduced cell growth, up-regulation of Sprouty 2, and down-regulation of ectonucleotide pyrophosphatase phosphodiesterase 2 (Enpp2). Consistent with diminished Enpp2 activity, CtBP1-deficient pituitary cells are more susceptible to hypoxia-induced apoptosis, which is rescued by Enpp2-derived lysophosphatidic acid treatment. These results identify putative oncogenic properties of CtBP1 and provide new insights into the overlapping functions of two members of the chromatin remodeling network in the response to hypoxic pituitary tumor cell drive.
Collapse
Affiliation(s)
- Katie Dorman
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Yang JW, Choi EY, Park MJ, Lee MA. Expression of tyrosine hydroxylase is epigenetically regulated in neural stem cells. Biochem Biophys Res Commun 2011; 414:712-8. [DOI: 10.1016/j.bbrc.2011.09.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
|
17
|
Abstract
Pituitary adenomas may hypersecrete hormones (including prolactin, growth hormone and adrenocorticotropic hormone, and rarely follicle-stimulating hormone, luteinizing hormone or TSH) or may be nonfunctional. Despite their high prevalence in the general population, these tumors are invariably benign and exhibit features of differentiated pituitary cell function as well as premature proliferative arrest. Pathogenesis of dysregulated pituitary cell proliferation and unrestrained hormone hypersecretion may be mediated by hypothalamic, intrapituitary and/or peripheral factors. Altered expression of pituitary cell cycle genes, activation of pituitary selective oncoproteins or loss of pituitary suppressor factors may be associated with aberrant growth factor signaling. Considerable information on the etiology of these tumors has been derived from transgenic animal models, which may not accurately and universally reflect human tumor pathophysiology. Understanding subcellular mechanisms that underlie pituitary tumorigenesis will enable development of tumor aggression markers as well as novel targeted therapies.
Collapse
Affiliation(s)
- Shlomo Melmed
- Cedars-Sinai Medical Center, Academic Affairs Room 2015, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
18
|
Summers KM, Raza S, van Nimwegen E, Freeman TC, Hume DA. Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome. Eur J Hum Genet 2010; 18:1209-15. [PMID: 20551991 DOI: 10.1038/ejhg.2010.91] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in the human FBN1 gene cause Marfan syndrome, a complex disease affecting connective tissues but with a highly variable phenotype. To identify genes that might participate in epistatic interactions with FBN1, and could therefore explain the observed phenotypic variability, we have looked for genes that are co-expressed with Fbn1 in the mouse. Microarray expression data derived from a range of primary mouse cells and cell lines were analysed using the network analysis tool BioLayout Express(3D). A cluster of 205 genes, including Fbn1, were selectively expressed by mouse cell lines of different mesenchymal lineages and by mouse primary mesenchymal cells (preadipocytes, myoblasts, fibroblasts, osteoblasts). Promoter analysis of this gene set identified several candidate transcriptional regulators. Genes within this co-expressed cluster are candidate genetic modifiers for Marfan syndrome and for other connective tissue diseases.
Collapse
Affiliation(s)
- Kim M Summers
- The Roslin Institute, University of Edinburgh, Midlothian, UK.
| | | | | | | | | |
Collapse
|
19
|
Drake NM, Park YJ, Shirali AS, Cleland TA, Soloway PD. Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1. Mamm Genome 2009; 20:654-63. [PMID: 19513790 PMCID: PMC2919583 DOI: 10.1007/s00335-009-9192-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 05/06/2009] [Indexed: 01/21/2023]
Abstract
Rasgrf1 is imprinted and expressed preferentially from the paternal allele in neonatal mouse brain. At weaning, expression becomes biallelic. Using a mouse model, we assayed the effects of perturbing imprinted Rasgrf1 expression in mice with the following imprinted expression patterns: monoallelic paternal (wild type), monoallelic maternal (maternal only), biallelic (both alleles transcribed), and null (neither allele transcribed). All genotypes exhibit biallelic expression around weaning. Consequences of this transient imprinting perturbation are manifested as overall size differences that correspond to the amount of neonatal Rasgrf1 expressed and are persistent, extending into adulthood. Biallelic mice are the largest and overexpress Rasgrf1 relative to wild-type mice, null mice are the smallest and underexpress Rasgrf1 as neonates, and the two monoallelically expressing genotypes are intermediate and indistinguishable from one another, in both size and Rasgrf1 expression level. Importantly, these data support one of the key underlying assumptions of the "conflict hypothesis" that describes the evolution of genomic imprinting in mammals and supposes that equivalent amounts of imprinted gene expression produce equivalent phenotypes, regardless of which parental allele is transcribed. Concordant with the difference in overall body size, we identify differences in IGF-1 levels, both in serum protein and as liver transcript, and identify additional differential expression of components upstream of IGF-1 release in the GH/IGF-1 axis. These data suggest that imprinted Rasgrf1 expression affects GH/IGF-1 axis function, and that the consequences of Rasgrf1 inputs to this axis persist beyond the time period when expression is restricted via epigenetic mechanisms, suggesting that proper neonatal Rasgrf1 expression levels are critical for development.
Collapse
Affiliation(s)
| | | | | | - Thomas A. Cleland
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Paul D. Soloway
- Division of Nutritional Science, Cornell University, 108 Savage Hall, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Asa SL, Ezzat S. The pathogenesis of pituitary tumors. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:97-126. [PMID: 19400692 DOI: 10.1146/annurev.pathol.4.110807.092259] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently there has been significant progress in our understanding of pituitary development, physiology, and pathology. New information has helped to clarify the classification of pituitary tumors. Epidemiologic analyses have identified a much higher incidence of pituitary tumors than previously thought. We review the pathogenetic factors that have been implicated in pituitary tumorigenesis and the application of novel targeted therapies that underscore the increasingly important role of the pathologist in determining accurate diagnoses and facilitating appropriate treatment of patients with these disorders.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network and Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
21
|
Molecular specification and patterning of progenitor cells in the lateral and medial ganglionic eminences. J Neurosci 2008; 28:9504-18. [PMID: 18799682 DOI: 10.1523/jneurosci.2341-08.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We characterized intrinsic and extrinsic specification of progenitors in the lateral and medial ganglionic eminences (LGE and MGE). We identified seven genes whose expression is enriched or restricted in either the LGE [biregional cell adhesion molecule-related/downregulated by oncogenes binding protein (Boc), Frizzled homolog 8 (Fzd8), Ankrd43 (ankyrin repeat domain-containing protein 43), and Ikzf1 (Ikaros family zinc finger 1)] or MGE [Map3k12 binding inhibitory protein 1 (Mbip); zinc-finger, SWIM domain containing 5 (Zswim5); and Adamts5 [a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 5]]. Boc, Fzd8, Mbip, and Zswim5 are apparently expressed in LGE or MGE progenitors, whereas the remaining three are seen in the postmitotic mantle zone. Relative expression levels are altered and regional distinctions are lost for each gene in LGE or MGE cells propagated as neurospheres, indicating that these newly identified molecular characteristics of LGE or MGE progenitors depend on forebrain signals not available in the neurosphere assay. Analyses of Pax6(Sey/Sey), Shh(-/-), and Gli3(XtJ/XtJ) mutants suggests that LGE and MGE progenitor identity does not rely exclusively on previously established forebrain-intrinsic patterning mechanisms. Among a limited number of additional potential patterning mechanisms, we found that extrinsic signals from the frontonasal mesenchyme are essential for Shh- and Fgf8-dependent regulation of LGE and MGE genes. Thus, extrinsic and intrinsic forebrain patterning mechanisms cooperate to establish LGE and MGE progenitor identity, and presumably their capacities to generate distinct classes of neuronal progeny.
Collapse
|
22
|
Zhu X, Asa SL, Ezzat S. Ikaros Is Regulated through Multiple Histone Modifications and Deoxyribonucleic Acid Methylation in the Pituitary. Mol Endocrinol 2007; 21:1205-15. [PMID: 17341593 DOI: 10.1210/me.2007-0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The transcription factor Ikaros (Ik) is at the center of a functionally diverse chromatin-remodeling network that is critical for the development and regulation of both the immune and endocrine systems. Dominant negative forms of Ik result in neoplastic growth in mouse genetic studies and have been identified in human tumors. Ik modulates chromatin accessibility through associations with members of the NURD complex including histone deacetylase complexes. We show here that Ik expression in mouse pituitary corticotroph cells is itself regulated through histone modifications as well as DNA methylation. Examination of primary human pituitary specimens also identified a correlation of loss of Ik expression with the presence of DNA methylation in the untranslated exon 1 CpG island. These findings have important implications for the understanding of Ikaros’ role in epigenetic functions and suggest a potential role for demethylating agents in the treatment of related disorders.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Canada
| | | | | |
Collapse
|
23
|
Ezzat S, Mader R, Fischer S, Yu S, Ackerley C, Asa SL. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic-pituitary-mediated somatic growth. Proc Natl Acad Sci U S A 2006; 103:2214-9. [PMID: 16467156 PMCID: PMC1413703 DOI: 10.1073/pnas.0508565103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ikaros transcription factors play critical functions in the control of lymphohematopoiesis and immune regulation. Family members contain multiple zinc fingers that mediate DNA binding and homooligomerization or heterooligomerization. Ikaros is abundantly expressed in pituitary mammosomatotrophs, where it deacetylates histone 3 sites on the proximal growth hormone (GH) promoter to silence gene expression. Ikaros-null mice display stunted growth with reduced circulating levels of the GH target factor insulin-like growth factor I (IGF-I). Ikaros-deficient mice have small anterior pituitary glands with a disproportionately reduced somatotroph population. Systemic administration of GH results in increased IGF-I levels and enhanced somatic growth. In contrast, reconstitution with WT lymphocytes was not sufficient to rescue the stunted growth phenotype of Ikaros-deficient mice. Ikaros was identified in mouse hypothalamic arcuate nuclei, where it colocalized with GH-releasing hormone (GHRH); in contrast, Ikaros-null mice lack GHRH immunoreactivity in the hypothalamus. Overexpression of Ikaros enhanced GHRH promoter activity and induced endogenous GHRH gene expression. These findings unmask a wider role for Ikaros in the neuroendocrine system, highlighting a critical contribution to the development of the hypothalamic-pituitary somatotrophic axis.
Collapse
Affiliation(s)
- Shereen Ezzat
- *Department of Medicine, Mount Sinai Hospital
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
- To whom correspondence should be addressed at:
Ontario Cancer Institute, University of Toronto, 610 University Avenue, 8-327, Toronto, ON, Canada, M5G-2M9. E-mail:
or
| | - Rene Mader
- Department of Pathology, University Health Network
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Sandra Fischer
- Department of Pathology, University Health Network
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - ShunJiang Yu
- *Department of Medicine, Mount Sinai Hospital
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | | | - Sylvia L. Asa
- Department of Pathology, University Health Network
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
- To whom correspondence should be addressed at:
Ontario Cancer Institute, University of Toronto, 610 University Avenue, 8-327, Toronto, ON, Canada, M5G-2M9. E-mail:
or
| |
Collapse
|
24
|
Minematsu T, Miyai S, Kajiya H, Suzuki M, Sanno N, Takekoshi S, Teramoto A, Osamura RY. Recent progress in studies of pituitary tumor pathogenesis. Endocrine 2005; 28:37-41. [PMID: 16311408 DOI: 10.1385/endo:28:1:037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/28/2005] [Indexed: 11/11/2022]
Abstract
The mechanisms of tumorigenesis of the human pituitary have been elucidated to a limited extent. Classically, pituitary tumor formation was shown to be induced by thyroidectomy and estrogen administration. Molecular biological and immunohistochemical studies have revealed several aspects of pituitary tumorigenesis. Translineage cell differentiation has been shown to be induced by the aberrant expression of transcription factors and co-factors, such as Pit-1, Prop-1, and estrogen receptor. Defects or overexpression of cell cycle regulators, such as CDK inhibitors, PTTG, and GADD45gamma, result in the abnormal proliferation of pituitary cells. Recently, epigenetic regulation has been suggested to be related to pituitary tumor formation. This article presents a review and update of recent progress in studies of the development and differentiation of pituitary tumors.
Collapse
Affiliation(s)
- Takeo Minematsu
- Department of Pathology, Tokai University School of Medicine. Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|