1
|
El-Jaick KB, Ribeiro-Alves M, Soares MVG, Araujo GEFD, Pereira GRC, Rolla VC, Mesquita JFD, De Castro L. Homozygotes NAT2*5B slow acetylators are highly associated with hepatotoxicity induced by anti-tuberculosis drugs. Mem Inst Oswaldo Cruz 2022; 117:e210328. [PMID: 35588539 PMCID: PMC9049236 DOI: 10.1590/0074-02760210328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Distinct N-acetyltransferase 2 (NAT2) slow acetylators genotypes have been associated with a higher risk to develop anti-tuberculosis drug-induced hepatotoxicity (DIH). However, studies have not pointed the relevance of different acetylation phenotypes presented by homozygotes and compound heterozygotes slow acetylators on a clinical basis. OBJECTIVES This study aimed to investigate the association between NAT2 genotypes and the risk of developing DIH in Brazilian patients undergoing tuberculosis treatment, focusing on the discrimination of homozygotes and compound heterozygotes slow acetylators. METHODS/FINDINGS The frequency of NAT2 genotypes was analysed by DNA sequencing in 162 patients undergoing tuberculosis therapy. The mutation analyses revealed 15 variants, plus two new NAT2 mutations, that computational simulations predicted to cause structural perturbations in the protein. The multivariate statistical analysis revealed that carriers of NAT2*5/*5 slow acetylator genotype presented a higher risk of developing anti-tuberculosis DIH, on a clinical basis, when compared to the compound heterozygotes presenting NAT2*5 and any other slow acetylator haplotype [aOR 4.97, 95% confidence interval (CI) 1.47-16.82, p = 0.01]. CONCLUSION These findings suggest that patients with TB diagnosis who present the NAT2*5B/*5B genotype should be properly identified and more carefully monitored until treatment outcome in order to prevent the occurrence of anti-tuberculosis DIH.
Collapse
Affiliation(s)
- Kenia Balbi El-Jaick
- Universidade Federal do Estado do Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | - Joelma Freire De Mesquita
- Universidade Federal do Estado do Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Brazil
| | | |
Collapse
|
2
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
3
|
Pokhrel R, Tang T, Holub JM. Monitoring ligand-mediated helix 12 transitions within the human estrogen receptor α using bipartite tetracysteine display. Org Biomol Chem 2020; 18:6063-6071. [PMID: 32724950 DOI: 10.1039/d0ob01234c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogen receptor α ligand-binding domains (ERα-LBD) expressing tetracysteine motifs bind FlAsH-EDT2 upon transition of helix 12 (H12) to a folded state. Changes in fluorescence intensity allowed surveillance of ligand-mediated H12 transitions and facilitated the determination of FlAsH association rates (kon) and apparent equilibrium dissociation constants (Kapp) to ERα-LBDs in the presence of estrogenic ligands.
Collapse
Affiliation(s)
- Ranju Pokhrel
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
4
|
Dellafiora L, Oswald IP, Dorne JL, Galaverna G, Battilani P, Dall'Asta C. An in silico structural approach to characterize human and rainbow trout estrogenicity of mycotoxins: Proof of concept study using zearalenone and alternariol. Food Chem 2019; 312:126088. [PMID: 31911350 DOI: 10.1016/j.foodchem.2019.126088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The mycotoxins zearalenone and alternariol may contaminate food and feed raising toxicological concerns due to their estrogenicity. Inter-species differences in their toxicokinetics and toxicodynamics may occur depending on evolution of taxa-specific traits. As a proof of principle, this manuscript investigates the comparative toxicodynamics of zearalenone, its metabolites (alpha-zearalenol and beta-zearalenol), and alternariol with regards to estrogenicity in humans and rainbow trout. An in silico structural approach based on docking simulations, pharmacophore modeling and molecular dynamics was applied and computational results were analyzed in comparison with available experimental data. The differences of estrogenicity among species of zearalenone and its metabolites have been structurally explained. Also, the low estrogenicity of alternariol in trout has been characterized here for the first time. This approach can provide a powerful tool for the characterization of interspecies differences in mycotoxin toxicity for a range of protein targets and relevant compounds for the food- and feed-safety area.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124 Parma, Italy.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | | | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124 Parma, Italy.
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
5
|
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play an essential role in a multitude of physiological processes as well as diseases, rendering them attractive drug targets. Crystal structures revealed the binding site of NRs to be buried in the core of the protein, with no obvious route for ligands to access this cavity. The process of ligand binding is known to be an often-neglected contributor to the efficacy of drug candidates and is thought to influence the selectivity and specificity of NRs. While experimental methods generally fail to highlight the dynamic processes of ligand access or egress on the atomistic scale, computational methods have provided fundamental insight into the pathways connecting the buried binding pocket to the surrounding environment. Methods based on molecular dynamics (MD) and Monte Carlo simulations have been applied to identify pathways and quantify their capability to transport ligands. Here, we systematically review findings of more than 20 years of research in the field, including the applied methodology and controversies. Further, we establish a unified nomenclature to describe the pathways with respect to their location relative to protein secondary structure elements and summarize findings relevant to drug design. Lastly, we discuss the effect of NR interaction partners such as coactivators and corepressors, as well as mutations on the pathways.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
6
|
Okafor CD, Colucci JK, Ortlund EA. Ligand-Induced Allosteric Effects Governing SR Signaling. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Feher VA, Schiffer JM, Mermelstein DJ, Mih N, Pierce LCT, McCammon JA, Amaro RE. Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant. Biophys J 2019; 116:205-214. [PMID: 30606449 PMCID: PMC6349996 DOI: 10.1016/j.bpj.2018.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/23/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states. The path observed for benzene egress is a multistep ligand migration from the buried cavity to ultimate release through an opening between the F/G-, H-, and I-helices and requires a number of cooperative multiresidue and secondary-structure rearrangements within the C-terminal domain of L99A. These rearrangements are identical to those observed along the ground state to excited state transitions characterized by molecular dynamic simulations run on the Anton supercomputer. Analyses of the molecular properties of the residues lining the egress path suggest that protein surface electrostatic potential may play a role in the release mechanism. Simulations of wild-type T4 lysozyme also reveal that benzene-egress-associated dynamics in the L99A mutant are potentially exaggerations of the substrate-processivity-related dynamics of the wild type.
Collapse
Affiliation(s)
| | | | - Daniel J Mermelstein
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Nathan Mih
- Department of Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California
| | | | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California.
| |
Collapse
|
8
|
Fanning SW, Jeselsohn R, Dharmarajan V, Mayne CG, Karimi M, Buchwalter G, Houtman R, Toy W, Fowler CE, Han R, Lainé M, Carlson KE, Martin TA, Nowak J, Nwachukwu JC, Hosfield DJ, Chandarlapaty S, Tajkhorshid E, Nettles KW, Griffin PR, Shen Y, Katzenellenbogen JA, Brown M, Greene GL. The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. eLife 2018; 7:e37161. [PMID: 30489256 PMCID: PMC6335054 DOI: 10.7554/elife.37161] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Acquired resistance to endocrine therapy remains a significant clinical burden for breast cancer patients. Somatic mutations in the ESR1 (estrogen receptor alpha (ERα)) gene ligand-binding domain (LBD) represent a recognized mechanism of acquired resistance. Antiestrogens with improved efficacy versus tamoxifen might overcome the resistant phenotype in ER +breast cancers. Bazedoxifene (BZA) is a potent antiestrogen that is clinically approved for use in hormone replacement therapies. We found that BZA possesses improved inhibitory potency against the Y537S and D538G ERα mutants compared to tamoxifen and has additional inhibitory activity in combination with the CDK4/6 inhibitor palbociclib. In addition, comprehensive biophysical and structural biology studies show BZA's selective estrogen receptor degrading (SERD) properties that override the stabilizing effects of the Y537S and D538G ERα mutations.
Collapse
Affiliation(s)
- Sean W Fanning
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUnited States
| | - Rinath Jeselsohn
- Center for Functional Cancer EpigeneticsDana-Farber Cancer InstituteBostonUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | | | - Christopher G Mayne
- Department of Biochemistry, College of Medicine, Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M UniversityTexasUnited States
| | - Gilles Buchwalter
- Center for Functional Cancer EpigeneticsDana-Farber Cancer InstituteBostonUnited States
| | - René Houtman
- PamGene International BV‘s-HertogenboschThe Netherlands
| | - Weiyi Toy
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Colin E Fowler
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUnited States
| | - Ross Han
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUnited States
| | - Muriel Lainé
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUnited States
| | - Kathryn E Carlson
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Teresa A Martin
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Jason Nowak
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Jerome C Nwachukwu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteJupiterUnited States
| | - David J Hosfield
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUnited States
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Emad Tajkhorshid
- Department of Biochemistry, College of Medicine, Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Kendall W Nettles
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Patrick R Griffin
- Department of Molecular MedicineThe Scripps Research InstituteJupiterUnited States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M UniversityTexasUnited States
| | | | - Myles Brown
- Center for Functional Cancer EpigeneticsDana-Farber Cancer InstituteBostonUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Geoffrey L Greene
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoUnited States
| |
Collapse
|
9
|
Eisold A, Labudde D. Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules 2018; 23:molecules23071690. [PMID: 29997341 PMCID: PMC6100600 DOI: 10.3390/molecules23071690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Micro-pollutants such as 17β-Estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been observed. Aptamers are established as a possible detection tool, but the underlying ligand binding is largely unexplored. In this study, a previously described 35-mer E2-specific aptamer was used to analyse the binding characteristics between E2 and the aptamer with a MD simulation in an aqueous medium. Because there is no 3D structure information available for this aptamer, it was modeled using coarse-grained modeling method. The E2 ligand was positioned inside a potential binding area of the predicted aptamer structure, the complex was used for an 25 ns MD simulation, and the interactions were examined for each time step. We identified E2-specific bases within the interior loop of the aptamer and also demonstrated the influence of frequently underestimated water-mediated hydrogen bonds. The study contributes to the understanding of the behavior of ligands binding with aptamer structure in an aqueous solution. The developed workflow allows generating and examining further appealing ligand-aptamer complexes.
Collapse
Affiliation(s)
- Alexander Eisold
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
- Institute for Organic Chemistry, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| | - Dirk Labudde
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| |
Collapse
|
10
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
11
|
Jacquot Y, Spaggiari D, Schappler J, Lesniewska E, Rudaz S, Leclercq G. ERE-dependent transcription and cell proliferation: Independency of these two processes mediated by the introduction of a sulfone function into the weak estrogen estrothiazine. Eur J Pharm Sci 2017; 109:169-181. [PMID: 28754571 DOI: 10.1016/j.ejps.2017.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
The synthetic coumestrol derivative 6,12-dihydro-3-methoxy-1-benzopyrano[3,4-b][1,4]benzothiazin-6-one (estrothiazine, ESTZ) has been identified as a weak estrogen receptor α (ERα) ligand unable to compete with tritiated estradiol. The biological activity of this compound, supported by a methoxy group in position 3, seems mainly to result from its capacity to activate ERα dimerization without any participation of coactivators. In support of this view and referring to conventional estrogens, an ESTZ metabolism study conducted with hepatic human microsomes failed to provide any argument in favour of an estrogenic activity dependent on a metabolic conversion of the compound into hydroxylated metabolites with strong receptor activation ability. Interestingly, we failed to detect any oxidation of the sulfur atom of the compound. In the light of pharmacological literature data concerning sulfonylation, we assessed ERα-mediated activities generated by two sulfonylated ESTZ derivatives in which the methoxy group that plays a key role in its mechanism of action was maintained or removed. Sulfonylated ESTZ, even in its demethoxylated form, induced ERE-mediated transcriptions in MCF-7 breast cancer cells, without affecting the ERα turnover rate. In contrast to ESTZ, this compound failed to enhance the proliferation of ERα-positive breast cancer cells, suggesting that its sulfone function confers upon the receptor a capacity to elicit some of the known characteristics associated with estrogenic responses. Moreover, we demonstrated that this sulfone may contribute to ERα dimerization without any requirement of the methoxy group. Nevertheless, it seems to cooperate with this group, as reflected by a weak ability of the sulfonylated form of ESTZ to compete with tritiated estradiol for ERα-binding. Assessment of the docking of this compound within the ligand-binding domain of the receptor by molecular dynamics provided an explanation for this observation since the sulfone is engulfed in a small hydrophobic pocket involving the residues Leu-346, Leu-349, Ala-350 and Leu-384, also known to recruit coactivators. This work not only reports the sulfone functional group as a pharmacophore for estrogenic activity, but also opens new perspectives for the development of estrogenic molecules with therapeutic purpose and devoid of proliferative side effects.
Collapse
Affiliation(s)
- Yves Jacquot
- Sorbonne University - UPMC Univ Paris 06, Ecole Normale Supérieure, PSL Research University, Département de Chimie, CNRS UMR 7203 LBM, 4 Place Jussieu, 75005 Paris, France.
| | - Dany Spaggiari
- Section des Sciences Pharmaceutiques (EPGL), University of Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Julie Schappler
- Section des Sciences Pharmaceutiques (EPGL), University of Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Eric Lesniewska
- ICB, CNRS UMR 6303, University de Bourgogne Franche-Comté, 9, avenue Savary, 21078 Dijon, France
| | - Serge Rudaz
- Section des Sciences Pharmaceutiques (EPGL), University of Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Guy Leclercq
- Laboratory J.C. Heuson de Cancérologie Mammaire, Institut Jules Bordet, 1, rue Héger Bordet, Brussels 1000, Belgium.
| |
Collapse
|
12
|
Souza PCT, Textor LC, Melo DC, Nascimento AS, Skaf MS, Polikarpov I. An alternative conformation of ERβ bound to estradiol reveals H12 in a stable antagonist position. Sci Rep 2017; 7:3509. [PMID: 28615710 PMCID: PMC5471280 DOI: 10.1038/s41598-017-03774-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/12/2017] [Indexed: 02/04/2023] Open
Abstract
The natural ligand 17β-estradiol (E2) is so far believed to induce a unique agonist-bound active conformation in the ligand binding domain (LBD) of the estrogen receptors (ERs). Both subtypes, ERα and ERβ, are transcriptionally activated in the presence of E2 with ERβ being somewhat less active than ERα under similar conditions. The molecular bases for this intriguing behavior are mainly attributed to subtype differences in the amino-terminal domain of these receptors. However, structural details that confer differences in the molecular response of ER LBDs to E2 still remain elusive. In this study, we present a new crystallographic structure of the ERβ LBD bound to E2 in which H12 assumes an alternative conformation that resembles antagonist ERs structures. Structural observations and molecular dynamics simulations jointly provide evidence that alternative ERβ H12 position could correspond to a stable conformation of the receptor under physiological pH conditions. Our findings shed light on the unexpected role of LBD in the lower functional response of ERβ subtype.
Collapse
Affiliation(s)
- Paulo C T Souza
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box, 6154, Campinas, SP, Brazil.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Larissa C Textor
- São Carlos Institute of Physics, University of São Paulo - USP, P.O. Box 396, São Carlos, SP, Brazil
| | - Denise C Melo
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box, 6154, Campinas, SP, Brazil
| | - Alessandro S Nascimento
- São Carlos Institute of Physics, University of São Paulo - USP, P.O. Box 396, São Carlos, SP, Brazil
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box, 6154, Campinas, SP, Brazil.
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo - USP, P.O. Box 396, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Wu Y, Doering JA, Ma Z, Tang S, Liu H, Zhang X, Wang X, Yu H. Identification of androgen receptor antagonists: In vitro investigation and classification methodology for flavonoid. CHEMOSPHERE 2016; 158:72-79. [PMID: 27258897 DOI: 10.1016/j.chemosphere.2016.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
A tremendous gap exists between the number of potential endocrine disrupting chemicals (EDCs) possibly in the environment and the limitation of traditional regulatory testing. In this study, the anti-androgenic potencies of 21 flavonoids were analyzed in vitro, and another 32 flavonoids from the literature were selected as additional chemicals. Molecular dynamic simulations were employed to obtain four different separation approaches based on the different behaviors of ligands and receptors during the process of interaction. Specifically, ligand-receptor complex which highlighted the discriminating features of ligand escape or retention via "mousetrap" mechanism, hydrogen bonds formed during simulation times, ligand stability and the stability of the helix-12 of the receptor were investigated. Together, a methodology was generated that 87.5% of flavonoids could be discriminated as active versus inactive antagonists, and over 90% inactive antagonists could be filtered out before QSAR study. This methodology could be used as a "proof of concept" to identify inactive anti-androgenic flavonoids, as well could be beneficial for rapid risk assessment and regulation of multiple new chemicals for androgenicity.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jon A Doering
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
14
|
Ng HL. Simulations reveal increased fluctuations in estrogen receptor-alpha conformation upon antagonist binding. J Mol Graph Model 2016; 69:72-7. [DOI: 10.1016/j.jmgm.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/15/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
15
|
Kannan S, Lane DP, Verma CS. Long range recognition and selection in IDPs: the interactions of the C-terminus of p53. Sci Rep 2016; 6:23750. [PMID: 27030593 PMCID: PMC4814905 DOI: 10.1038/srep23750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022] Open
Abstract
The C-terminal domain of p53 is an extensively studied IDP, interacting with different partners through multiple distinct conformations. To explore the interplay between preformed structural elements and intrinsic fluctuations in its folding and binding we combine extensive atomistic equilibrium and non-equilibrium simulations. We find that the free peptide segment rapidly interconverts between ordered and disordered states with significant populations of the conformations that are seen in the complexed states. The underlying global folding-binding landscape points to a synergistic mechanism in which recognition is dictated via long range electrostatic recognition which results in the formation of reactive structures as far away as 10 Å, and binding proceeds with the steering of selected conformations followed by induced folding at the target surface or within a close range.
Collapse
Affiliation(s)
| | - David P Lane
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
16
|
Edman K, Hosseini A, Bjursell MK, Aagaard A, Wissler L, Gunnarsson A, Kaminski T, Köhler C, Bäckström S, Jensen TJ, Cavallin A, Karlsson U, Nilsson E, Lecina D, Takahashi R, Grebner C, Geschwindner S, Lepistö M, Hogner AC, Guallar V. Ligand Binding Mechanism in Steroid Receptors: From Conserved Plasticity to Differential Evolutionary Constraints. Structure 2015; 23:2280-2290. [DOI: 10.1016/j.str.2015.09.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
|
17
|
Tsuji M. A ligand-entry surface of the nuclear receptor superfamily consists of the helix H3 of the ligand-binding domain. J Mol Graph Model 2015; 62:262-275. [PMID: 26544573 DOI: 10.1016/j.jmgm.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023]
Abstract
We successfully simulated receptor-ligand complex holo-form formation using the human retinoid X receptor-α ligand-binding domain (LBD) and its natural ligand, 9-cis retinoic acid. The success of this simulation was strongly dependent on the findings for an initial structure between the apo-LBD and the ligand as well as the discovery of the driving forces underlying the ligand-trapping and subsequent ligand-induction processes. Here, we would like to propose the "helix H3 three-point initial-binding hypothesis," which was instrumental in simulating the nuclear receptor (NR) superfamily. Using this hypothesis, we also succeeded in simulating holo-form formation of the human retinoic acid receptor-γ LBD and its natural ligand, all-trans retinoic acid. It is hoped that this hypothesis will facilitate novel understanding of both the ligand-trapping mechanism and the simultaneous C-terminal folding process in NR LBDs, as well as provide a new approach to drug design using a structure-based perspective.
Collapse
Affiliation(s)
- Motonori Tsuji
- Institute of Molecular Function, 2-105-14 Takasu, Misato-shi, Saitama 341-0037, Japan.
| |
Collapse
|
18
|
Hodge BA, Wen Y, Riley LA, Zhang X, England JH, Harfmann BD, Schroder EA, Esser KA. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle 2015; 5:17. [PMID: 26000164 PMCID: PMC4440511 DOI: 10.1186/s13395-015-0039-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
Background Skeletal muscle is a major contributor to whole-body metabolism as it serves as a depot for both glucose and amino acids, and is a highly metabolically active tissue. Within skeletal muscle exists an intrinsic molecular clock mechanism that regulates the timing of physiological processes. A key function of the clock is to regulate the timing of metabolic processes to anticipate time of day changes in environmental conditions. The purpose of this study was to identify metabolic genes that are expressed in a circadian manner and determine if these genes are regulated downstream of the intrinsic molecular clock by assaying gene expression in an inducible skeletal muscle-specific Bmal1 knockout mouse model (iMS-Bmal1−/−). Methods We used circadian statistics to analyze a publicly available, high-resolution time-course skeletal muscle expression dataset. Gene ontology analysis was utilized to identify enriched biological processes in the skeletal muscle circadian transcriptome. We generated a tamoxifen-inducible skeletal muscle-specific Bmal1 knockout mouse model and performed a time-course microarray experiment to identify gene expression changes downstream of the molecular clock. Wheel activity monitoring was used to assess circadian behavioral rhythms in iMS-Bmal1−/− and control iMS-Bmal1+/+ mice. Results The skeletal muscle circadian transcriptome was highly enriched for metabolic processes. Acrophase analysis of circadian metabolic genes revealed a temporal separation of genes involved in substrate utilization and storage over a 24-h period. A number of circadian metabolic genes were differentially expressed in the skeletal muscle of the iMS-Bmal1−/− mice. The iMS-Bmal1−/− mice displayed circadian behavioral rhythms indistinguishable from iMS-Bmal1+/+ mice. We also observed a gene signature indicative of a fast to slow fiber-type shift and a more oxidative skeletal muscle in the iMS-Bmal1−/− model. Conclusions These data provide evidence that the intrinsic molecular clock in skeletal muscle temporally regulates genes involved in the utilization and storage of substrates independent of circadian activity. Disruption of this mechanism caused by phase shifts (that is, social jetlag) or night eating may ultimately diminish skeletal muscle’s ability to efficiently maintain metabolic homeostasis over a 24-h period. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0039-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian A Hodge
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Lance A Riley
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Xiping Zhang
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Jonathan H England
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Brianna D Harfmann
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Elizabeth A Schroder
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| | - Karyn A Esser
- Department of Physiology, College of Medicine, University of Kentucky, MS 508, 800 Rose Street, Lexington, KY 40536 USA ; Center for Muscle Biology, University of Kentucky, 800 Rose Street, Lexington, KY 40536 USA
| |
Collapse
|
19
|
Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:13403-20. [DOI: 10.1039/c5cp00327j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ERα dimer formation reshapes the helix 12 conformational landscape and is a leading factor for the activation helix conformation.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
- Micar21 Ltd
| |
Collapse
|
20
|
Rastinejad F, Ollendorff V, Polikarpov I. Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. Trends Biochem Sci 2014; 40:16-24. [PMID: 25435400 DOI: 10.1016/j.tibs.2014.10.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
The crystal structures of three nuclear receptor (NR) complexes have emerged to reveal their multidomain architectures on DNA. These pictures provide unprecedented views of interfacial couplings between the DNA-binding domains (DBDs) and ligand-binding domains (LBDs). The detailed pictures contrast with previous interpretations of low-resolution electron microscopy (EM) and small angle X-ray scattering (SAXS) data, which had suggested a common architecture with noninteracting DBDs and LBDs. Revisiting both historical and recent interpretations of NR architecture, we invoke new principles underlying higher-order quaternary organization and the allosteric transmission of signals between domains. We also discuss how NR architectures are being probed in living cells to understand dimerization and DNA-binding events in real time.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Sanford-Burnham Medical Research Institute, Metabolic Disease Program, 6400 Sanger Road, Lake Nona, FL 32827, USA.
| | - Vincent Ollendorff
- INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060 Montpellier Université Montpellier 1, F-34000 Montpellier - Université Montpellier 2, F-34000 Montpellier, France
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
21
|
Batista MRB, Martínez L. Dynamics of nuclear receptor Helix-12 switch of transcription activation by modeling time-resolved fluorescence anisotropy decays. Biophys J 2014; 105:1670-80. [PMID: 24094408 DOI: 10.1016/j.bpj.2013.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022] Open
Abstract
Nuclear hormone receptors (NRs) are major targets for pharmaceutical development. Many experiments demonstrate that their C-terminal Helix (H12) is more flexible in the ligand-binding domains (LBDs) without ligand, this increased mobility being correlated with transcription repression and human diseases. Crystal structures have been obtained in which the H12 is extended, suggesting the possibility of large amplitude H12 motions in solution. However, these structures were interpreted as possible crystallographic artifacts, and thus the microscopic nature of H12 movements is not well known. To bridge the gap between experiments and molecular models and provide a definitive picture of H12 motions in solution, extensive molecular dynamics simulations of the peroxisome proliferator-activated receptor-γ LBD, in which the H12 was bound to a fluorescent probe, were performed. A direct comparison of the modeled anisotropy decays to time-resolved fluorescence anisotropy experiments was obtained. It is shown that the decay rates are dependent on the interactions of the probe with the surface of the protein, and display little correlation with the flexibility of the H12. Nevertheless, for the probe to interact with the surface of the LBD, the H12 must be folded over the body of the LBD. Therefore, the molecular mobility of the H12 should preserve the globularity of the LBD, so that ligand binding and dissociation occur by diffusion through the surface of a compact receptor. These results advance the comprehension of both ligand-bound and ligand-free receptor structures in solution, and also guide the interpretation of time-resolved anisotropy decays from a molecular perspective, particularly by the use of simulations.
Collapse
Affiliation(s)
- Mariana R B Batista
- Institute of Chemistry, State University of Campinas, Campinas, SP, Brazil; Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
22
|
Souza PCT, Puhl AC, Martínez L, Aparício R, Nascimento AS, Figueira ACM, Nguyen P, Webb P, Skaf MS, Polikarpov I. Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 2014; 28:534-45. [PMID: 24552590 DOI: 10.1210/me.2013-1359] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.
Collapse
Affiliation(s)
- P C T Souza
- Institute of Chemistry (P.C.T.S., L.M., R.A., M.S.S.), State University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil; Institute of Physics of São Carlos (A.C.P., A.S.N., P.W., I.P.), University of São Paulo-USP, São Carlos, Sao Paulo, Brazil; National Laboratory of Biosciences (A.C.M.F.), CNPEM, Campinas, Sao Paulo, Brazil; University of California Medical Center (P.N.), Diabetes Center, San Francisco, California; and Genomic Medicine (P.W.), Houston Methodist Research Institute, Houston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhuang S, Bao L, Linhananta A, Liu W. Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. J Mol Graph Model 2013; 44:155-60. [PMID: 23831995 DOI: 10.1016/j.jmgm.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/28/2022]
Abstract
Numerous ligands bind tightly to thyroid hormone receptors (TRs), and exploring the binding and dissociation of these ligands from TRs will increase our understanding of their mechanisms of action. TRs form transcriptionally active heterodimers with retinoid X receptor (RXR); whether this heterodimerization affects ligand dissociation is poorly understood. To investigate the effects of heterodimerization, classical molecular dynamics (MD) simulations and random acceleration molecular dynamics (RAMD) simulations were performed to probe the dissociation of triiodothyronine (T3) from a TRα-RXR ligand binding domain (LBD) heterodimer and the TRα and TRβ LBDs at the atomic level. Seven (I-VII) dissociation pathways were identified for T3. Heterodimerization inhibited pathway I in the TRα-RXR LBD heterodimer, which may block the proper orientation of the helix 12 (H12), therefore affecting the biological functions of TRs. Upon TR heterodimerization, the second most dominant dissociation pathway switched from pathway IV for TRα LBD to pathway II for TRα-RXR LBD. No significant effects of TR heterodimerization were observed on the dominant dissociation pathway III that was located between H3, the H1-H2 loop and the β-sheet. Our study revealed that TR heterodimerization significantly affects T3 dissociation, which provides important information for the study of other TR ligands.
Collapse
Affiliation(s)
- Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | | | | | | |
Collapse
|
24
|
Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex. Protein Eng Des Sel 2013; 26:325-33. [DOI: 10.1093/protein/gzt004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Li W, Fu J, Cheng F, Zheng M, Zhang J, Liu G, Tang Y. Unbinding pathways of GW4064 from human farnesoid X receptor as revealed by molecular dynamics simulations. J Chem Inf Model 2012; 52:3043-52. [PMID: 23101941 DOI: 10.1021/ci300459k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Farnesoid X receptor (FXR, NR1H4) is a member of a nuclear receptor superfamily, which plays important roles in bile acid homeostasis, lipoprotein and glucose metabolism, and hepatic regeneration. GW4064 is a potent and selective FXR agonist and has become a tool compound to probe the physiological functions of FXR. Until now, the mechanism of GW4064 entering and leaving the FXR pocket is still poorly understood. Here, we report a computational study of GW4064 unbinding pathways from FXR by using several molecular dynamics (MD) simulation techniques. Based on the crystal structure of FXR in complex with GW4064, conventional MD was first used to refine the binding and check the stability of GW4064 in the FXR pocket. Random acceleration MD simulations were then performed to explore the possible unbinding pathways of GW4064 from FXR. Four main pathway clusters were found, among which three subpathways, namely Paths 2A, 2B, and 1B, were observed most frequently. Multiple steered MD simulations were further employed to estimate the maximum rupture force and the sum of the forces and to characterize the intermediate states of the ligand unbinding process. By comparing the average force profiles and structural changes, Paths 2A and 2B were identified to be the most favorable unbinding pathways. The former is located between the H1-H2 loop and the H5-H6 loop, and the latter is located in the cleft formed by the H5-H6 loop, H6, and H7. Moreover, the residues lining the pathways were analyzed for their roles in ligand unbinding. Based on our results, the possible structural modification strategies on GW4064 were also proposed.
Collapse
Affiliation(s)
- Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Spyrakis* F, Barril* X, Luque* FJ. Molecular Dynamics: a Tool to Understand Nuclear Receptors. COMPUTATIONAL APPROACHES TO NUCLEAR RECEPTORS 2012. [DOI: 10.1039/9781849735353-00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Alemany M. Do the interactions between glucocorticoids and sex hormones regulate the development of the metabolic syndrome? Front Endocrinol (Lausanne) 2012; 3:27. [PMID: 22649414 PMCID: PMC3355885 DOI: 10.3389/fendo.2012.00027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/06/2012] [Indexed: 12/14/2022] Open
Abstract
The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic, or defense responses are practically immediate, the procrastinated response do not seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein, and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release). These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e., levels) of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment). Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause) again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Department of Nutrition and Food Science, University of Barcelona Barcelona, Spain.
| |
Collapse
|
28
|
Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: the basis for designing a new class of selective estrogen receptor modulators. J Med Chem 2011; 54:3575-80. [PMID: 21473635 PMCID: PMC3112352 DOI: 10.1021/jm200192y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective estrogen receptor modulators, such as 17β-estradiol derivatives bound to metal complexes, have been synthesized as targeted probes for the diagnosis and treatment of breast cancer. Here, we report the detailed 3D structure of estrogen receptor α ligand-binding domain (ERα-LBD) bound with a novel estradiol-derived metal complex, estradiol-pyridine tetra acetate europium(III), at 2.6 Å resolution. This structure provides important information pertinent to the design of novel functional ERα targeted probes for clinical applications.
Collapse
Affiliation(s)
- Min-Jun Li
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orly Dym
- Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shira Albeck
- Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Pais
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadassa Degani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joel L. Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
Souza PCT, Barra GB, Velasco LFR, Ribeiro ICJ, Simeoni LA, Togashi M, Webb P, Neves FAR, Skaf MS, Martínez L, Polikarpov I. Helix 12 dynamics and thyroid hormone receptor activity: experimental and molecular dynamics studies of Ile280 mutants. J Mol Biol 2011; 412:882-93. [PMID: 21530542 DOI: 10.1016/j.jmb.2011.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/28/2023]
Abstract
Nuclear hormone receptors (NRs) form a family of transcription factors that mediate cellular responses initiated by hormone binding. It is generally recognized that the structure and dynamics of the C-terminal helix 12 (H12) of NRs' ligand binding domain (LBD) are fundamental to the recognition of coactivators and corepressors that modulate receptor function. Here we study the role of three mutations in the I280 residue of H12 of thyroid hormone receptors using site-directed mutagenesis, functional assays, and molecular dynamics simulations. Although residues at position 280 do not interact with coactivators or with the ligand, we show that its mutations can selectively block coactivator and corepressor binding, and affect hormone binding affinity differently. Molecular dynamics simulations suggest that ligand affinity is reduced by indirectly displacing the ligand in the binding pocket, facilitating water penetration and ligand destabilization. Mutations I280R and I280K link H12 to the LBD by forming salt bridges with E457 in H12, stabilizing H12 in a conformation that blocks both corepressor and coactivator recruitment. The I280M mutation, in turn, blocks corepressor binding, but appears to enhance coactivator affinity, suggesting stabilization of H12 in agonist conformation.
Collapse
Affiliation(s)
- Paulo C T Souza
- Institute of Chemistry, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shyu C, Cavileer TD, Nagler JJ, Ytreberg FM. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens. Toxicol Appl Pharmacol 2011; 250:322-6. [PMID: 21075131 PMCID: PMC3022107 DOI: 10.1016/j.taap.2010.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/19/2010] [Accepted: 11/05/2010] [Indexed: 11/21/2022]
Abstract
Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17β to the four rainbow trout ER isoforms with that of three known environmental estrogens 17α-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ERα subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17β, bisphenol A binds less strongly to all four receptors, 17α-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the α subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.
Collapse
Affiliation(s)
- Conrad Shyu
- Department of Physics, University of Idaho, Moscow, Idaho 83844-0903
| | - Timothy D. Cavileer
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, 83844-3051
| | - James J. Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, 83844-3051
| | - F. Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, Idaho 83844-0903
| |
Collapse
|
31
|
Figueira ACM, Saidemberg DM, Souza PCT, Martínez L, Scanlan TS, Baxter JD, Skaf MS, Palma MS, Webb P, Polikarpov I. Analysis of agonist and antagonist effects on thyroid hormone receptor conformation by hydrogen/deuterium exchange. Mol Endocrinol 2010; 25:15-31. [PMID: 21106879 DOI: 10.1210/me.2010-0202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH3. We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes.
Collapse
Affiliation(s)
- A C M Figueira
- Universidade de São Paulo, Departamento Física e Informática, Instituto de Física, Avenida Trabalhador Sãocarlense 400, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mukherjee S, Mani S. Orphan nuclear receptors as targets for drug development. Pharm Res 2010; 27:1439-68. [PMID: 20372994 PMCID: PMC3518931 DOI: 10.1007/s11095-010-0117-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/04/2010] [Indexed: 12/31/2022]
Abstract
Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs.
Collapse
Affiliation(s)
- Subhajit Mukherjee
- Departments of Medicine, Genetics and Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 302-D1, Bronx, New York 10461, USA
| | - Sridhar Mani
- Departments of Medicine, Genetics and Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 302-D1, Bronx, New York 10461, USA
| |
Collapse
|
33
|
de Araujo AS, Martínez L, de Paula Nicoluci R, Skaf MS, Polikarpov I. Structural modeling of high-affinity thyroid receptor-ligand complexes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1523-36. [PMID: 20512645 DOI: 10.1007/s00249-010-0610-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 11/24/2022]
Abstract
Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors' ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.
Collapse
Affiliation(s)
- Alexandre Suman de Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av Trabalhador SaoCarlense 400, IFSC, Grupo de Cristalografia, PO Box 369, Sao Carlos, SP 13560-970, Brazil
| | | | | | | | | |
Collapse
|
34
|
Parravicini C, Abbracchio MP, Fantucci P, Ranghino G. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach. BMC STRUCTURAL BIOLOGY 2010; 10:8. [PMID: 20233425 PMCID: PMC2850907 DOI: 10.1186/1472-6807-10-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 03/16/2010] [Indexed: 01/21/2023]
Abstract
Background GPR17 is a hybrid G-protein-coupled receptor (GPCR) activated by two unrelated ligand families, extracellular nucleotides and cysteinyl-leukotrienes (cysteinyl-LTs), and involved in brain damage and repair. Its exploitment as a target for novel neuro-reparative strategies depends on the elucidation of the molecular determinants driving binding of purinergic and leukotrienic ligands. Here, we applied docking and molecular dynamics simulations (MD) to analyse the binding and the forced unbinding of two GPR17 ligands (the endogenous purinergic agonist UDP and the leukotriene receptor antagonist pranlukast from both the wild-type (WT) receptor and a mutant model, where a basic residue hypothesized to be crucial for nucleotide binding had been mutated (R255I) to Ile. Results MD suggested that GPR17 nucleotide binding pocket is enclosed between the helical bundle and extracellular loop (EL) 2. The driving interaction involves R255 and the UDP phosphate moiety. To support this hypothesis, steered MD experiments showed that the energy required to unbind UDP is higher for the WT receptor than for R255I. Three potential binding sites for pranlukast where instead found and analysed. In one of its preferential docking conformations, pranlukast tetrazole group is close to R255 and phenyl rings are placed into a subpocket highly conserved among GPCRs. Pulling forces developed to break polar and aromatic interactions of pranlukast were comparable. No differences between the WT receptor and the R255I receptor were found for the unbinding of pranlukast. Conclusions These data thus suggest that, in contrast to which has been hypothesized for nucleotides, the lack of the R255 residue doesn't affect the binding of pranlukast a crucial role for R255 in binding of nucleotides to GPR17. Aromatic interactions are instead likely to play a predominant role in the recognition of pranlukast, suggesting that two different binding subsites are present on GPR17.
Collapse
Affiliation(s)
- Chiara Parravicini
- Department of Pharmacological Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy
| | | | | | | |
Collapse
|
35
|
Burendahl S, Danciulescu C, Nilsson L. Ligand unbinding from the estrogen receptor: a computational study of pathways and ligand specificity. Proteins 2010; 77:842-56. [PMID: 19626711 DOI: 10.1002/prot.22503] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The estrogen receptor (ER) belongs to the nuclear receptor superfamily, whose members regulate important cellular events like development and metabolism. The ER functions as a transcription regulator and can be activated on ligand binding. Consequently, ligand binding and unbinding constitute fundamental processes in the regulation of genes. Even though both biochemical and structural data of ER are available, the actual mechanism of the ligand binding/unbinding remains elusive. We have performed computational studies on the unbinding mechanism of ERalpha and ERbeta, in the presence of cofactors and with ligands ranging from agonist to a full antagonist. Our results show that agonists or selective ER modulators can dissociate from the receptor through multiple pathways with minor effect on the receptor structure, whereas an antagonist requires larger conformational changes. Furthermore, a specific receptor/ligand combination can exhibit a pathway preference depending on character and conformation of both parts. Hence, it is possible that the binding/unbinding mechanism can explain ligand subtype specificity and thus have an impact in drug discovery.
Collapse
Affiliation(s)
- Sofia Burendahl
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
| | | | | |
Collapse
|
36
|
Martínez L, Souza PCT, Garcia W, Batista FAH, Portugal RV, Nascimento AS, Nakahira M, Lima LMTR, Polikarpov I, Skaf MS. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors. J Phys Chem B 2009; 114:1529-40. [DOI: 10.1021/jp911554p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Leandro Martínez
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Paulo C. T. Souza
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Wanius Garcia
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Fernanda A. H. Batista
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Rodrigo V. Portugal
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Alessandro S. Nascimento
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Marcel Nakahira
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Luis M. T. R. Lima
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Igor Polikarpov
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Munir S. Skaf
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
37
|
Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY. Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS One 2009; 4:e8470. [PMID: 20041122 PMCID: PMC2795779 DOI: 10.1371/journal.pone.0008470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/04/2009] [Indexed: 02/05/2023] Open
Abstract
Development of small molecular kinase inhibitors has recently been the central focus in drug discovery. And type II kinase inhibitors that target inactive conformation of kinases have attracted particular attention since their potency and selectivity are thought to be easier to achieve compared with their counterpart type I inhibitors that target active conformation of kinases. Although mechanisms underlying the interactions between type II inhibitors and their targeting kinases have been widely studied, there are still some challenging problems, for example, how type II inhibitors associate with or dissociate from their targeting kinases. In this investigation, steered molecular dynamics simulations have been carried out to explore the possible dissociation pathways of typical type II inhibitor imatinib from its targeting protein kinases c-Kit and Abl. The simulation results indicate that the most favorable pathway for imatinib dissociation corresponds to the ATP-channel rather than the relatively wider allosteric-pocket-channel, which is mainly due to the different van der Waals interaction that the ligand suffers during dissociation. Nevertheless, the direct reason comes from the fact that the residues composing the ATP-channel are more flexible than that forming the allosteric-pocket-channel. The present investigation suggests that a bulky hydrophobic head is unfavorable, but a large polar tail is allowed for a potent type II inhibitor. The information obtained here can be used to direct the discovery of type II kinase inhibitors.
Collapse
Affiliation(s)
- Li-Jun Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, West China Hospital, Chengdu, People's Republic of China
| | - Jun Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, West China Hospital, Chengdu, People's Republic of China
| | - Huan-Zhang Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, West China Hospital, Chengdu, People's Republic of China
| | - Lin-Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, West China Hospital, Chengdu, People's Republic of China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, West China Hospital, Chengdu, People's Republic of China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, West China Hospital, Chengdu, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
Shen J, Li W, Liu G, Tang Y, Jiang H. Computational insights into the mechanism of ligand unbinding and selectivity of estrogen receptors. J Phys Chem B 2009; 113:10436-44. [PMID: 19583238 DOI: 10.1021/jp903785h] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors (ER) belong to the nuclear receptor superfamily, and two subtypes, ERalpha and ERbeta, have been identified to date. The differentiated functions and receptor expressions of ERalpha and ERbeta made it attracted to discover subtype-specified ligands with high selectivity. However, these two subtypes are highly homologous and only two residues differ in the ligand binding pocket. Therefore, the mechanism of ligand selectivity has become an important issue in searching selective ligands of ER subtypes. In this study, steered molecular dynamics simulations were carried out to investigate the unbinding pathways of two selective ERbeta ligands from the binding pocket of both ERalpha and ERbeta, which demonstrated that the pathway between the H11 helix and the H7 approximately H8 loop was the most probable for ligand escaping. Then potentials of mean force for ligands unbinding along this pathway were calculated in order to gain insights into the molecular basis for energetics of ligand unbinding and find clues of ligand selectivity. The results indicated that His524/475 in ERalpha/ERbeta acted as a "gatekeeper" during the ligand unbinding. Especially, the H7 approximately H8 loop of ERbeta acted as a polar "transmitter" that controlled the ligand unbinding from the binding site and contributed to the ligand selectivity. Finally, the mechanism of ligand selectivity of ER subtypes was discussed from a kinetic perspective and suggestions for improving the ligand selectivity of ERbeta were also presented. These findings could be helpful for rational design of highly selective ERbeta ligands.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
39
|
Wang XS, Roitberg AE, Richards NGJ. Computational Studies of Ammonia Channel Function in Glutamine 5′-Phosphoribosylpyrophosphate Amidotransferase. Biochemistry 2009; 48:12272-82. [DOI: 10.1021/bi901521d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang S. Wang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| | - Nigel G. J. Richards
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| |
Collapse
|
40
|
Lima STC, Nguyen NH, Togashi M, Apriletti JW, Nguyen P, Polikarpov I, Scanlan TS, Baxter JD, Webb P. Differential effects of TR ligands on hormone dissociation rates: evidence for multiple ligand entry/exit pathways. J Steroid Biochem Mol Biol 2009; 117:125-31. [PMID: 19729063 PMCID: PMC2784034 DOI: 10.1016/j.jsbmb.2009.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/16/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
Abstract
Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself. This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here, we show that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2)<2h) of radiolabeled T(3) vs. T(3) (T(1/2) approximately 5-7h). We cannot discern relationships between this effect and ligand size, activity or affinity for TRbeta. One ligand, GC-24, binds the TR LBC and (weakly) to the TRbeta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation.
Collapse
Affiliation(s)
- Suzana T. Cunha Lima
- Department of General Biology, Biology Institute. Federal University of Bahia. 147, Barão de Geremoabo Street, - Campus of Ondina, Salvador, BA, 40170–290 Brazil
| | - Ngoc-Ha Nguyen
- Department of Biochemistry and Biophysics, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Marie Togashi
- Health Science Institute. Brasilia University, Asa Norte, Brasilia, DF 70919–970, Brazil
| | - James W. Apriletti
- Diabetes Center, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Phuong Nguyen
- Diabetes Center, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Igor Polikarpov
- Physics Institute of São Carlos, University of São Paulo. 400, Trabalhador São Carlense Av., São Carlos, SP 13560–970, Brazil
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR97239
| | - John D. Baxter
- The Methodist Hospital Research Institute. 6565 Fannin St. Houston, TX 77030, USA
| | - Paul Webb
- The Methodist Hospital Research Institute. 6565 Fannin St. Houston, TX 77030, USA
| |
Collapse
|
41
|
Ai N, Krasowski MD, Welsh WJ, Ekins S. Understanding nuclear receptors using computational methods. Drug Discov Today 2009; 14:486-94. [PMID: 19429508 DOI: 10.1016/j.drudis.2009.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are important targets for therapeutic drugs. NRs regulate transcriptional activities through binding to ligands and interacting with several regulating proteins. Computational methods can provide insights into essential ligand-receptor and protein-protein interactions. These in turn have facilitated the discovery of novel agonists and antagonists with high affinity and specificity as well as have aided in the prediction of toxic side effects of drugs by identifying possible off-target interactions. Here, we review the application of computational methods toward several clinically important NRs (with special emphasis on PXR) and discuss their use for screening and predicting the toxic side effects of xenobiotics.
Collapse
Affiliation(s)
- Ni Ai
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
42
|
Peräkylä M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:185-98. [DOI: 10.1007/s00249-008-0369-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/25/2008] [Accepted: 08/28/2008] [Indexed: 02/04/2023]
|
43
|
Martínez L, Polikarpov I, Skaf MS. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach. J Phys Chem B 2008; 112:10741-51. [PMID: 18681473 DOI: 10.1021/jp803403c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor's biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXRalpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.
Collapse
Affiliation(s)
- Leandro Martínez
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil
| | | | | |
Collapse
|