1
|
Srivastava S, Siddiqui S, Chowdhury S, Trivedi AK. Dexamethasone activates c-Jun NH2-terminal kinase (JNK) which interacts with GR and protects it from ubiquitin-mediated degradation in NSCLC cells. Biochem Biophys Res Commun 2023; 650:1-8. [PMID: 36764207 DOI: 10.1016/j.bbrc.2023.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Dexamethasone-mediated pharmacological activation of the glucocorticoid receptor (GR) is widely used in the treatment regimen of hematological malignancies and solid cancers. However, DEX sensitivity towards patients primarily depends on the endogenous protein levels of GR. We observed that DEX treatment leads to an increase in GR protein levels despite inhibition of neo-protein synthesis in non-small cell lung cancer (NSCLC) cells. Mechanistically, DEX-stimulation concomitantly increased the JNK phosphorylation and GR protein levels, however the JNK stimulation preceds GR upregulation. Moreover, we also observed that DEX-mediated phosphorylation is partially mediated by upregulation in MEKK1 phosphorylation. Further, GR protein levels were significantly decreased in JNK inhibitor (JNKi, SP600125) treated cells whereas MG132 treatment restored GR levels indicating that DEX induced JNK activity regulated the GR protein levels through proteasomal-degradation pathway. Next, we showed that DEX led to JNK activation which physically interacts with GR and protects it from ubiquitination-mediated degradation. Furthermore, at basal level GR interacts with JNK in cytoplasm whereas upon DEX stimulation GR and pJNK both localized to nucleus and interact with each other. Next, we show that JNK-mediated GR stabilization affects its nuclear transcriptional functional activity in NSCLC cells. In line with these in vitro data, patient dataset analysis also shows that increased levels of both JNK and GR contributes towards better prognosis of NSCLC patients. Taken together, our data shows that DEX treatment may lead to positive feedback regulation of GR by activating JNK and thus highlights importance of GR-JNK crosstalk in NSCLC.
Collapse
Affiliation(s)
- Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Lim JS, Lee KW, Ko KP, Jeong SI, Ryu BK, Lee MG, Chi SG. XAF1 destabilizes estrogen receptor α through the assembly of a BRCA1-mediated destruction complex and promotes estrogen-induced apoptosis. Oncogene 2022; 41:2897-2908. [DOI: 10.1038/s41388-022-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
|
3
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacology-Based Dissection of the Comprehensive Molecular Mechanisms of the Herbal Prescription FDY003 Against Estrogen Receptor-Positive Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211044377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor-positive breast cancer (ERPBC) is the commonest subtype of breast cancer, with a high prevalence, incidence, and mortality. Herbal drugs are increasingly being used to treat ERPBC, although their mechanisms of action are not fully understood. Therefore, in this study, we aimed to analyze the therapeutic properties of FDY003, a herbal anti-ERPBC prescription, using a network pharmacology approach. FDY003 decreased the viability of human ERPBC cells and sensitized them to tamoxifen, an endocrine drug that is widely used in the treatment of ERPBC. The network pharmacology analysis revealed 18 pharmacologically active components in FDY003 that may interact with and regulate 66 therapeutic targets. The enriched gene ontology terms for the FDY003 targets were associated with the modulation of cell survival and death, cell proliferation and growth arrest, and estrogen-associated cellular processes. Analysis of the pathway enrichment of the targets showed that FDY003 may target a variety of ERPBC-associated pathways, including the PIK3-Akt, focal adhesion, MAPK, and estrogen pathways. Overall, these data provide a comprehensive mechanistic insight into the anti-ERPBC activity of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | | | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sklias A, Halaburkova A, Vanzan L, Jimenez NF, Cuenin C, Bouaoun L, Cahais V, Ythier V, Sallé A, Renard C, Durand G, Le Calvez-Kelm F, Khoueiry R, Murr R, Herceg Z. Epigenetic remodelling of enhancers in response to estrogen deprivation and re-stimulation. Nucleic Acids Res 2021; 49:9738-9754. [PMID: 34403459 PMCID: PMC8464064 DOI: 10.1093/nar/gkab697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022] Open
Abstract
Estrogen hormones are implicated in a majority of breast cancers and estrogen receptor alpha (ER), the main nuclear factor mediating estrogen signaling, orchestrates a complex molecular circuitry that is not yet fully elucidated. Here, we investigated genome-wide DNA methylation, histone acetylation and transcription after estradiol (E2) deprivation and re-stimulation to better characterize the ability of ER to coordinate gene regulation. We found that E2 deprivation mostly resulted in DNA hypermethylation and histone deacetylation in enhancers. Transcriptome analysis revealed that E2 deprivation leads to a global down-regulation in gene expression, and more specifically of TET2 demethylase that may be involved in the DNA hypermethylation following short-term E2 deprivation. Further enrichment analysis of transcription factor (TF) binding and motif occurrence highlights the importance of ER connection mainly with two partner TF families, AP-1 and FOX. These interactions take place in the proximity of E2 deprivation-mediated differentially methylated and histone acetylated enhancers. Finally, while most deprivation-dependent epigenetic changes were reversed following E2 re-stimulation, DNA hypermethylation and H3K27 deacetylation at certain enhancers were partially retained. Overall, these results show that inactivation of ER mediates rapid and mostly reversible epigenetic changes at enhancers, and bring new insight into early events, which may ultimately lead to endocrine resistance.
Collapse
Affiliation(s)
- Athena Sklias
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Andrea Halaburkova
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Ludovica Vanzan
- Department of Genetic Medicine and Development (GEDEV), University of Geneva, Geneva, Switzerland
| | - Nora Fernandez Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country 48940, Spain
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Liacine Bouaoun
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Victor Ythier
- Department of Genetic Medicine and Development (GEDEV), University of Geneva, Geneva, Switzerland
| | - Aurélie Sallé
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Claire Renard
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Geoffroy Durand
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Florence Le Calvez-Kelm
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Rabih Murr
- Department of Genetic Medicine and Development (GEDEV), University of Geneva, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| |
Collapse
|
5
|
Wang Y, Huang T, Sun X, Wang Y. Identification of a potential prognostic lncRNA-miRNA-mRNA signature in endometrial cancer based on the competing endogenous RNA network. J Cell Biochem 2019; 120:18845-18853. [PMID: 31338870 PMCID: PMC6771803 DOI: 10.1002/jcb.29200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Endometrial cancer is one of the most common gynecological malignant tumors. The roles of competing endogenous RNAs (ceRNAs) in this disease, however, remain unclear. In this study, we constructed a ceRNA network to reveal the core ceRNAs in endometrial cancer. Differentially expressed genes were summarized from The Cancer Genome Atlas database, whereupon 140 genes were identified for building the network. Further correlation, survival, and enrichment analyses suggested that these genes may help towards elucidating the molecular mechanisms of endometrial cancer. After validation of the findings with the GSE17025 data set, LINC00958, microRNA-761, and DOLPP1 were highlighted as the critical genes in the ceRNA network. Our work suggests that LINC00958 may regulate DOLPP1 by "sponging" miR-761 in endometrial cancer.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ting Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao Sun
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Sun L, Zhou R, Dong J, Liu S, Jiao Y, Wang L, Hu S, He P, Liu X, Zhao X, Jiang G, Zhao Y. Lnc-NA inhibits proliferation and metastasis in endometrioid endometrial carcinoma through regulation of NR4A1. J Cell Mol Med 2019; 23:4699-4710. [PMID: 31050196 PMCID: PMC6584524 DOI: 10.1111/jcmm.14345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/09/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Endometrioid endometrial carcinoma (EEC) is the most common gynaecologic malignancy worldwide. Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, particularly cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in EEC have not been extensively studied. Here, we describe the discovery of Lnc-NA from the promoter of the transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) gene. The role and function of Lnc-NA in EEC remain unknown. In this study, we used quantitative real-time polymerase chain reactions to confirm that Lnc-NA expression was down-regulated in 30 EEC cases (90%) and in EEC cell lines compared with that in the paired adjacent tissues and normal endometrial cells. In vitro experiments further demonstrated that overexpressing Lnc-NA decreased EEC cell proliferation, migration and invasion and promoted apoptosis via inactivation of the apoptosis signalling pathway. Moreover, the results show that Lnc-NA expression was positively correlated with NR4A1. Furthermore, Lnc-NA regulated NR4A1 expression and activated the apoptosis signalling pathway to inhibit tumour progression. In summary, our results demonstrate that the Lnc-NA-NR4A1 axis could be a useful tumour suppressor and a promising therapeutic target for EEC.
Collapse
Affiliation(s)
- Linying Sun
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
- Institute of Public HealthTaishan Medical UniversityTaianChina
| | - Rongfang Zhou
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Jing Dong
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Shuang Liu
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Yulian Jiao
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Laicheng Wang
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Shengnan Hu
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Pengjuan He
- Department of Gynaecology and ObstetricsShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Xiaowen Liu
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Xingbo Zhao
- Department of Gynaecology and ObstetricsShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| | - Guosheng Jiang
- Department of ImmunologyBinzhou Medical UniversityYantaiChina
| | - Yueran Zhao
- Department of Central LabShandong Provincial Hospital affiliated with Shandong UniversityJinanChina
| |
Collapse
|
7
|
He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, Dahlman-Wright K. c-Jun/AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene 2018; 37:2586-2600. [DOI: 10.1038/s41388-018-0165-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
|
8
|
Yang X, Wang CC, Lee WYW, Trovik J, Chung TKH, Kwong J. Long non-coding RNA HAND2-AS1 inhibits invasion and metastasis in endometrioid endometrial carcinoma through inactivating neuromedin U. Cancer Lett 2018; 413:23-34. [DOI: 10.1016/j.canlet.2017.10.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
|
9
|
Sun M, Gadad SS, Kim DS, Kraus WL. Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells. Mol Cell 2015; 59:698-711. [PMID: 26236012 DOI: 10.1016/j.molcel.2015.06.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 01/30/2023]
Abstract
We describe a computational approach that integrates GRO-seq and RNA-seq data to annotate long noncoding RNAs (lncRNAs), with increased sensitivity for low-abundance lncRNAs. We used this approach to characterize the lncRNA transcriptome in MCF-7 human breast cancer cells, including >700 previously unannotated lncRNAs. We then used information about the (1) transcription of lncRNA genes from GRO-seq, (2) steady-state levels of lncRNA transcripts in cell lines and patient samples from RNA-seq, and (3) histone modifications and factor binding at lncRNA gene promoters from ChIP-seq to explore lncRNA gene structure and regulation, as well as lncRNA transcript stability, regulation, and function. Functional analysis of selected lncRNAs with altered expression in breast cancers revealed roles in cell proliferation, regulation of an E2F-dependent cell-cycle gene expression program, and estrogen-dependent mitogenic growth. Collectively, our studies demonstrate the use of an integrated genomic and molecular approach to identify and characterize growth-regulating lncRNAs in cancers.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shrikanth S Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
The link between injury-induced stress and regenerative phenomena: A cellular and genetic synopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:454-61. [PMID: 25088176 DOI: 10.1016/j.bbagrm.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
Injury is an inescapable phenomenon of life that affects animals at every physiological level. Yet, some animals respond to injury by rebuilding the damaged tissues whereas others are limited to scarring. Elucidating how a tissue insult from wounding leads to a regenerative response at the genetic level is essential to make regenerative advantages translational. It has become clear that animals with regenerative abilities recycle developmental programs after injury, reactivating genes that have lied dormant throughout adulthood. The question that is critical to our understanding of regeneration is how a specific set of developmentally important genes can be reactivated only after an acute tissue insult. Here, we review how injury-induced cellular stresses such as hypoxic, oxidative, and mechanical stress may contribute to the genomic and epigenetic changes that promote regeneration in animals. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
11
|
Abstract
Multiple growth factors and extracellular signals can lead to activation of the c-Jun amino N-terminal protein kinase (JNK) pathway. Activation of JNK can in turn lead to a multitude of downstream changes in phosphorylation and transcriptional activation within the cell. Mapping the upstream and downstream connectivity within the JNK network reveals an enrichment of bi-fan and feed-forward network motifs formed immediately upstream and downstream of JNK. In addition, negative feedback loops also exist through transcriptional activation of phosphatases that target the JNK pathway. The combinations of these motifs allow flexibility and tunability in signal integration and processing within the JNK network and may confer the wide range of biological responses that can be regulated by JNK activation. In this review, we highlight the pathways and motifs leading to JNK activation and its downstream signaling as well as the complexity in isoforms within this network.
Collapse
Affiliation(s)
- Vasudha Sehgal
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Prahlad T Ram
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Yao K, Chen H, Lee MH, Li H, Ma W, Peng C, Song NR, Lee KW, Bode AM, Dong Z, Dong Z. Licochalcone A, a natural inhibitor of c-Jun N-terminal kinase 1. Cancer Prev Res (Phila) 2013; 7:139-49. [PMID: 24253317 DOI: 10.1158/1940-6207.capr-13-0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-Jun N-terminal kinases (JNK) play an important role in many physiologic processes induced by numerous stress signals. Each JNK protein appears to have a distinct function in cancer, diabetes, or Parkinson's disease. Herein, we found that licochalcone A, a major phenolic constituent isolated from licorice root, suppressed JNK1 activity but had little effect on JNK2 in vitro activity. Although licochalcone A binds with JIP1 competitively with either JNK1 or JNK2, a computer simulation model showed that after licochalcone A binding, the ATP-binding cleft of JNK1 was distorted more substantially than that of JNK2. This could reduce the affinity of JNK1 more than JNK2 for ATP binding. Furthermore, licochalcone A inhibited JNK1-mediated, but not JNK2-mediated, c-Jun phosphorylation in both ex vivo and in vitro systems. We also observed that in colon and pancreatic cancer cell lines, JNK1 is highly expressed compared with normal cell lines. In cancer cell lines, treatment with licochalcone A or knocking down JNK1 expression suppressed colon and pancreatic cancer cell proliferation and colony formation. The inhibition resulted in G1 phase arrest and apoptosis. Moreover, an in vivo xenograft mouse study showed that licochalcone A treatment effectively suppressed the growth of HCT116 xenografts, without affecting the body weight of mice. These results show that licochalcone A is a selective JNK1 inhibitor. Therefore, we suggest that because of the critical role of JNK1 in colon cancer and pancreatic carcinogenesis, licochalcone A might have preventive or therapeutic potential against these devastating diseases.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute University of Minnesota, 801 16 Ave NE, Austin, MN 55912.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Klein AM, Zaganjor E, Cobb MH. Chromatin-tethered MAPKs. Curr Opin Cell Biol 2013; 25:272-7. [PMID: 23434067 DOI: 10.1016/j.ceb.2013.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 01/15/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that are essential nodes in many cellular regulatory circuits including those that take place on DNA. Most members of the four MAPK subgroups that exist in canonical three kinase cascades-extracellular signal-regulated kinases 1 and 2 (ERK1/2), ERK5, c-Jun N-terminal kinases (JNK1-3), and p38 (α, β, γ, and δ) families-have been shown to perform regulatory functions on chromatin. This review offers a brief update on the variety of processes that involve MAPKs and available mechanisms garnered in the last two years.
Collapse
Affiliation(s)
- Aileen M Klein
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, United States
| | | | | |
Collapse
|
14
|
Notas G, Kampa M, Pelekanou V, Troullinaki M, Jacquot Y, Leclercq G, Castanas E. Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells. Mol Oncol 2013; 7:595-610. [PMID: 23474223 DOI: 10.1016/j.molonc.2013.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023] Open
Abstract
ERα17p is a peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially found to interfere with ERα-related calmodulin binding. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and ERE-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p-induced apoptosis and modified the actin network, influencing cell motility. Here, we report that ERα17p internalizes in breast cancer cells (T47D, MDA-MB-231, SKBR3) and induces a massive early (3 h) transcriptional activity. Remarkably, about 75% of significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ERα17p. The different ER spectra of the used cell lines allowed us to identify a specific ERα17p signature related to ERα as well as its variant ERα36. With respect to ERα, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ERα36, it mainly triggers inhibitory actions on inflammation. This is the first work reporting a detailed ERα36-specific transcriptional signature. In addition, we report that ERα17p-induced transcripts related to apoptosis and actin modifying effects of the peptide are independent from its estrogen receptor(s)-related actions. We discuss our findings in view of the potential use of ERα17p as a selective peptidomimetic estrogen receptor modulator (PERM).
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, Heraklion 71003, Greece
| | | | | | | | | | | | | |
Collapse
|