1
|
Zhang X, Young C, Liao XH, Refetoff S, Torres M, Tomer Y, Stefan-Lifshitz M, Zhang H, Larkin D, Fang D, Qi L, Arvan P. Perturbation of endoplasmic reticulum proteostasis triggers tissue injury in the thyroid gland. JCI Insight 2023; 8:e169937. [PMID: 37345654 PMCID: PMC10371246 DOI: 10.1172/jci.insight.169937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Defects in endoplasmic reticulum (ER) proteostasis have been linked to diseases in multiple organ systems. Here we examined the impact of perturbation of ER proteostasis in mice bearing thyrocyte-specific knockout of either HRD1 (to disable ER-associated protein degradation [ERAD]) or ATG7 (to disable autophagy) in the absence or presence of heterozygous expression of misfolded mutant thyroglobulin (the most highly expressed thyroid gene product, synthesized in the ER). Misfolding-inducing thyroglobulin mutations are common in humans but are said to yield only autosomal-recessive disease - perhaps because misfolded thyroglobulin protein might undergo disposal by ERAD or ER macroautophagy. We find that as single defects, neither ERAD, nor autophagy, nor heterozygous thyroglobulin misfolding altered circulating thyroxine levels, and neither defective ERAD nor defective autophagy caused any gross morphological change in an otherwise WT thyroid gland. However, heterozygous expression of misfolded thyroglobulin itself triggered significant ER stress and individual thyrocyte death while maintaining integrity of the surrounding thyroid epithelium. In this context, deficiency of ERAD (but not autophagy) resulted in patchy whole-follicle death with follicular collapse and degeneration, accompanied by infiltration of bone marrow-derived macrophages. Perturbation of thyrocyte ER proteostasis is thus a risk factor for both cell death and follicular demise.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes and
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes and
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samuel Refetoff
- Department of Medicine
- Department of Pediatrics, and Committee on Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yaron Tomer
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Mihaela Stefan-Lifshitz
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Hao Zhang
- Division of Metabolism, Endocrinology & Diabetes and
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes and
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern Medicine, Chicago, Illinois, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|
3
|
Pio MG, Siffo S, Scheps KG, Molina MF, Adrover E, Abelleyro MM, Rivolta CM, Targovnik HM. Curating the gnomAD database: Report of novel variants in the thyrogobulin gene using in silico bioinformatics algorithms. Mol Cell Endocrinol 2021; 534:111359. [PMID: 34119605 DOI: 10.1016/j.mce.2021.111359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/09/2023]
Abstract
Thyroglobulin (TG) is a large glycosylated protein of 2767 amino acids, secreted by the thyrocytes into the follicular lumen. It plays an essential role in the process of thyroid hormone synthesis. TG gene variants lead to permanent congenital hypothyroidism. In the present work, we report a detailed population and bioinformatic prediction analyses of the TG variants indexed in the Genome Aggregation Database (gnomAD). The results showed a clear predominance of nonsense variants in the European (Finnish), European (Non-Finnish) and Ashkenazi Jewish ethnic groups, whereas the splice site variants predominate in South Asian and African/African-American populations. In total, 282 novel TG variants were described (47 missense involving the wild-type cysteine residues, 177 missense located in the ChEL domain and 58 splice site variants) which were not reported in the literature and that would have deleterious effects in prediction programs. In the gnomAD population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:320. In conclusion, we provide an updated and curated reference source for the diagnosis of thyroid disease, mainly to congenital hypothyroidism due to TG deficiency. The identification and characterization of TG variants is undoubtedly a valuable approach to study the TG structure/function relations and an important tool for clinical diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Sofia Siffo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Miguel M Abelleyro
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Functions of the Thyroid-Stimulating Hormone on Key Developmental Features Revealed in a Series of Zebrafish Dyshormonogenesis Models. Cells 2021; 10:cells10081984. [PMID: 34440752 PMCID: PMC8391828 DOI: 10.3390/cells10081984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
The hypothalamic–pituitary–thyroid (HPT) axis regulates many critical features in vertebrates. Utilizing TALENs and CRISPR/Cas9 techniques, thyroid-stimulating hormone subunit beta a (tshba), thyroglobulin (tg), and solute carrier family 16 member 2 (slc16a2) mutant zebrafish lines were generated. Among the three mutants, the earliest time point for the significantly altered T3 contents was observed in tshba mutants, which resulted in the most severe defects, including typical defects such as the retardation of inflated anterior swimming bladder (aSB), proper formation of fin ray and posterior squamation (SP), the larval-to-juvenile transition (LTJT) process, juvenile growth retardation, and mating failure. In tg mutants, which are actually compensated with an alternative splicing form, growth retardation was observed in the juvenile stage without LTJT and reproductive defects. The evident goiter phenotype was only observed in tg- and slc16a2 mutants, but not in tshba mutants. Other than goiters being observed, no other significant developmental defects were found in the slc16a2 mutants. Regarding the reproductive defects observed in tshba mutants, the defective formation of the secondary sex characteristics (SSCs) was observed, while no obvious alterations during gonad development were found. Based on our analyses, zebrafish at the 6–12 mm standard length or 16–35 days post-fertilization (dpf) should be considered to be in their LTJT phase. Using a series of zebrafish dyshormonogenesis models, this study demonstrated that the TSH function is critical for the proper promotion of zebrafish LTJT and SSC formation. In addition, the elevation of TSH levels appears to be essential for goiter appearance in zebrafish.
Collapse
|
5
|
Citterio CE, Rivolta CM, Targovnik HM. Structure and genetic variants of thyroglobulin: Pathophysiological implications. Mol Cell Endocrinol 2021; 528:111227. [PMID: 33689781 DOI: 10.1016/j.mce.2021.111227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Pio MG, Molina MF, Siffo S, Chiesa A, Rivolta CM, Targovnik HM. A novel mutation in intron 11 donor splice site, responsible of a rare genotype in thyroglobulin gene by altering the pre-mRNA splincing process. Cell expression and bioinformatic analysis. Mol Cell Endocrinol 2021; 522:111124. [PMID: 33321114 DOI: 10.1016/j.mce.2020.111124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023]
Abstract
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. The purpose of the present study was to identify and characterize new variants in the TG gene. We report an Argentine patient with congenital hypothyroidism, enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a c.3001+5G > A, whereas the paternal mutation consists of p.Arg296*. Minigen analysis of the variant c.3001+5A performed in HeLa, CV1 and Hek293T cell lines, showed a total lack of transcript expression. So, in order to validate that the loss of expression was caused by such variation, site-directed mutagenesis was performed on the mutated clone, which previously had a pSPL3 vector change, to give rise to a wild-type clone c.3001+5G, endorsing that the mutation c.3001+5G > A is the cause of the total lack of expression. In conclusion, we demonstrate that the c.3001+5G > A mutation causes a rare genotype, altering the splicing of the pre-mRNA. This work contributes to elucidating the molecular bases of TG defects associated with congenital hypothyroidism and expands our knowledge in relation to the pathologic roles of the position 5 in the donor splice site.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Sofia Siffo
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
8
|
Zhang X, Shao S, Zhao L, Yang R, Zhao M, Fang L, Li M, Chen W, Song Y, Xu C, Zhou X, Zhao J, Gao L. ER stress contributes to high-fat diet-induced decrease of thyroglobulin and hypothyroidism. Am J Physiol Endocrinol Metab 2019; 316:E510-E518. [PMID: 30620634 DOI: 10.1152/ajpendo.00194.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies revealed the emerging role of excess uptake of lipids in the development of hypothyroidism. However, the underlying mechanism is largely unknown. We investigated the effect of high-fat diet (HFD) on thyroid function and the role of endoplasmic reticulum (ER) in HFD-induced hypothyroidism. Male Sprague-Dawley rats were fed with HFD or control diet for 18 wk. HFD rats showed an impaired thyroid function, with decreased thyroglobulin (Tg) level. We found the ER stress was triggered in HFD rat thyroid glands and palmitate-treated thyrocytes. Luminal swelling of ER in thyroid epithelial cells of HFD rats was also observed. The rate of Tg degradation increased in palmitate-treated thyrocytes. In addition, applying 4-phenyl butyric acid to alleviate ER stress in HFD rats improved the decrease of Tg and thyroid function. Withdrawal of the HFD improved thyroid function . In conclusion, we demonstrate that ER stress mediates the HFD-induced hypothyroidism, probably by impairing the production of Tg, and attenuation of ER stress improves thyroid function. Our study provides the understanding of how HFD induces hypothyroidism.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Rui Yang
- Experimental Animal Center, Shandong Provincial Hospital Affiliated to Shandong University, Ji-nan, Shandong , China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Li Fang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Ji-nan, Shandong , China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University , Shandong , China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Ji-nan, Shandong , China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, Shandong , China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Ji-nan, Shandong , China
| |
Collapse
|
9
|
Siffo S, Adrover E, Citterio CE, Miras MB, Balbi VA, Chiesa A, Weill J, Sobrero G, González VG, Papendieck P, Martinez EB, Gonzalez-Sarmiento R, Rivolta CM, Targovnik HM. Molecular analysis of thyroglobulin mutations found in patients with goiter and hypothyroidism. Mol Cell Endocrinol 2018; 473:1-16. [PMID: 29275168 DOI: 10.1016/j.mce.2017.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023]
Abstract
Thyroid dyshormonogenesis due to thyroglobulin (TG) gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Up to now, one hundred seventeen deleterious mutations in the TG gene have been identified and characterized. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report eight patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and image evaluation. Sequencing of DNA, genotyping, as well as bioinformatics analysis were performed. Molecular analyses revealed three novel inactivating TG mutations: c.5560G>T [p.E1835*], c.7084G>C [p.A2343P] and c.7093T>C [p.W2346R], and four previously reported mutations: c.378C>A [p.Y107*], c.886C>T [p.R277*], c.1351C>T [p.R432*] and c.7007G>A [p.R2317Q]. Two patients carried homozygous mutations (p.R277*/p.R277*, p.W2346R/p.W2346R), four were compound heterozygous mutations (p.Y107*/p.R277* (two unrelated patients), p.R432*/p.A2343P, p.Y107*/p.R2317Q) and two siblings from another family had a single p.E1835* mutated allele. Additionally, we include the analysis of 48 patients from 31 unrelated families with TG mutations identified in our present and previous studies. Our observation shows that mutations in both TG alleles were found in 27 families (9 as homozygote and 18 as heterozygote compound), whereas in the remaining four families only one mutated allele was detected. The majority of the detected mutations occur in exons 4, 7, 38 and 40. 28 different mutations were identified, 33 of the 96 TG alleles encoded the change p.R277*. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of the predicted TG misfolding and therefore thyroid hormone formation as a consequence of truncated TG proteins and/or missense mutations located within its ACHE-like domain.
Collapse
Affiliation(s)
- Sofia Siffo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Viviana A Balbi
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Jacques Weill
- Clinique de Pédiatrie, Hôpital Jeanne de Flandre, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Verónica G González
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Patricia Papendieck
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Elena Bueno Martinez
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Rogelio Gonzalez-Sarmiento
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Lebeau P, Platko K, Al-Hashimi AA, Byun JH, Lhoták Š, Holzapfel N, Gyulay G, Igdoura SA, Cool DR, Trigatti B, Seidah NG, Austin RC. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained. J Biol Chem 2018; 293:7329-7343. [PMID: 29593095 DOI: 10.1074/jbc.ra117.001049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.
Collapse
Affiliation(s)
- Paul Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Ali A Al-Hashimi
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Suleiman A Igdoura
- Departments of Biology and Pathology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - David R Cool
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435-0001
| | - Bernardo Trigatti
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada; Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
11
|
Abstract
Iodide Handling Disorders lead to defects of the biosynthesis of thyroid hormones (thyroid dyshormonogenesis, TD) and thereafter congenital hypothyroidism (CH), the most common endocrine disease characterized by low levels of circulating thyroid hormones. The prevalence of CH is 1 in 2000-3000 live births. Prevention of CH is based on prenatal diagnosis, carrier identification, and genetic counseling. In neonates a complete diagnosis of TD should include clinical examination, biochemical thyroid tests, thyroid ultrasound, radioiodine or technetium scintigraphy and perchlorate discharge test (PDT). Biosynthesis of thyroid hormones requires the presence of iodide, thyroid peroxidase (TPO), a supply of hydrogen peroxide (DUOX system), an iodine acceptor protein, thyroglobulin (TG), and the rescue and recycling of iodide by the action of iodotyrosine deiodinase or iodotyrosine dehalogenase 1 (IYD or DEHAL1). The iodide transport is a two-step process involving transporters located either in the basolateral or apical membranes, sodium iodide symporter (NIS) and pendrin (PDS), respectively. TD has been linked to mutations in the solute carrier family 5, member 5 transporter (SLC5A5, encoding NIS), solute carrier family 26, member 4 transporter (SLC26A4, encoding PDS), TPO, DUOX2, DUOXA2, TG and IYD genes. These mutations produce a heterogeneous spectrum of CH, with an autosomal recessive inheritance. Thereafter, the patients are usually homozygous or compound heterozygous for the gene mutations and the parents, carriers of one mutation. In the last two decades, considerable progress has been made in identifying the genetic and molecular causes of TD. Recent advances in DNA sequencing technology allow the massive screening and facilitate the studies of phenotype variability. In this article we included the most recent data related to disorders caused by mutations in NIS, TPO, TG and IYD.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
12
|
Abstract
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER), where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the cholinesterase-like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary T4-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occurs spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Peter Arvan
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
13
|
Gaide Chevronnay HP, Janssens V, Van Der Smissen P, Liao XH, Abid Y, Nevo N, Antignac C, Refetoff S, Cherqui S, Pierreux CE, Courtoy PJ. A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing. Endocrinology 2015; 156:2349-64. [PMID: 25811319 PMCID: PMC4430621 DOI: 10.1210/en.2014-1672] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thyroid hormones are released from thyroglobulin (Tg) in lysosomes, which are impaired in infantile/nephropathic cystinosis. Cystinosis is a lysosomal cystine storage disease due to defective cystine exporter, cystinosin. Cystinotic children develop subclinical and then overt hypothyroidism. Why hypothyroidism is the most frequent and earliest endocrine complication of cystinosis is unknown. We here defined early alterations in Ctns(-/-) mice thyroid and identified subcellular and molecular mechanisms. At 9 months, T4 and T3 plasma levels were normal and TSH was moderately increased (∼4-fold). By histology, hyperplasia and hypertrophy of most follicles preceded colloid exhaustion. Increased immunolabeling for thyrocyte proliferation and apoptotic shedding indicated accelerated cell turnover. Electron microscopy revealed endoplasmic reticulum (ER) dilation, apical lamellipodia indicating macropinocytic colloid uptake, and lysosomal cystine crystals. Tg accumulation in dilated ER contrasted with mRNA down-regulation. Increased expression of ER chaperones, glucose-regulated protein of 78 kDa and protein disulfide isomerase, associated with alternative X-box binding protein-1 splicing, revealed unfolded protein response (UPR) activation by ER stress. Decreased Tg mRNA and ER stress suggested reduced Tg synthesis. Coordinated increase of UPR markers, activating transcription factor-4 and C/EBP homologous protein, linked ER stress to apoptosis. Hormonogenic cathepsins were not altered, but lysosome-associated membrane protein-1 immunolabeling disclosed enlarged vesicles containing iodo-Tg and impaired lysosomal fusion. Isopycnic fractionation showed iodo-Tg accumulation in denser lysosomes, suggesting defective lysosomal processing and hormone release. In conclusion, Ctns(-/-) mice showed the following alterations: 1) compensated primary hypothyroidism and accelerated thyrocyte turnover; 2) impaired Tg production linked to ER stress/UPR response; and 3) altered endolysosomal trafficking and iodo-Tg processing. The Ctns(-/-) thyroid is useful to study disease progression and evaluate novel therapies.
Collapse
Affiliation(s)
- H P Gaide Chevronnay
- Cell Biology Unit (H.P.G.C., V.J., P.V.D.S., Y.A., C.E.P., P.J.C.), de Duve Institute and Université Catholique de Louvain, 1200 Brussels, Belgium; Departments of Medicine (X.H.L., S.R.) and Pediatrics and Genetics (S.R), The University of Chicago, Chicago, Illinois 60637; INSERM, Unité 1163 (N.N., C.A.), Hôpital Necker-Enfants Malades and Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France; and Department of Pediatrics (S.C.), Division of Genetics, University of California, San Diego, San Diego, California 92161
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choi EJ, Yoon SM, Lee S, Lee J. Trp(250) -hK2 is defective in intracellular trafficking and activates the unfolded protein response. Genes Cells 2015; 20:512-20. [PMID: 25847286 DOI: 10.1111/gtc.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
hK2, a member of the kallikrein protease family encoded by KLK2, is expressed exclusively in prostate and is a putative adjunct tumor marker for prostate cancer screening. The T allele of rs198977, a single nucleotide polymorphism in exon 5 of KLK2, codes for W-hK2 and is associated with lower serum hK2 levels and higher risk of prostate cancer than the C allele encoding R-hK2. To elucidate the mechanism that underlies this SNP's function, we transfected plasmids expressing R-hK2 or W-hK2 into PC3, HeLa and HEK293A cells and measured the hK2 level in cell lysates and conditioned media. The level of W-hK2 was lower than R-hK2 in conditioned media but was not different from R-hK2 in cell lysates. W-hK2 was hardly colocalized with Golgi-targeted fluorescent protein whereas R-hK2 colocalized. Reporter assays related to the unfolded protein response (UPR) and phospho-eIF2α immunoblot showed that W-hK2 increased UPR activity more than R-hK2. These results indicated that W-hK2 had a defect in cellular trafficking from the ER to the Golgi complex due to its misfolding and that it activated the UPR, suggesting a mechanism to explain the association of the T allele with higher prostate cancer risk.
Collapse
Affiliation(s)
- Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| | - Sei Mee Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| | - Suman Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Osong, Chungcheongbuk-do, 363-951, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| |
Collapse
|
15
|
Citterio CE, Morales CM, Bouhours-Nouet N, Machiavelli GA, Bueno E, Gatelais F, Coutant R, González-Sarmiento R, Rivolta CM, Targovnik HM. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6. Mol Cell Endocrinol 2015; 404:102-12. [PMID: 25633667 DOI: 10.1016/j.mce.2015.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein molecule that alter the biosynthesis of thyroid hormones.
Collapse
Affiliation(s)
- Cintia E Citterio
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética y Biología Molecular (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Cecilia M Morales
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética y Biología Molecular (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Natacha Bouhours-Nouet
- Unité Endocrinologie Diabétologie Pédiatrique and Centre des Maladies Rares de la Réceptivité Hormonale, CHU-Angers, 49933 Angers CEDEX 9, France
| | - Gloria A Machiavelli
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética y Biología Molecular (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Elena Bueno
- Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, España
| | - Frédérique Gatelais
- Unité Endocrinologie Diabétologie Pédiatrique and Centre des Maladies Rares de la Réceptivité Hormonale, CHU-Angers, 49933 Angers CEDEX 9, France
| | - Regis Coutant
- Unité Endocrinologie Diabétologie Pédiatrique and Centre des Maladies Rares de la Réceptivité Hormonale, CHU-Angers, 49933 Angers CEDEX 9, France
| | - Rogelio González-Sarmiento
- Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, España
| | - Carina M Rivolta
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética y Biología Molecular (FFyB-UBA), C1113AAD Buenos Aires, Argentina; Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, España
| | - Héctor M Targovnik
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética y Biología Molecular (FFyB-UBA), C1113AAD Buenos Aires, Argentina; Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, España.
| |
Collapse
|
16
|
Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. J Neurosci 2015; 34:13336-48. [PMID: 25274813 DOI: 10.1523/jneurosci.1655-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited neurodegenerative disease involving progressive vision loss, and is often linked to mutations in the rhodopsin gene. Mutations that abolish N-terminal glycosylation of rhodopsin (T4K and T17M) cause sector RP in which the inferior retina preferentially degenerates, possibly due to greater light exposure of this region. Transgenic animal models expressing rhodopsin glycosylation mutants also exhibit light exacerbated retinal degeneration (RD). In this study, we used transgenic Xenopus laevis to investigate the pathogenic mechanism connecting light exposure and RD in photoreceptors expressing T4K or T17M rhodopsin. We demonstrate that increasing the thermal stability of these rhodopsins via a novel disulfide bond resulted in significantly less RD. Furthermore, T4K or T17M rhodopsins that were constitutively inactive (due to lack of the chromophore-binding site or dietary deprivation of the chromophore precursor vitamin A) induced less toxicity. In contrast, variants in the active conformation accumulated in the ER and caused RD even in the absence of light. In vitro, T4K and T17M rhodopsins showed reduced ability to regenerate pigment after light exposure. Finally, although multiple amino acid substitutions of T4 abolished glycosylation at N2 but were not toxic, similar substitutions of T17 were not tolerated, suggesting that the carbohydrate moiety at N15 is critical for cell viability. Our results identify a novel pathogenic mechanism in which the glycosylation-deficient rhodopsins are destabilized by light activation. These results have important implications for proposed RP therapies, such as vitamin A supplementation, which may be ineffective or even detrimental for certain RP genotypes.
Collapse
|
17
|
Lombardi A, Inabnet WB, Owen R, Farenholtz KE, Tomer Y. Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis. J Clin Endocrinol Metab 2015; 100:E1-10. [PMID: 25295624 PMCID: PMC4283007 DOI: 10.1210/jc.2014-2745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Amiodarone (AMIO) is one of the most effective antiarrhythmic drugs available; however, its use is limited by a serious side effect profile, including thyroiditis. The mechanisms underlying AMIO thyroid toxicity have been elusive; thus, identification of novel approaches in order to prevent thyroiditis is essential in patients treated with AMIO. OBJECTIVE Our aim was to evaluate whether AMIO treatment could induce endoplasmic reticulum (ER) stress in human thyroid cells and the possible implications of this effect in AMIO-induced destructive thyroiditis. RESULTS Here we report that AMIO, but not iodine, significantly induced the expression of ER stress markers including Ig heavy chain-binding protein (BiP), phosphoeukaryotic translation initiation factor 2α (eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP) and spliced X-box binding protein-1 (XBP-1) in human thyroid ML-1 cells and human primary thyrocytes. In both experimental systems AMIO down-regulated thyroglobulin (Tg) protein but had little effect on Tg mRNA levels, suggesting a mechanism involving Tg protein degradation. Indeed, pretreatment with the specific proteasome inhibitor MG132 reversed AMIO-induced down-regulation of Tg protein levels, confirming a proteasome-dependent degradation of Tg protein. Corroborating our findings, pretreatment of ML-1 cells and human primary thyrocytes with the chemical chaperone 4-phenylbutyric acid completely prevented the effect of AMIO on both ER stress induction and Tg down-regulation. CONCLUSIONS We identified ER stress as a novel mechanism contributing to AMIO-induced destructive thyroiditis. Our data establish that AMIO-induced ER stress impairs Tg expression via proteasome activation, providing a valuable therapeutic avenue for the treatment of AMIO-induced destructive thyroiditis.
Collapse
Affiliation(s)
- Angela Lombardi
- Division of Endocrinology (A.L., K.E.F., Y.T.) and Department of Surgery (W.B.I., R.O.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and James J. Peters Veterans Affairs Medical Center (Y.T.), Bronx, New York 10468
| | | | | | | | | |
Collapse
|
18
|
Sato A, Abe K, Yuzuriha M, Fujii S, Takahashi N, Hojo H, Teramoto S, Aoyama H. A novel mutation in the thyroglobulin gene that causes goiter and dwarfism in Wistar Hannover GALAS rats. Mutat Res 2014; 762:17-23. [PMID: 24582622 DOI: 10.1016/j.mrfmmm.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/23/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Outbred stocks of rats have been used extensively in biomedical, pharmaceutical and/or toxicological studies as a model of genetically heterogeneous human populations. One of such stocks is the Wistar Hannover GALAS rat. However, the colony of Wistar Hannover GALAS rat has been suspected of keeping a problematic mutation that manifests two distinct spontaneous abnormalities, goiter and dwarfism, which often confuses study results. We have successfully identified the responsible mutation, a guanine to thymine transversion at the acceptor site (3' end) of intron 6 in the thyroglobulin (Tg) gene (Tgc.749-1G>T), that induces a complete missing of exon 7 from the whole Tg transcript by mating experiments and subsequent molecular analyses. The following observations confirmed that Tgc.749-1G>T/Tgc.749-1G>T homozygotes manifested both dwarfism and goiter, while Tgc.749-1G>T/+ heterozygotes had only a goiter with normal appearance, suggesting that the mutant phenotypes inherit as an autosomal semi-dominant trait. The mutant phenotypes, goiter and dwarfism, mimicked those caused by typical endocrine disrupters attacking the thyroid. Hence a simple and reliable diagnostic methodology has been developed for genomic DNA-based genotyping of animals. The diagnostic methodology reported here would allow users of Wistar Hannover GALAS rats to evaluate their study results precisely by carefully interpreting the data obtained from Tgc.749-1G>T/+ heterozygotes having externally undetectable thyroidal lesions.
Collapse
Affiliation(s)
- Akira Sato
- Toxicology Division, Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso, Ibaraki 303-0043, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamism, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Misako Yuzuriha
- Technology and Development Team for Mammalian Genome Dynamism, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Sakiko Fujii
- Safety Research Division, Safety Research Institute for Chemical Compounds Co., Ltd., 363-24 Shin-ei, Kiyota-ku, Sapporo, Hokkaido 004-0839, Japan
| | - Naofumi Takahashi
- Toxicology Division, Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- Toxicology Division, Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso, Ibaraki 303-0043, Japan
| | - Shoji Teramoto
- Toxicology Division, Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso, Ibaraki 303-0043, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso, Ibaraki 303-0043, Japan.
| |
Collapse
|
19
|
Citterio CE, Rossetti LC, Souchon PF, Morales C, Thouvard-Viprey M, Salmon-Musial AS, Mauran PLA, Doco-Fenzy M, González-Sarmiento R, Rivolta CM, De Brasi CD, Targovnik HM. Novel mutational mechanism in the thyroglobulin gene: imperfect DNA inversion as a cause for hereditary hypothyroidism. Mol Cell Endocrinol 2013; 381:220-9. [PMID: 23933148 DOI: 10.1016/j.mce.2013.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/21/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study was to perform genetic analysis in three brothers of Turkish origin born from consanguineus parents and affected by congenital hypothyroidism, goiter and low levels of serum TG. The combination of sequencing of DNA, PCR mapping, quantitative real-time PCR, inverse-PCR (I-PCR), multiplex PCR and bioinformatics analysis were used in order to detect TG mutations. We demonstrated that the three affected siblings are homozygous for a DNA inversion of 16,962bp in the TG gene associated with two deleted regions at both sides of the inversion limits. The inversion region includes the first 9bp of exon 48, 1015bp of intron 47, 191bp of exon 47, 1523bp of intron 46, 135bp of exon 46 and the last 14,089bp of intron 45. The proximal deletion corresponds to 27bp of TG intron 45, while the distal deletion spans the last 230bp of TG exon 48 and the first 588bp of intergenic region downstream TG end. The parents were heterozygous carriers of the complex rearrangement. In conclusion, a novel large imperfect DNA inversion within the TG gene was identified by the strategy of I-PCR. This aberration was not detectable by normal sequencing of the exons and exon/intron boundaries. Remarkably, the finding represents the first description of a TG deficiency disease caused by a DNA inversion.
Collapse
Affiliation(s)
- Cintia E Citterio
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética y Biología Molecular (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agretti P, De Marco G, Di Cosmo C, Ferrarini E, Montanelli L, Bagattini B, Vitti P, Tonacchera M. Congenital hypothyroidism caused by a novel homozygous mutation in the thyroglobulin gene. Eur J Pediatr 2013; 172:959-64. [PMID: 23455760 DOI: 10.1007/s00431-013-1976-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Congenital hypothyroidism (CH) due to thyroglobulin (TG) deficit is an autosomal recessive disease (OMIM #274700) characterized by hypothyroidism, goiter, low serum TG, and a negative perchlorate discharge test. The aim of this study was to perform the genetic analysis of the TG gene in two sisters born from consanguineus parents and affected by CH and low serum TG levels. The index patient and her sister were identified at neonatal screening for CH and treated with L-thyroxine (L-T4). After discontinuation of L-T4 therapy, hypothyroidism was confirmed, serum TG was undetectable, and no organification defect after (123)I scintigraphy and perchlorate test was shown; thyroid ultrasound showed a eutopic gland of normal size. DNA was extracted from peripheral white blood cells of the two sisters and the father. All 48 exons of TG gene were amplified by polymerase chain reaction and subjected to direct sequencing. A novel homozygous point mutation in exon 10 of TG gene was identified in the patient and her sister. The mutation determined a stop codon at position 768 (R768X) resulting in an early truncated protein or in the complete absence of the protein. The father (euthyroid) was heterozygous carrier of the mutation. CONCLUSION Genetic analysis of TG gene was performed in two sisters affected by CH. A novel point mutation of the TG gene determining a stop codon at position 768 of the protein was identified. The early truncated nonfunctioning protein or the absence of the protein due to the premature degradation of abnormal mRNA may be responsible of the observed phenotype.
Collapse
Affiliation(s)
- Patrizia Agretti
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Endocrinologia, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Citterio CE, Machiavelli GA, Miras MB, Gruñeiro-Papendieck L, Lachlan K, Sobrero G, Chiesa A, Walker J, Muñoz L, Testa G, Belforte FS, González-Sarmiento R, Rivolta CM, Targovnik HM. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism. Mol Cell Endocrinol 2013; 365:277-91. [PMID: 23164529 DOI: 10.1016/j.mce.2012.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/25/2012] [Accepted: 11/05/2012] [Indexed: 11/21/2022]
Abstract
The thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report 13 patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and imaging evaluation. Single-strand conformation polymorphism (SSCP) analysis, endonuclease restriction analysis, sequencing of DNA, genotyping, population screening, and bioinformatics studies were performed. Molecular analyses revealed seven novel inactivating TG mutations: c.378C>A [p.Y107X], c.2359C>T [p.R768X], c.2736delG [p.R893fsX946], c.3842G>A [p.C1262Y], c.5466delA [p.K1803fsX1833], c.6000C>G [p.C1981W] and c.6605C>G [p.P2183R] and three previously reported mutations: c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.7006C>T [p.R2317X]. Six patients from two families were homozygous for p.R277X mutation, four were compound heterozygous mutations (p.Y107X/p.C1262Y, p.R893fsX946/p.A2215D, p.K1803fsX1832/p.R2317X), one carried three identified mutations (p.R277X/p.C1981W-p.P2183R) together with a hypothetical micro deletion and the remaining two siblings from another family with typical phenotype had a single p.R768X mutated allele. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of altered TG folding as a consequency of truncated TG proteins and missense mutations located in ACHE-like domain or that replace cysteine.
Collapse
Affiliation(s)
- Cintia E Citterio
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, C1120AAR Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Targovnik HM, Edouard T, Varela V, Tauber M, Citterio CE, González-Sarmiento R, Rivolta CM. Two novel mutations in the thyroglobulin gene as cause of congenital hypothyroidism: identification a cryptic donor splice site in the exon 19. Mol Cell Endocrinol 2012; 348:313-21. [PMID: 21958696 DOI: 10.1016/j.mce.2011.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, 52 mutations of the TG gene have been identified in humans. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report a French patient with congenital hypothyroidism, mild enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, genotyping, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the paternal mutation consists of a c.3788-3789insT or c.3788dupT, whereas the maternal mutation consists of g.IVS19+3_+4delAT. Minigene analysis of the g.IVS19+3_+4delAT mutant showed that the exon 19 is skipped during pre-mRNA splicing or partially included by use of cryptic 5' splice site located to 100 nucleotides downstream of the wild type exon-intron junction. The c.3788-3789insT mutation results in a putative truncated protein of 1245 amino acids, whereas g.IVS19+3_4delAT mutation originates two putative truncated proteins of 1330 and 1349 amino acids. In conclusion, we show that the g.IVS19+3_+4delAT mutation promotes the activation of a cryptic donor splice site in the exon 19 of the TG gene. These results open up new perspectives in the knowledge of the mechanism of splicing for the TG pre-mRNA.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Laboratorio de Biología Molecular, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
23
|
Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:774-87. [PMID: 22079671 DOI: 10.1016/j.bbamcr.2011.10.013] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 02/06/2023]
Abstract
Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94 shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme in the conformational changes induced by nucleotide binding, and in its interactions with co-chaperones, which are very different from known cytosolic co-chaperones. GRP94 is more selective than many of the ER chaperones and the basis for this selectivity remains obscure. Recent development of molecular tools and functional assays has expanded the spectrum of clients that rely on GRP94 activity, but it is still not clear how the chaperone binds them, or what aspect of folding it impacts. These mechanistic questions and the regulation of GRP94 activity by other proteins and by post-translational modification differences pose new questions and present future research avenues. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
24
|
Abstract
In vertebrates, the thyroglobulin (Tg) gene product must be exported to the lumen of thyroid follicles for thyroid hormone synthesis. In toto, Tg is composed of multiple type-1 repeats connected by linker and hinge (altogether considered as "region I," nearly 1,200 residues); regions II-III (~720 residues); and cholinesterase-like (ChEL) domain (~570 residues). Regions II-III and ChEL rapidly acquire competence for secretion, yet regions I-II-III require 20 min to become a partially mature disulfide isomer; stabilization of a fully oxidized form requires ChEL. Transition from partially mature to mature Tg occurs as a discrete "jump" in mobility by nonreducing SDS-PAGE, suggesting formation of at most a few final pairings of Cys residues that may be separated by significant intervening primary sequence. Using two independent approaches, we have investigated which portion of Tg is engaged in this late stage of its maturation. First, we demonstrate that this event is linked to oxidation involving region I. Introduction of the Tg-C1245R mutation in the hinge (identical to that causing human goitrous hypothyroidism) inhibits this maturation, although the Cys-1245 partner remains unidentified. Second, we find that Tg truncated after its fourth type-1 repeat is a fully independent secretory protein. Together, the data indicate that final acquisition of secretory competence includes conformational maturation in the interval between linker and hinge segments of region I.
Collapse
Affiliation(s)
- Jaemin Lee
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
25
|
Abstract
The function of the human proteome is defined by the proteostasis network (PN) (Science 2008;319:916; Science 2010;329:766), a biological system that generates, protects, and, where necessary, degrades a protein to optimize the cell, tissue, and organismal response to diet, stress, and aging. Numerous human diseases result from the failure of proteins to fold properly in response to mutation, disrupting the proteome. In the case of the exocytic pathway, this includes proteostasis components that direct folding, and export of proteins from the endoplasmic reticulum (ER). Included here are serpin deficiencies, a class of related diseases that result in a significant reduction of secretion of serine proteinase inhibitors from the liver into serum. In response to misfolding, variants of the serine protease α(1)-antitrypsin (α1AT) fail to exit the ER and are targeted for either ER-associated degradation or autophagic pathways. The challenge for developing α1AT deficiency therapeutics is to understand the PN pathways involved in folding and export. Herein, we review the role of the PN in managing the protein fold and function during synthesis in the ER and trafficking to the cell surface or extracellular space. We highlight the role of the proteostasis boundary to define the operation of the proteome (Annu Rev Biochem 2009;78:959). We discuss how manipulation of folding energetics or the PN by pharmacological intervention could provide multiple routes for restoration of variant α1AT function to the benefit of human health.
Collapse
|
26
|
Peteiro-Gonzalez D, Lee J, Rodriguez-Fontan J, Castro-Piedras I, Cameselle-Teijeiro J, Beiras A, Bravo SB, Alvarez CV, Hardy DM, Targovnik HM, Arvan P, Lado-Abeal J. New insights into thyroglobulin pathophysiology revealed by the study of a family with congenital goiter. J Clin Endocrinol Metab 2010; 95:3522-6. [PMID: 20410234 PMCID: PMC2928901 DOI: 10.1210/jc.2009-2109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroglobulin (TG) gene mutations cause congenital hypothyroidism (CH) with goiter. A founder effect has been proposed for some frequent mutations. Mutated proteins have a defect in intracellular transport causing intracellular retention with ultrastructural changes that resemble an endoplasmic reticulum storage disease. OBJECTIVE To reveal new aspects of thyroglobulin pathophysiology through clinical, cellular, molecular, and genetic studies in a family presenting with CH due to TG mutations from Galicia, an iodine-deficient area of Spain. DESIGN The included clinical evaluation of family members, DNA sequencing for TG gene mutation and haplotyping analysis, ultrastructural analysis of thyroid tissue specimens from affected subjects, analysis of effects of mutations found on TG gene transcription, and in vitro studies of cellular production and secretion of mutated proteins. SETTING Locations included primary care and university hospitals. RESULTS Family members with CH, mental retardation, and goiter were compound heterozygous for c.886C-->T (p.R277X) and g.IVS35+1delG. For c.886C-->T, a founder effect cannot be excluded, and its transcription was hardly detectable. g.IVS35+1delG caused an in-frame deletion in exon 35 and produced a protein that, although synthesized, could not be secreted. Ultrastructural analyses showed morphological changes consistent with an endoplasmic reticulum storage disease. CONCLUSION The shorter thyroglobulin resulting from the novel g.IVS35+1delG was retained within the endoplasmic reticulum of thyrocytes, and together with p.R227X caused severe hypothyroidism with goiter. p.R277X, the most commonly described TG mutation, is caused by a TG exon-7 highly mutation-prone region, and the possibility that some cases were introduced to South America from Galicia cannot be excluded.
Collapse
Affiliation(s)
- D Peteiro-Gonzalez
- Unidade de Enfermedades Tiroideas e Metabolicas, School of Medicine, University of Santiago de Compostela, E-15782 Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
From Split to Sibenik: the tortuous pathway in the cholinesterase field. Chem Biol Interact 2010; 187:3-9. [PMID: 20493179 DOI: 10.1016/j.cbi.2010.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/03/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022]
Abstract
The interim between the first and tenth International Cholinesterase Meetings has seen remarkable advances associated with the applications of structural biology and recombinant DNA methodology to our field. The cloning of the cholinesterase genes led to the identification of a new super family of proteins, termed the alpha,beta-hydrolase fold; members of this family possess a four helix bundle capable of linking structural subunits to the functioning globular protein. Sequence comparisons and three-dimensional structural studies revealed unexpected cousins possessing this fold that, in turn, revealed three distinct functions for the alpha,beta-hydrolase proteins. These encompass: (1) a capacity for hydrolytic cleavage of a great variety of substrates, (2) a heterophilic adhesion function that results in trans-synaptic associations in linked neurons, (3) a chaperone function leading to stabilization of nascent protein and its trafficking to an extracellular or secretory storage location. The analysis and modification of structure may go beyond understanding mechanism, since it may be possible to convert the cholinesterases to efficient detoxifying agents of organophosphatases assisted by added oximes. Also, the study of the relationship between the alpha,beta-hydrolase fold proteins and their biosynthesis may yield means by which aberrant trafficking may be corrected, enhancing expression of mutant proteins. Those engaged in cholinesterase research should take great pride in our accomplishments punctuated by the series of ten meetings. The momentum established and initial studies with related proteins all hold great promise for the future.
Collapse
|
28
|
Machiavelli GA, Caputo M, Rivolta CM, Olcese MC, Gruñeiro-Papendieck L, Chiesa A, González-Sarmiento R, Targovnik HM. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7. Clin Endocrinol (Oxf) 2010; 72:112-21. [PMID: 19438905 DOI: 10.1111/j.1365-2265.2009.03621.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. OBJECTIVES The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. METHODS Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. RESULTS Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. CONCLUSIONS In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.
Collapse
Affiliation(s)
- Gloria A Machiavelli
- Laboratorio de Biología Molecular, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Niu DM, Hsu JH, Chong KW, Huang CH, Lu YH, Kao CH, Yu HC, Lo MY, Jap TS. Six new mutations of the thyroglobulin gene discovered in taiwanese children presenting with thyroid dyshormonogenesis. J Clin Endocrinol Metab 2009; 94:5045-52. [PMID: 19837936 DOI: 10.1210/jc.2009-0646] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Thyroglobulin (TG) defect is a rare cause of congenital hypothyroidism. Although only 44 mutations of the human TG gene have been identified, we have suspected a TG defect in 38% of Taiwan Chinese children/adolescents presenting with moderate or severe thyroidal dyshormonogenesis. STUDY OBJECTIVE The aim of the study is to report the discovery of new TG gene mutations and associated clinical manifestations of the defective TG protein. PATIENTS AND RESULTS In seven patients from six families, we detected six new TG gene mutations, including c.1348delT, p.R432X (c.1351C>T), g.IVS3 + 2T>G, c.1712delT, p.Q1765X (c.5350C>T), and c.6047delA. The c.1348delT and p.R432X mutations were the most common, detected in 33 and 25%, respectively, of alleles studied. Haplotype analysis suggested that the c.1348delT and g.IVS3 + 2T>G mutations are due to founder effects, whereas p.R432X is probably due to independently recurrent de novo mutations. mRNA transcript of the g.IVS3 + 2T>G mutant, detected in whole blood by reverse transcription-nested PCR, showed skipping of exon 3 (98-bp deletion) and a frameshift, with a terminal signal after 17 altered amino acid residues. CONCLUSIONS TG defects have an important role in severe thyroidal dyshormonogenesis (pretreatment, or after a 3-wk T(4) withdrawal, plasma T(4) < or = 30 nmol/liter) in Taiwanese. Its genetic characteristics are markedly different from those described in other populations presenting with mutations of the TG gene.
Collapse
Affiliation(s)
- Dau-Ming Niu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Noorwez SM, Sama RRK, Kaushal S. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 2009; 284:33333-42. [PMID: 19801547 DOI: 10.1074/jbc.m109.043364] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lectin chaperone calnexin (Cnx) is important for quality control of glycoproteins, and the chances of correct folding of a protein increase the longer the protein interacts with Cnx. Mutations in glycoproteins increase their association with Cnx, and these mutant proteins are retained in the endoplasmic reticulum. However, until now, the increased interaction with Cnx was not known to increase the folding of mutant glycoproteins. Because many human diseases result from glycoprotein misfolding, a Cnx-assisted folding of mutant glycoproteins could be beneficial. Mutations of rhodopsin, the glycoprotein pigment of rod photoreceptors, cause misfolding resulting in retinitis pigmentosa. Despite the critical role of Cnx in glycoprotein folding, surprisingly little is known about its interaction with rhodopsin or whether this interaction could be modulated to increase the folding of mutant rhodopsin. Here, we demonstrate that Cnx preferentially associates with misfolded mutant opsins associated with retinitis pigmentosa. Furthermore, the overexpression of Cnx leads to an increased accumulation of misfolded P23H opsin but not the correctly folded protein. Finally, we demonstrate that increased levels of Cnx in the presence of the pharmacological chaperone 11-cis-retinal increase the folding efficiency and result in an increase in correct folding of mutant rhodopsin. These results demonstrate that misfolded rather than correctly folded rhodopsin is a substrate for Cnx and that the interaction between Cnx and mutant, misfolded rhodopsin, can be targeted to increase the yield of folded mutant protein.
Collapse
Affiliation(s)
- Syed M Noorwez
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
31
|
Rubio IGS, Medeiros-Neto G. Mutations of the thyroglobulin gene and its relevance to thyroid disorders. Curr Opin Endocrinol Diabetes Obes 2009; 16:373-8. [PMID: 19633549 DOI: 10.1097/med.0b013e32832ff218] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW To perform an update review on thyroglobulin gene mutations associated with congenital hypothyroidism, thyroid cancer, and autoimmunity. RECENT FINDINGS Forty-two thyroglobulin mutations have been identified in dyshormonogenetic congenital hypothyroidism. Clinical and laboratory criteria defining defective thyroglobulin synthesis are mostly related to thyroglobulin mutations, generally caused by intracellular thyroglobulin transport defects to the colloid rather than defects in thyroid hormones synthesis. Some mutated thyroglobulin may escape the rigorous chaperone control and reach the colloid, allowing a wide phenotypic spectrum that includes euthyroidism in an adequate iodine environment. In some patients, continuous levothyroxine treatment does not reduce elevated serum thyroid-stimulating hormone (TSH) levels that may lead to goiter development. Prenatally, inactive mutant thyroglobulin will not be able to synthesize thyroid hormones and may increase pituitary thyrotroph threshold for thyroid hormone feedback. Congenital goiter is a risk factor for thyroid cancer and some thyroglobulin variants may confer susceptibility to thyroid autoimmunity. SUMMARY Advances in the understanding of thyroglobulin genetic defects and its severity should allow researchers to perform adequate molecular diagnosis, genetic counseling, and intrauterine treatment to prevent subtle deficits in central nervous system development. This knowledge should improve the understanding of physiological functions of the thyroid and influence of nutritional iodine.
Collapse
Affiliation(s)
- Ileana G S Rubio
- Thyroid Study Unit (LIM-25), Division of Endocrinology, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
32
|
Current World Literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:401-5. [PMID: 19687666 DOI: 10.1097/med.0b013e32833118e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Pardo V, Vono-Toniolo J, Rubio IGS, Knobel M, Possato RF, Targovnik HM, Kopp P, Medeiros-Neto G. The p.A2215D thyroglobulin gene mutation leads to deficient synthesis and secretion of the mutated protein and congenital hypothyroidism with wide phenotype variation. J Clin Endocrinol Metab 2009; 94:2938-44. [PMID: 19509106 DOI: 10.1210/jc.2009-0150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Thyroglobulin (TG) is a large glycoprotein and functions as a matrix for thyroid hormone synthesis. TG gene mutations give rise to goitrous congenital hypothyroidism (CH) with considerable phenotype variation. OBJECTIVES The aim of the study was to report the genetic screening of 15 patients with CH due to TG gene mutations and to perform functional analysis of the p.A2215D mutation. DESIGN Clinical evaluation and DNA sequencing of the TG gene were performed in all patients. TG expression was analyzed in the goitrous tissue of one patient. Human cells were transfected with expression vectors containing mutated and wild-type human TG cDNA. RESULTS All patients had an absent rise of serum TG after stimulation with recombinant human TSH. Sequence analysis revealed three previously described mutations (p.A2215D, p.R277X, and g.IVS30+1G>T), and two novel mutations (p.Q2142X and g.IVS46-1G>A). Two known (g.IVS30+1G/p.A2215D and p.A2215D/p.R277X) and one novel (p.R277X/g.IVS46-1G>A) compound heterozygous constellations were also identified. Functional analysis indicated deficiency in TG synthesis, reduction of TG secretion, and retention of the mutant TG within the cell, leading to an endoplasmic reticulum storage disease, whereas small amounts of mutant TG were still secreted within the cell system. CONCLUSION All studied patients were either homozygous or heterozygous for TG gene mutations. Two novel mutations have been detected, and we show that TG mutation p.A2215D promotes the retention of TG within the endoplasmic reticulum and reduces TG synthesis and secretion, causing mild hypothyroidism. In the presence of sufficient iodine supply, some patients with TG mutations are able to compensate the impaired hormonogenesis and generate thyroid hormone.
Collapse
Affiliation(s)
- Viviane Pardo
- Thyroid Unit (LIM 25), University of São Paulo Medical School, Av. Dr. Arnaldo 455-4A, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Lee J, Wang X, Di Jeso B, Arvan P. The cholinesterase-like domain, essential in thyroglobulin trafficking for thyroid hormone synthesis, is required for protein dimerization. J Biol Chem 2009; 284:12752-61. [PMID: 19276074 DOI: 10.1074/jbc.m806898200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal cholinesterase-like (ChEL) domain of thyroglobulin (Tg) has been identified as critically important in Tg export from the endoplasmic reticulum. In a number of human kindreds suffering from congenital hypothyroidism, and in the cog congenital goiter mouse and rdw rat dwarf models, thyroid hormone synthesis is inhibited because of mutations in the ChEL domain that block protein export from the endoplasmic reticulum. We hypothesize that Tg forms homodimers through noncovalent interactions involving two predicted alpha-helices in each ChEL domain that are homologous to the dimerization helices of acetylcholinesterase. This has been explored through selective epitope tagging of dimerization partners and by inserting an extra, unpaired Cys residue to create an opportunity for intermolecular disulfide pairing. We show that the ChEL domain is necessary and sufficient for Tg dimerization; specifically, the isolated ChEL domain can dimerize with full-length Tg or with itself. Insertion of an N-linked glycan into the putative upstream dimerization helix inhibits homodimerization of the isolated ChEL domain. However, interestingly, co-expression of upstream Tg domains, either in cis or in trans, overrides the dimerization defect of such a mutant. Thus, although the ChEL domain provides a nidus for Tg dimerization, interactions of upstream Tg regions with the ChEL domain actively stabilizes the Tg dimer complex for intracellular transport.
Collapse
Affiliation(s)
- Jaemin Lee
- Cell and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
36
|
Lee J, Di Jeso B, Arvan P. The cholinesterase-like domain of thyroglobulin functions as an intramolecular chaperone. J Clin Invest 2008; 118:2950-8. [PMID: 18596923 DOI: 10.1172/jci35164] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/21/2008] [Indexed: 11/17/2022] Open
Abstract
Thyroid hormonogenesis requires secretion of thyroglobulin, a protein comprising Cys-rich regions I, II, and III (referred to collectively as region I-II-III) followed by a cholinesterase-like (ChEL) domain. Secretion of mature thyroglobulin requires extensive folding and glycosylation in the ER. Multiple reports have linked mutations in the ChEL domain to congenital hypothyroidism in humans and rodents; these mutations block thyroglobulin from exiting the ER and induce ER stress. We report that, in a cell-based system, mutations in the ChEL domain impaired folding of thyroglobulin region I-II-III. Truncated thyroglobulin devoid of the ChEL domain was incompetent for cellular export; however, a recombinant ChEL protein ("secretory ChEL") was secreted efficiently. Coexpression of secretory ChEL with truncated thyroglobulin increased intracellular folding, promoted oxidative maturation, and facilitated secretion of region I-II-III, indicating that the ChEL domain may function as an intramolecular chaperone. Additionally, we found that the I-II-III peptide was cosecreted and physically associated with secretory ChEL. A functional ChEL domain engineered to be retained intracellularly triggered oxidative maturation of I-II-III but coretained I-II-III, indicating that the ChEL domain may also function as a molecular escort. These insights into the role of the ChEL domain may represent potential therapeutic targets in the treatment of congenital hypothyroidism.
Collapse
Affiliation(s)
- Jaemin Lee
- Division of Metabolism, Endocrinology and Diabetes and Program of Cellular and Molecular Biology, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0678, USA
| | | | | |
Collapse
|