1
|
Deficiency of Thyroid Hormone Reduces Voltage-Gated Na + Currents as Well as Expression of Na +/K +-ATPase in the Mouse Hippocampus. Int J Mol Sci 2022; 23:ijms23084133. [PMID: 35456949 PMCID: PMC9031557 DOI: 10.3390/ijms23084133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Mice lacking functional thyroid follicular cells, Pax8−/− mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na+-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, Pax8−/− mice should show deficits in the expression of Na+ currents and potentially also in the expression of Na+/K+-ATPases, which are necessary to maintain low intracellular Na+ levels. We thus compared Na+ current densities in postnatal mice using the patch-clamp technique in the whole-cell configuration as well as the expression of three alpha and two beta-subunits of the Na+/K+-ATPase in wild type versus Pax8−/− mice. Whereas the Na+ current density in hippocampal neurons from wild type mice was upregulated within the first postnatal week, the Na+ current density remained at a very low level in hippocampal neurons from Pax8−/− mice. Pax8−/− mice also showed significantly decreased protein expression levels of the catalytic α1 and α3 subunits of the Na+/K+-ATPase as well as decreased levels of the β2 isoform, with no changes in the α2 and β1 subunits.
Collapse
|
2
|
Kapri D, Fanibunda SE, Vaidya VA. Thyroid hormone regulation of adult hippocampal neurogenesis: Putative molecular and cellular mechanisms. VITAMINS AND HORMONES 2021; 118:1-33. [PMID: 35180924 DOI: 10.1016/bs.vh.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adult hippocampal neurogenesis is sensitive to perturbations in thyroid hormone signaling, with evidence supporting a key role for thyroid hormone and thyroid hormone receptors (TRs) in the regulation of postmitotic progenitor survival and neuronal differentiation. In this book chapter we summarize the current understanding of the effects of thyroid hormone signaling on adult hippocampal progenitor development, and also critically address the role of TRs in regulation of distinct aspects of stage-specific hippocampal progenitor progression. We highlight actions of thyroid hormone on thyroid hormone responsive target genes, and the implications for hippocampal progenitor regulation. Given the influence of thyroid hormone on both mitochondrial and lipid metabolism, we discuss a putative role for regulation of metabolism in the effects of thyroid hormone on adult hippocampal neurogenesis. Finally, we highlight specific ideas that require detailed experimental investigation, and the need for future studies to obtain a deeper mechanistic insight into the influence of thyroid hormone and TRs in the developmental progression of adult hippocampal progenitors.
Collapse
Affiliation(s)
- Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India; Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
3
|
Klapper SD, Garg P, Dagar S, Lenk K, Gottmann K, Nieweg K. Astrocyte lineage cells are essential for functional neuronal differentiation and synapse maturation in human iPSC-derived neural networks. Glia 2019; 67:1893-1909. [PMID: 31246351 DOI: 10.1002/glia.23666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Human astrocytes differ dramatically in cell morphology and gene expression from murine astrocytes. The latter are well known to be of major importance in the formation of neuronal networks by promoting synapse maturation. However, whether human astrocyte lineage cells have a similar role in network formation has not been firmly established. Here, we investigated the impact of human astrocyte lineage cells on the functional maturation of neural networks that were derived from human induced pluripotent stem cells (hiPSCs). Initial in vitro differentiation of hiPSC-derived neural progenitor cells and immature neurons (glia+ cultures) resulted in spontaneously active neural networks as indicated by synchronous neuronal Ca2+ transients. Depleting proliferating neural progenitors from these cultures by short-term antimitotic treatment resulted in strongly astrocyte lineage cell-depleted neuronal networks (glia- cultures). Strikingly, in contrast to glia+ cultures, glia- cultures did not exhibit spontaneous network activity. Detailed analysis of the morphological and electrophysiological properties of neurons by patch clamp recordings revealed reduced dendritic arborization in glia- cultures. In addition, a reduced action potential frequency upon current injection in pyramidal-like neurons was observed, whereas the electrical excitability of multipolar neurons was unaltered. Furthermore, we found a reduced dendritic density of PSD95-positive excitatory synapses, and more immature properties of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) miniature excitatory postsynaptic currents (mEPSCs) in glia- cultures, suggesting that the maturation of glutamatergic synapses depends on the presence of hiPSC-derived astrocyte lineage cells. Intriguingly, addition of the astrocyte-derived synapse maturation inducer cholesterol increased the dendritic density of PSD95-positive excitatory synapses in glia- cultures.
Collapse
Affiliation(s)
- Simon D Klapper
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Pretty Garg
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Institute of Pharmacology and Clinical Pharmacy, Phillips-University Marburg, Marburg, Germany
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katja Nieweg
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Institute of Pharmacology and Clinical Pharmacy, Phillips-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid Hormone Regulation of Adult Neurogenesis. VITAMINS AND HORMONES 2018; 106:211-251. [DOI: 10.1016/bs.vh.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Klapal L, Igelhorst BA, Dietzel-Meyer ID. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18. Front Neurol 2016; 7:44. [PMID: 27065940 PMCID: PMC4812774 DOI: 10.3389/fneur.2016.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here, we demonstrate that the addition of 5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures upregulates Na+ current densities (INavD) of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a major cytokine released by activated microglia, upregulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5–10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose–response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines, microglial cells upregulate Na+ current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released, this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger upregulation of INavD in response to TNF-α as well as respond to smaller concentrations of IL-18, our results offer an explanation for the finding, that in certain conditions of brain inflammations periods of dizziness are followed by epileptic seizures.
Collapse
Affiliation(s)
- Lars Klapal
- Department of Biochemistry II, Ruhr-University Bochum , Bochum , Germany
| | - Birte A Igelhorst
- Department of Biochemistry II, Ruhr-University Bochum , Bochum , Germany
| | | |
Collapse
|
6
|
Igelhorst BA, Niederkinkhaus V, Karus C, Lange MD, Dietzel ID. Regulation of neuronal excitability by release of proteins from glial cells. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0194. [PMID: 26009773 DOI: 10.1098/rstb.2014.0194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Effects of glial cells on electrical isolation and shaping of synaptic transmission between neurons have been extensively studied. Here we present evidence that the release of proteins from astrocytes as well as microglia may regulate voltage-activated Na(+) currents in neurons, thereby increasing excitability and speed of transmission in neurons kept at distance from each other by specialized glial cells. As a first example, we show that basic fibroblast growth factor and neurotrophin-3, which are released from astrocytes by exposure to thyroid hormone, influence each other to enhance Na(+) current density in cultured hippocampal neurons. As a second example, we show that the presence of microglia in hippocampal cultures can upregulate Na(+) current density. The effect can be boosted by lipopolysaccharides, bacterial membrane-derived stimulators of microglial activation. Comparable effects are induced by the exposure of neuron-enriched hippocampal cultures to tumour necrosis factor-α, which is released from stimulated microglia. Taken together, our findings suggest that release of proteins from various types of glial cells can alter neuronal excitability over a time course of several days. This explains changes in neuronal excitability occurring in states of thyroid hormone imbalance and possibly also in seizures triggered by infectious diseases.
Collapse
Affiliation(s)
- Birte A Igelhorst
- Department of Biochemistry II, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Vanessa Niederkinkhaus
- Department of Biochemistry II, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany International Graduate School for Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Claudia Karus
- Department of Biochemistry II, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Maren D Lange
- Department of Biochemistry II, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Irmgard D Dietzel
- Department of Biochemistry II, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| |
Collapse
|
7
|
Thatenhorst D, Rheinlaender J, Schäffer TE, Dietzel ID, Happel P. Effect of Sample Slope on Image Formation in Scanning Ion Conductance Microscopy. Anal Chem 2014; 86:9838-45. [DOI: 10.1021/ac5024414] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Denis Thatenhorst
- Department
of Biochemistry II, Electrobiochemistry of Neural Cells, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- International
Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Johannes Rheinlaender
- Institute
of Applied Physics and LISA+, University of Tübingen, Auf
der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E. Schäffer
- Institute
of Applied Physics and LISA+, University of Tübingen, Auf
der Morgenstelle 10, 72076 Tübingen, Germany
| | - Irmgard D. Dietzel
- Department
of Biochemistry II, Electrobiochemistry of Neural Cells, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Patrick Happel
- Central
Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
8
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
9
|
Westerholz S, de Lima AD, Voigt T. Thyroid hormone-dependent development of early cortical networks: temporal specificity and the contribution of trkB and mTOR pathways. Front Cell Neurosci 2013; 7:121. [PMID: 23964198 PMCID: PMC3734363 DOI: 10.3389/fncel.2013.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022] Open
Abstract
Early in neocortical network development, triiodothyronine (T3) promotes GABAergic neurons' population increase, their somatic growth and the formation of GABAergic synapses. In the presence of T3, GABAergic interneurons form longer axons and conspicuous axonal arborizations, with an increased number of putative synaptic boutons. Here we show that the increased GABAergic axonal growth is positively correlated with the proximity to non-GABAergic neurons (non-GABA). A differential innervation emerges from a T3-dependent decrease of axonal length in fields with low density of neuronal cell bodies, combined with an increased bouton formation in fields with high density of neuronal somata. T3 addition to deprived networks after the first 2 weeks of development did not rescue deficits in the GABAergic synaptic bouton distribution, or in the frequency and duration of spontaneous bursts. During the critical 2-week-period, GABAergic signaling is depolarizing as revealed by calcium imaging experiments. Interestingly, T3 enhanced the expression of the potassium-chloride cotransporter 2 (KCC2), and accelerated the developmental shift from depolarizing to hyperpolarizing GABAergic signaling in non-GABA. The T3-related increase of spontaneous network activity was remarkably reduced after blockade of either tropomyosin-receptor kinase B (trkB) or mammalian target of rapamycin (mTOR) pathways. T3-dependent increase in GABAergic neurons' soma size was mediated mainly by mTOR signaling. Conversely, the T3-dependent selective increase of GABAergic boutons near non-GABAergic cell bodies is mediated by trkB signaling only. Both trkB and mTOR signaling mediate T3-dependent reduction of the GABAergic axon extension. The circuitry context is relevant for the interaction between T3 and trkB signaling, but not for the interactions between T3 and mTOR signaling.
Collapse
Affiliation(s)
- Sören Westerholz
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Germany
| | | | | |
Collapse
|
10
|
Karus M, Samtleben S, Busse C, Tsai T, Dietzel ID, Faissner A, Wiese S. Normal sulfation levels regulate spinal cord neural precursor cell proliferation and differentiation. Neural Dev 2012; 7:20. [PMID: 22681904 PMCID: PMC3423038 DOI: 10.1186/1749-8104-7-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/06/2012] [Indexed: 12/26/2022] Open
Abstract
Background Sulfated glycosaminoglycan chains are known for their regulatory functions during neural development and regeneration. However, it is still unknown whether the sulfate residues alone influence, for example, neural precursor cell behavior or whether they act in concert with the sugar backbone. Here, we provide evidence that the unique 473HD-epitope, a representative chondroitin sulfate, is expressed by spinal cord neural precursor cells in vivo and in vitro, suggesting a potential function of sulfated glycosaminoglycans for spinal cord development. Results Thus, we applied the widely used sulfation inhibitor sodium chlorate to analyze the importance of normal sulfation levels for spinal cord neural precursor cell biology in vitro. Addition of sodium chlorate to spinal cord neural precursor cell cultures affected cell cycle progression accompanied by changed extracellular signal-regulated kinase 1 or 2 activation levels. This resulted in a higher percentage of neurons already under proliferative conditions. In contrast, the relative number of glial cells was largely unaffected. Strikingly, both morphological and electrophysiological characterization of neural precursor cell-derived neurons demonstrated an attenuated neuronal maturation in the presence of sodium chlorate, including a disturbed neuronal polarization. Conclusions In summary, our data suggest that sulfation is an important regulator of both neural precursor cell proliferation and maturation of the neural precursor cell progeny in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Michael Karus
- Group for Molecular Cell Biology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Mayerl S, Visser TJ, Darras VM, Horn S, Heuer H. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 2012; 153:1528-37. [PMID: 22294745 DOI: 10.1210/en.2011-1633] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Organic anion-transporting polypeptide 1c1 (Oatp1c1) (also known as Slco1c1 and Oatp14) belongs to the family of Oatp and has been shown to facilitate the transport of T(4). In the rodent brain, Oatp1c1 is highly enriched in capillary endothelial cells and choroid plexus structures where it may mediate the entry of T(4) into the central nervous system. Here, we describe the generation and first analysis of Oatp1c1-deficient mice. Oatp1c1 knockout (KO) mice were born with the expected frequency, were not growth retarded, and developed without any overt neurological abnormalities. Serum T(3) and T(4) concentrations as well as renal and hepatic deiodinase type 1 expression levels were indistinguishable between Oatp1c1 KO mice and control animals. Hypothalamic TRH and pituitary TSH mRNA levels were not affected, but brain T(4) and T(3) content was decreased in Oatp1c1-deficient animals. Moreover, increased type 2 and decreased type 3 deiodinase activities indicate a mild hypothyroid situation in the brain of Oatp1c1 KO mice. Consequently, mRNA expression levels of gene products positively regulated by T(3) in the brain were down-regulated. This central nervous system-specific hypothyroidism is presumably caused by an impaired passage of T(4) across the blood-brain barrier and indicates a unique function of Oatp1c1 in facilitating T(4) transport despite the presence of other thyroid hormone transporters such as Mct8.
Collapse
Affiliation(s)
- Steffen Mayerl
- Leibniz Institute for Age Research/Fritz Lipmann Institute e.V., Beutenbergstrasse 11, D-07745 Jena/Germany
| | | | | | | | | |
Collapse
|
12
|
Happel P, Dietzel ID. Backstep scanning ion conductance microscopy as a tool for long term investigation of single living cells. J Nanobiotechnology 2009; 7:7. [PMID: 19860879 PMCID: PMC2777839 DOI: 10.1186/1477-3155-7-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 10/27/2009] [Indexed: 11/10/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is a suitable tool for imaging surfaces of living cells in a contact-free manner. We have shown previously that SICM in backstep mode allows one to trace the outlines of entire cell somata and to detect changes in cellular shape and volume. Here we report that SICM can be employed to quantitatively observe cellular structures such as cell processes of living cells as well as cell somata of motile cells in the range of hours.
Collapse
Affiliation(s)
- Patrick Happel
- Department of Molecular Neurobiochemistry, Ruhr-University Bochum, D-44870 Bochum, Germany.
| | | |
Collapse
|