1
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
2
|
Dali O, Muriel-Muriel JA, Vargas-Baco A, Tevosian S, Zubcevic J, Smagulova F, Hayward LF. Prenatal nicotine exposure leads to epigenetic alterations in peripheral nervous system signaling genes in the testis of the rat. Epigenetics Chromatin 2024; 17:14. [PMID: 38715099 PMCID: PMC11075221 DOI: 10.1186/s13072-024-00539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Prenatal nicotine exposure (PNE) has been documented to cause numerous deleterious effects on fetal development. However, the epigenetic changes promoted by nicotine exposure on germ cells are still not well understood. OBJECTIVES In this study, we focused on elucidating the impact of prenatal nicotine exposure on regulatory epigenetic mechanisms important for germ cell development. METHODS Sprague-Dawley rats were exposed to nicotine during pregnancy and male progeny was analyzed at 11 weeks of age. Testis morphology was analyzed using frozen testis sections and expression of germ cell markers was examined by RT-qPCR; histone modifications were assessed by Western Blot (WB). DNA methylation analysis was performed by methylation-specific PCR of bisulfite converted DNA. Genome-wide DNA methylation was analyzed using Methylated DNA immunoprecipitation (MeDIP)-seq. We also carried out transcriptomics analysis of pituitary glands by RNA-seq. RESULTS We show that gestational exposure to nicotine reduces germ cell numbers, perturbs meiosis, affects the expression of germ line reprogramming responsive genes, and impacts the DNA methylation of nervous system genes in the testis. PNE also causes perturbation of gene expression in the pituitary gland of the brain. CONCLUSIONS Our data demonstrate that PNE leads to perturbation of male spermatogenesis, and the observed effects are associated with changes of peripheral nervous system signaling pathways. Alterations in the expression of genes associated with diverse biological activities such as cell migration, cell adhesion and GABA signaling in the pituitary gland underscore the complexity of the effects of nicotine exposure during pregnancy.
Collapse
Affiliation(s)
- Ouzna Dali
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Jose Antonio Muriel-Muriel
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Ana Vargas-Baco
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Fatima Smagulova
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France.
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Different prenatal supplementation strategies and its impacts on reproductive and nutrigenetics assessments of bulls in finishing phase. Vet Res Commun 2022; 47:457-471. [PMID: 35750996 DOI: 10.1007/s11259-022-09963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
This study investigated the effect of different prenatal nutrition approaches in 126 pregnant Nellore cows on reproductive and nutrigenetic traits of the male offspring during the finishing phase. For that purpose, three nutritional treatments were used in these cows during pregnancy: PP - protein-energy supplementation in the final third, FP - protein-energy supplementation during the entire pregnancy, and NP - (control) only mineral supplementation. The male progeny (63 bulls; 665 ± 28 days of age) were evaluated for scrotal circumference, seminal traits, number of Sertoli cells and testicular area. We performed a genomic association (700 K SNPs) for scrotal circumference at this age. In addition, a functional enrichment was performed in search of significant metabolic pathways (P < 0.05) with inclusion of genes that are expressed in these genomic windows by the MetaCore software. With the exception of major sperm defects (P < 0.1), the other phenotypes showed no difference between prenatal treatments. We found genes and metabolic pathways (P < 0.05) that are associated with genomic windows (genetic variance explained >1%) in different treatments. These molecular findings indicate that there is genotype-environment interaction among the different prenatal treatments and that the FP treatment showed greater major sperm defects compared to the NP treatment.
Collapse
|
4
|
Veikkolainen V, Ali N, Doroszko M, Kiviniemi A, Miinalainen I, Ohlsson C, Poutanen M, Rahman N, Elenius K, Vainio SJ, Naillat F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Hum Mol Genet 2021; 29:2813-2830. [PMID: 32716031 DOI: 10.1093/hmg/ddaa161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.
Collapse
Affiliation(s)
- Ville Veikkolainen
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Nsrein Ali
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Milena Doroszko
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden
| | - Antti Kiviniemi
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Ilkka Miinalainen
- Electron Microscopy Unit, Biocenter Oulu, University of Oulu, FI-90220 Oulu, Finland
| | - Claes Ohlsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Nafis Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland
| | - Seppo J Vainio
- Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden.,InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, University of Oulu, FI-90014 Oulu, FINLAND
| | - Florence Naillat
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
5
|
Sproll P, Eid W, Biason-Lauber A. CBX2-dependent transcriptional landscape: implications for human sex development and its defects. Sci Rep 2019; 9:16552. [PMID: 31719618 PMCID: PMC6851130 DOI: 10.1038/s41598-019-53006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development, a complex and indispensable process in all vertebrates, has still not been completely elucidated, although new genes involved in sex development are constantly being discovered and characterized. Chromobox Homolog 2 (CBX2) is one of these new additions and has been identified through a 46,XY girl with double heterozygous variants on CBX2.1, causing Differences of Sex Development (DSD). The mutated CBX2.1 failed to adequately regulate downstream targets important for sex development in humans, specifically steroidogenic factor 1 (NR5A1/SF1). To better place CBX2.1 in the human sex developmental cascade, we performed siRNA and CBX2.1 overexpression experiments and created a complete CRISPR/Cas9-CBX2 knockout in Sertoli-like cells. Furthermore, we deployed Next Generation Sequencing techniques, RNA-Sequencing and DamID-Sequencing, to identify new potential CBX2.1 downstream genes. The combination of these two next generation techniques enabled us to identify genes that are both bound and regulated by CBX2.1. This allowed us not only to expand our current knowledge about the influence of CBX2.1 in human sex development, but also to advance our insight in the mechanisms governing one of the most important decisions during embryonal development, the commitment to either female or male gonads.
Collapse
Affiliation(s)
- Patrick Sproll
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Wassim Eid
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, 21526, Egypt
| | - Anna Biason-Lauber
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.
| |
Collapse
|
6
|
Gregoire EP, Stevant I, Chassot AA, Martin L, Lachambre S, Mondin M, de Rooij DG, Nef S, Chaboissier MC. NRG1 signalling regulates the establishment of Sertoli cell stock in the mouse testis. Mol Cell Endocrinol 2018; 478:17-31. [PMID: 30040984 DOI: 10.1016/j.mce.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Testis differentiation requires high levels of proliferation of progenitor cells that give rise to two cell lineages forming the testis, the Sertoli and the Leydig cells. Hence defective cell cycling leads to testicular dysgenesis that has profound effects on androgen production and fertility. The growth factor NRG1 has been implicated in adult Leydig cell proliferation, but a potential function in the fetal testis has not been analysed to date. Here we show that Nrg1 and its receptors ErbB2/3 are already expressed in early gonadal development. Using tissue-specific deletion, we further demonstrate that Nrg1 is required in a dose-dependent manner to induce proliferation of Sertoli progenitor cells and then differentiated Sertoli cells. As a result of reduced numbers of Sertoli cells, Nrg1 knockout mice display a delay in testis differentiation and defects in sex cord partitioning. Taken together Nrg1 signalling is essential for the establishment of the stock of Sertoli cells and thus required to prevent testicular hypoplasia.
Collapse
Affiliation(s)
| | - Isabelle Stevant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Switzerland
| | | | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | | | | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
7
|
Sato Y, Tajima A, Sato T, Nozawa S, Yoshiike M, Imoto I, Yamauchi A, Iwamoto T. Genome-wide association study identifies ERBB4 on 2q34 as a novel locus associated with sperm motility in Japanese men. J Med Genet 2018; 55:415-421. [PMID: 29453196 PMCID: PMC5992371 DOI: 10.1136/jmedgenet-2017-104991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/29/2017] [Accepted: 01/21/2018] [Indexed: 11/19/2022]
Abstract
Background The decrease in sperm motility has a potent influence on fertilisation. Sperm motility, represented as the percentage of motile sperm in ejaculated sperms, is influenced by lifestyle habits or environmental factors and by inherited factors. However, genetic factors contributing to individual differences in sperm motility remain unclear. To identify genetic factors that influence human sperm motility, we performed a genome-wide association study (GWAS) of sperm motility. Methods A two-stage GWAS was conducted using 811 Japanese men in a discovery stage, followed by a replication study using an additional 779 Japanese men. Results In the two-staged GWAS, a single nucleotide polymorphism rs3791686 in the intron of gene for erb-b2 receptor tyrosine kinase 4 (ERBB4) on chromosome 2q34 was identified as a novel locus for sperm motility, as evident from the discovery and replication results using meta-analysis (β=−4.01, combined P=5.40×10−9). Conclusions Together with the previous evidence that Sertoli cell-specific Erbb4-knockout mice display an impaired ability to produce motile sperm, this finding provides the first genetic evidence for further investigation of the genome-wide significant association at the ERBB4 locus in larger studies across diverse human populations.
Collapse
Affiliation(s)
- Youichi Sato
- Department of Pharmaceutical Information Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsushi Tajima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiari Nozawa
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Miki Yoshiike
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Issei Imoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Aiko Yamauchi
- Department of Pharmaceutical Information Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Teruaki Iwamoto
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Japan.,Center for Infertility and IVF, International University of Health and Welfare Hospital, Nasushiobara, Japan
| |
Collapse
|
8
|
Seasonal differences in the testicular transcriptome profile of free-living European beavers (Castor fiber L.) determined by the RNA-Seq method. PLoS One 2017; 12:e0180323. [PMID: 28678806 PMCID: PMC5498055 DOI: 10.1371/journal.pone.0180323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022] Open
Abstract
The European beaver (Castor fiber L.) is an important free-living rodent that inhabits Eurasian temperate forests. Beavers are often referred to as ecosystem engineers because they create or change existing habitats, enhance biodiversity and prepare the environment for diverse plant and animal species. Beavers are protected in most European Union countries, but their genomic background remains unknown. In this study, gene expression patterns in beaver testes and the variations in genetic expression in breeding and non-breeding seasons were determined by high-throughput transcriptome sequencing. Paired-end sequencing in the Illumina HiSeq 2000 sequencer produced a total of 373.06 million of high-quality reads. De novo assembly of contigs yielded 130,741 unigenes with an average length of 1,369.3 nt, N50 value of 1,734, and average GC content of 46.51%. A comprehensive analysis of the testicular transcriptome revealed more than 26,000 highly expressed unigenes which exhibited the highest homology with Rattus norvegicus and Ictidomys tridecemlineatus genomes. More than 8,000 highly expressed genes were found to be involved in fundamental biological processes, cellular components or molecular pathways. The study also revealed 42 genes whose regulation differed between breeding and non-breeding seasons. During the non-breeding period, the expression of 37 genes was up-regulated, and the expression of 5 genes was down-regulated relative to the breeding season. The identified genes encode molecules which are involved in signaling transduction, DNA repair, stress responses, inflammatory processes, metabolism and steroidogenesis. Our results pave the way for further research into season-dependent variations in beaver testes.
Collapse
|