1
|
Vazquez MJ, Daza-Dueñas S, Velasco I, Ruiz-Pino F, Sanchez-Tapia MJ, Manfredi-Lozano M, Torres-Granados C, Barroso A, Roa J, Sánchez-Garrido MA, Dieguez C, Lomniczi A, Nogueiras R, Tena-Sempere M. Hypothalamic SIRT1-mediated regulation of the hormonal trigger of ovulation and its repression in energy deficit. Metabolism 2024; 164:156125. [PMID: 39740742 DOI: 10.1016/j.metabol.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e., the hormonal trigger of ovulation, and its repression by conditions of energy deficit. Kiss1 neurons in the preoptic area, with proven roles in the control of ovulation, express Sirt1 mRNA. Reciprocal changes in hypothalamic SIRT1 content and Kiss1 expression were observed during the pre-ovulatory phase in adult female rats. Central activation of SIRT1 reduced Kiss1 expression in the rostral hypothalamus, and attenuated the preovulatory surge, while blockade of central SIRT1 augmented it. Conditions of energy deficit enhanced hypothalamic SIRT1 activity and caused suppression of the pre-ovulatory surge and ovulation, which could be rescued by central SIRT1 inhibition. In turn, virogenetic induction of SIRT1 in rostral hypothalamic Kiss1 neurons in adult female mice disrupted ovarian cyclicity and suppressed reproductive indices, despite preserved body weight. Our data document the prominent function of hypothalamic SIRT1 as a key modulator of Kiss1 neurons and the hormonal surge driving ovulation in adulthood, with a major role in its inhibition during conditions of energy insufficiency.
Collapse
Affiliation(s)
- María J Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - María Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel A Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie Faculty of Medicine, Halifax, Canada
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Shulhai AM, Munerati A, Menzella M, Palanza P, Esposito S, Street ME. Insights into pubertal development: a narrative review on the role of epigenetics. J Endocrinol Invest 2024:10.1007/s40618-024-02513-0. [PMID: 39704935 DOI: 10.1007/s40618-024-02513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Puberty is a key phase of growth and development, characterized by psychophysical transformations. It is driven by a combination of genetic, hormonal, and environmental variables. Epigenetic mechanisms, including histone post-translational modifications and chromatin remodeling, microRNAs, and DNA methylation, play important roles in orchestrating the developmental processes. We describe environmental factors that may interact with genetics, and factors influencing puberty onset, focusing in particular on epigenetic mechanisms that can help understand the timing and variations that lead to precocious or delayed puberty. METHODS We conducted a narrative review of associations between puberty and epigenetic mechanisms through a comprehensive search of PubMed, Scopus, and Web of Science databases. RESULTS The chromatin landscape of genes as KISS1 has revealed dynamic changes in histone modifications as puberty approaches, influencing the stimulation or inhibition of gene expression critical for reproductive maturation. MiRNAs regulate gene expression, whereas DNA methylation affects activation or repression of gene transcription of genes involved in pubertal timing. Moreover, studies in animal models have provided insights into the role of DNA methylation and miRNAs in brain sexual differentiation, highlighting the active involvement of epigenetic mechanisms in shaping sexually dimorphic brain structures. CONCLUSION This review highlights the importance of understanding the complex interplay between epigenetic regulation and pubertal development, which can lead to new therapeutic options and shed light on the fundamental processes driving reproductive maturation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Anna Munerati
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Marialaura Menzella
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy
| | - Maria Elisabeth Street
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, University of Parma, Parma, 43126, Italy.
| |
Collapse
|
3
|
Zou H, Wang P, Zhang J. Role of microRNAs in pituitary gonadotrope cells. Gen Comp Endocrinol 2024; 355:114557. [PMID: 38797341 DOI: 10.1016/j.ygcen.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics. Here, we review recent advances of miRNAs' expression, functions and mechanisms approached by using miRNA knockout mouse models, in silico analysis and the in vitro cultures of primary pituitary cells and gonadotrope-derived cell lines. By summarizing and discussing different roles of miRNAs in gonadotropes, this minireview helps to gain insights into the complex molecular network in gonadotropes and reproduction.
Collapse
Affiliation(s)
- He Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Peimin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Barbagallo F, Bosoni D, Perone V, Cucinella L, Dealberti D, Cannarella R, Calogero AE, Nappi RE. Gene-environment interaction in functional hypothalamic amenorrhea. Front Endocrinol (Lausanne) 2024; 15:1423898. [PMID: 39268244 PMCID: PMC11390525 DOI: 10.3389/fendo.2024.1423898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Functional hypothalamic amenorrhea (FHA) is a common cause of amenorrhea and chronic anovulation in adolescent girls and young women, diagnosed after excluding other organic causes. It is commonly associated with calorie restriction, excessive physical exercise, and psychosocial stress. These stressors alter the pulsatile secretion of gonadotropin-releasing hormone, leading to a chronic condition of hypoestrogenism and significant health consequences. Recent evidence has highlighted a genetic predisposition to FHA that could explain interindividual variability in stress response. Indeed, not all women experience FHA in response to stress. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism have been identified in women with FHA, suggesting that these mutations may contribute to an increased susceptibility of women to the trigger of stress exposure. FHA appears today as a complex disease resulting from the combination of genetic predisposition, environmental factors, and epigenetic changes. Furthermore, the genetic background of FHA allows for the hypothesis of a male counterpart. Despite the paucity of data, preliminary findings indicate that an equivalent condition of FHA exists in men, warranting further investigation. This narrative review aims to summarize the recent genetic evidence contributing to the pathophysiology of FHA and to raise awareness on a possible male counterpart.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - David Bosoni
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Valeria Perone
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - Davide Dealberti
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
5
|
Ralston BA, Khan L, DeVore SB, Bronnenberg TA, Flock JW, Sequoia AO, Thompson PR, Navratil AM, Cherrington BD. Peptidylarginine deiminase 2 regulates expression of DGCR8 affecting miRNA biogenesis in gonadotrope cells. Reproduction 2023; 166:125-134. [PMID: 37310889 PMCID: PMC10561559 DOI: 10.1530/rep-22-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In brief DGCR8 microprocessor complex, which is important for miRNA biogenesis, is regulated by peptidylarginine deiminase 2 and expression fluctuates in gonadotrope cells across the mouse estrous cycle. Abstract Canonical miRNA biogenesis requires DGCR8 microprocessor complex subunit, which helps cleave pri-miRNAs into pre-miRNAs. Previous studies found that inhibiting peptidylarginine deiminase (PAD) enzyme activity results in increased DGCR8 expression. PADs are expressed in mouse gonadotrope cells, which play a central role in reproduction by synthesizing and secreting the luteinizing and follicle stimulating hormones. Given this, we tested whether inhibiting PADs alters expression of DGCR8, DROSHA, and DICER in the gonadotrope-derived LβT2 cell line. To test this, LβT2 cells were treated with vehicle or 1 µM pan-PAD inhibitor for 12 h. Our results show that PAD inhibition leads to an increase in DGCR8 mRNA and protein. To corroborate our results, dispersed mouse pituitaries were also treated with 1 µM pan-PAD inhibitor for 12 h which increases DGCR8 expression in gonadotropes. Since PADs epigenetically regulate gene expression, we hypothesized that histone citrullination alters Dgcr8 expression thereby affecting miRNA biogenesis. LβT2 samples were subjected to ChIP using an antibody to citrullinated histone H3, which shows that citrullinated histones are directly associated with Dgcr8. Next, we found that when DGCR8 expression is elevated in LβT2 cells, pri-miR-132 and -212 are reduced, while mature miR-132 and -212 are increased suggesting heightened miRNA biogenesis. In mouse gonadotropes, DGCR8 expression is higher in diestrus as compared to estrus, which is the inverse of PAD2 expression. Supporting this idea, treatment of ovariectomized mice with 17β-estradiol results in an increase in PAD2 expression in gonadotropes with a corresponding decrease in DGCR8. Collectively, our work suggests that PADs regulate DGCR8 expression leading to changes in miRNA biogenesis in gonadotropes.
Collapse
Affiliation(s)
- Brett A. Ralston
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Lamia Khan
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stanley B. DeVore
- University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45267, USA
| | - Trent A. Bronnenberg
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Joseph W. Flock
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Ari O. Sequoia
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Paul R. Thompson
- University of Massachusetts Medical School, Program in Chemical Biology, Worcester, MA 01605, USA
| | - Amy M. Navratil
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| | - Brian D. Cherrington
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY 82071, USA
| |
Collapse
|
6
|
Han HS, Ahn E, Park ES, Huh T, Choi S, Kwon Y, Choi BH, Lee J, Choi YH, Jeong YL, Lee GB, Kim M, Seong JK, Shin HM, Kim HR, Moon MH, Kim JK, Hwang GS, Koo SH. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. NATURE AGING 2023; 3:982-1000. [PMID: 37488415 DOI: 10.1038/s43587-023-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process. We found that adipocyte-specific Crtc2 knockout protected mice from age-associated metabolic decline. Multiomics analysis revealed that BCAA catabolism was impaired in aged visceral adipose tissues, leading to the activation of mechanistic target of rapamycin complex (mTORC1) signaling and the resultant cellular senescence, which was restored by Crtc2 knockout in adipocytes. Using single-cell RNA sequencing analysis, we found that age-associated decline in adipogenic potential of visceral adipose tissues was reinstated by Crtc2 knockout, via the reduction of BCAA-mTORC1 senescence-associated secretory phenotype axis. Collectively, we propose that perturbation of BCAA catabolism by CRTC2 is critical in instigating age-associated remodeling of adipose tissue and the resultant metabolic decline in vivo.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | | | - Tom Huh
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seri Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yongmin Kwon
- Division of Life Sciences, Korea University, Seoul, Korea
| | | | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, Korea
| | | | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Minji Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | | | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, Korea.
- Department of Life Sciences, POSTECH, Pohang, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
7
|
Khawar MB, Sohail AM, Li W. SIRT1: A Key Player in Male Reproduction. Life (Basel) 2022; 12:318. [PMID: 35207605 PMCID: PMC8880319 DOI: 10.3390/life12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/23/2022] Open
Abstract
Reproduction is the way to immortality for an individual, and it is essential to the continuation of the species. Sirtuins are involved in cellular homeostasis, energy metabolism, apoptosis, age-related problems, and sexual reproduction. Sirtuin 1 (SIRT1) belongs to the sirtuin family of deacetylases, and it is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It removes the acetyl group from a variety of substrates. SIRT1 regulates endocrine/metabolic, reproductive, and placental development by deacetylating histone, different transcription factors, and signal transduction molecules in a variety of cellular processes. It also plays a very important role in the synthesis and secretion of sex hormones via regulating the hypothalamus-pituitary-gonadal (HPG) axis. Moreover, SIRT1 participates in several key stages of spermatogenesis and sperm maturation. The current review will give a thorough overview of SIRT1's functions in male reproductive processes, thus paving the way for more research on restorative techniques and their uses in reproductive medicine.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Applied Molecular Biology and Biomedicine Laboratory, Department of Zoology, University of Narowal, Narowal 51600, Pakistan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Abdullah Muhammad Sohail
- Molecular Medicine and Cancer Therapeutics Laboratory, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore 54782, Pakistan
| | - Wei Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Stallings CE, Kapali J, Evans BW, McGee SR, Ellsworth BS. FOXO Transcription Factors Are Required for Normal Somatotrope Function and Growth. Endocrinology 2022; 163:6490941. [PMID: 34971379 PMCID: PMC8782608 DOI: 10.1210/endocr/bqab263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Understanding the molecular mechanisms underlying pituitary organogenesis and function is essential for improving therapeutics and molecular diagnoses for hypopituitarism. We previously found that deletion of the forkhead factor, Foxo1, in the pituitary gland early in development delays somatotrope differentiation. While these mice grow normally, they have reduced growth hormone expression and free serum insulin-like growth factor-1 (IGF1) levels, suggesting a defect in somatotrope function. FOXO factors show functional redundancy in other tissues, so we deleted both Foxo1 and its closely related family member, Foxo3, from the primordial pituitary. We find that this results in a significant reduction in growth. Consistent with this, male and female mice in which both genes have been deleted in the pituitary gland (dKO) exhibit reduced pituitary growth hormone expression and serum IGF1 levels. Expression of the somatotrope differentiation factor, Neurod4, is reduced in these mice. This suggests a mechanism underlying proper somatotrope function is the regulation of Neurod4 expression by FOXO factors. Additionally, dKO mice have reduced Lhb expression and females also have reduced Fshb and Prl expression. These studies reveal FOXO transcription factors as important regulators of pituitary gland function.
Collapse
Affiliation(s)
- Caitlin E Stallings
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jyoti Kapali
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Brian W Evans
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
- Correspondence: Buffy S. Ellsworth, Ph.D., Department of Physiology, Southern Illinois University, 1135 Lincoln Drive, Life Science III room 2062, Carbondale, IL 62901, USA.
| |
Collapse
|
9
|
Jie H, Xu Z, Gao J, Li F, Chen Y, Zeng D, Zhao G, Li D. Differential expression profiles of microRNAs in musk gland of unmated and mated forest musk deer ( Moschus berezovskii). PeerJ 2022; 9:e12710. [PMID: 35036174 PMCID: PMC8710055 DOI: 10.7717/peerj.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Background The formation of musk is a complex biophysical and biochemical process that change with the rut of male forest musk deer. We have reported that the mating status of male forest musk deer might result to the variations of chemical composition and microbiota of musk and its yields. Critical roles for microRNAs (miRNAs) of multi-tissues were profiled in our previous study; however, the role for miRNAs of the musk gland remains unclear in this species. Methods In this study, we used Illumina deep sequencing technology to sequence the small RNA transcriptome of unmated male (UM) and mated male (UM) of Chinese forest musk deer. Results We identified 1,652 known miRNAs and 45 novel miRNAs, of which there were 174 differentially expressed miRNAs between UM and MM. chi-miR-21-5p, ipu-miR-99b and bta-miR-26a were up-regulated in UM among the 10 most differentially expressed miRNAs. Functional enrichment of the target genes showed that monosaccharide biosynthetic process, protein targeting, cellular protein catabolic process enriched higher in MM. Meanwhile, structural molecule activity, secretion by cell, regulated exocytosis and circulatory system process enriched more in UM, hinting that the formation of musk in UM was mediated by target genes related to exocytosis. The miRNA-mRNA pairs such as miR-21: CHD7, miR143: HSD17B7, miR-141/200a: Noc2 might involve in musk gland development and musk secretion, which need to be verified in future study.
Collapse
Affiliation(s)
- Hang Jie
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Zhongxian Xu
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China.,China West Normal University, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, Sichuan, China
| | - Jian Gao
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China
| | - Feng Li
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China.,China West Normal University, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, Sichuan, China
| | - Yinglian Chen
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Dejun Zeng
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Guijun Zhao
- Chongqing Institute of Medicinal Plant Cultivation, Bio-resource Research and Utilization joint key laboratory of Sichuan and Chongqing, Nanchuan, Chongqing, China
| | - Diyan Li
- Sichuan Agricultural University, Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Fontana L, Garzia E, Marfia G, Galiano V, Miozzo M. Epigenetics of functional hypothalamic amenorrhea. Front Endocrinol (Lausanne) 2022; 13:953431. [PMID: 36034425 PMCID: PMC9415998 DOI: 10.3389/fendo.2022.953431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Functional hypothalamic amenorrhea (FHA) is a temporary infertility characterized by the suppression of the hypothalamic-pituitary-gonadal (HPG) axis, induced by the inhibition of the hypothalamic pulsatile secretion of the gonadotropin-releasing hormone (GnRH), in the presence of stressors, including eating disorders, excessive exercise, and psychological distress. Although the stressful factors that may lead to FHA are well-established, little is known about the inter-individual variability in response to stress and the consequent inhibition of the HPG axis. Not all women, indeed, manifest FHA in presence of stressful conditions. Recent studies highlighted a genetic contribution to FHA. Rare or polymorphic variants in genes that control the development and/or function of GnRH neurons may contribute, indeed, to the adaptability of the reproductive axis to stress factors. Also epigenetic changes have been associated with different pathways involved in the HPG axis and therefore, take part in FHA and confer a personal predisposition to anovulation consequent to a stressful event, or represent biological markers of response to stress. This review summarizes recent advances in the identification of the contribution of (epi)genetics to FHA and to long-term complications of functional amenorrhea, and reports insights into the involvement of additional genetic loci in FHA development on the bases of the clinical and molecular overlap with other gynecological and/or psychological conditions. Finally, we describe the promising application of induced pluripotent stem cells (iPSCs) as a new approach to investigate the molecular pathways involved in FHA.
Collapse
Affiliation(s)
- L. Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - E. Garzia
- Reproductive Medicine Unit, Department of Mother and Child, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
- Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Milan, Italy
| | - G. Marfia
- Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Milan, Italy
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V. Galiano
- Reproductive Medicine Unit, Department of Mother and Child, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - M. Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
- *Correspondence: M. Miozzo,
| |
Collapse
|
11
|
Peng C, Li J. Editorial: MicroRNAs in endocrinology and cell signaling. Front Endocrinol (Lausanne) 2022; 13:1118426. [PMID: 36601018 PMCID: PMC9806391 DOI: 10.3389/fendo.2022.1118426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Wan X, Yan Z, Tan Z, Cai Z, Qi Y, Lu L, Xu Y, Chen J, Lei T. MicroRNAs in Dopamine Agonist-Resistant Prolactinoma. Neuroendocrinology 2022; 112:417-426. [PMID: 34034260 DOI: 10.1159/000517356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Dopamine agonists (DAs) are preferred for the treatment of prolactinomas and are usually very effective. Nonetheless, 20-30% of bromocriptine- and approximately 10% of cabergoline-treated individuals exhibit resistance to DAs. In addition, the mechanism underlying this phenomenon remains elusive. In this study, we summarize the major findings regarding the role of microRNAs (miRNAs) in the pathogenesis of DA-resistant prolactinoma (DARP). Currently available evidence suggests that miRNAs are usually dysregulated in DARP and that, although controversial, the dysregulated miRNAs target the transforming growth factor (TGF)-β, dopamine 2 receptor (D2R), or estradiol (E2)/estrogen receptor (ER) signaling pathways to mediate the therapeutic effect of DAs. These findings provide new incentives for research on innovative strategies for predicting patients' responsiveness to dopamine therapies and for developing treatment approaches. Unfortunately, recent studies tended to focus exclusively on the differential miRNA expression profiles between DARP and dopamine-sensitive prolactinoma, and no definitive consensus has been reached regarding the role of these miRNAs in the modulation mechanism. Therefore, current and future efforts should be directed toward the exploration of the mechanism underlying the dysregulation of miRNAs as well as of the target proteins that are affected by the dysregulated miRNAs. Furthermore, the modulation of the expression of dysregulated miRNAs, which target the D2R, TGF-β, or E2/ER signaling pathways, might be a promising alternative to treat patients with DARP and improve their prognosis.
Collapse
Affiliation(s)
- Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zisheng Yan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubin Tan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Cai
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Lu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Xiong J, Zhang H, Zeng B, Liu J, Luo J, Chen T, Sun J, Xi Q, Zhang Y. An Exploration of Non-Coding RNAs in Extracellular Vesicles Delivered by Swine Anterior Pituitary. Front Genet 2021; 12:772753. [PMID: 34912377 PMCID: PMC8667663 DOI: 10.3389/fgene.2021.772753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles are lipid bilayer-delimited particles carrying proteins, lipids, and small RNAs. Previous studies have demonstrated that they had regulatory functions both physiologically and pathologically. However, information remains inadequate on extracellular vesicles from the anterior pituitary, a key endocrine organ in animals and humans. In this study, we separated and identified extracellular vesicles from the anterior pituitary of the Duroc swine model. Total RNA was extracted and RNA-seq was performed, followed by a comprehensive analysis of miRNAs, lncRNAs, and circRNAs. Resultantly, we obtained 416 miRNAs, 16,232 lncRNAs, and 495 circRNAs. Furthermore, GO and KEGG enrichment analysis showed that the ncRNAs in extracellular vesicles may participate in regulating intracellular signal transduction, cellular component organization or biogenesis, small molecule binding, and transferase activity. The cross-talk between them also suggested that they may play an important role in the signaling process and biological regulation. This is the first report of ncRNA data in the anterior pituitary extracellular vesicles from the duroc swine breed, which is a fundamental resource for exploring detailed functions of extracellular vesicles from the anterior pituitary.
Collapse
Affiliation(s)
- Jiali Xiong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Haojie Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bin Zeng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Butler AE, Cunningham TK, Ramachandran V, Diboun I, Halama A, Sathyapalan T, Najafi-Shoushtari SH, Atkin SL. Association of microRNAs With Embryo Development and Fertilization in Women Undergoing Subfertility Treatments: A Pilot Study. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:719326. [PMID: 36303988 PMCID: PMC9580729 DOI: 10.3389/frph.2021.719326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Small non-coding RNAs, known as microRNAs (miRNAs), have emerging regulatory functions within the ovary that have been related to fertility. This study was undertaken to determine if circulating miRNAs reflect the changes associated with the parameters of embryo development and fertilization.Methods: In this cross-sectional pilot study. Plasma miRNAs were collected from 48 sequentially presenting women in the follicular phase prior to commencing in vitro fertilization (IVF). Circulating miRNAs were measured using locked nucleic acid (LNA)-based quantitative PCR (qPCR), while an updated miRNA data set was used to determine their level of expression.Results: Body mass index and weight were associated with the miRNAs let7b-3p and miR-375, respectively (p < 0.05), with the same relationship being found between endometrium thickness at oocyte retrieval and miR-885-5p and miR-34a-5p (p < 0.05). In contrast, miR-1260a was found to be inversely associated with anti-Mullerian hormone (AMH; p = 0.007), while miR-365a-3p, miR122-5p, and miR-34a-5p correlated with embryo fertilization rates (p < 0.05). However, when omitting cases of male infertility (n = 15), miR122-5p remained significant (p < 0.05), while miR-365a-3p and miR-34a-5p no longer differed; interestingly, however, miR1260a and mir93.3p became significant (p = 0.0087/0.02, respectively). Furthermore, age was negatively associated with miR-335-3p, miR-28-5p, miR-155-5p, miR-501-3p, and miR-497-5p (p < 0.05). Live birth rate was negatively associated with miR-335-3p, miR-100-5p, miR-497-5p, let-7d, and miR-574-3p (p < 0.05), but these were not significant when age was accounted for.However, with the exclusion of male factor infertility, all those miRNAs were no longer significant, though miR.150.5p emerged as significant (p = 0.042). A beta-regression model identified miR-1260a, miR-486-5p, and miR-132-3p (p < 0.03, p = 0.0003, p < 0.00001, respectively) as the most predictive for fertilization rate. Notably, changes in detectable miRNAs were not linked to cleavage rate, top quality embryos (G3D3), and blastocyst or antral follicle count. An ingenuity pathway analysis showed that miRNAs associated with age were also associated with the variables found in reproductive system diseases.Conclusion: Plasma miRNAs prior to the IVF cycle were associated with differing demographic and IVF parameters, including age, and may be predictive biomarkers of fertilization rate.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons Ireland, Adliya, Bahrain
- *Correspondence: Alexandra E. Butler ;
| | - Thomas Keith Cunningham
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
- The Hull IVF Unit. Women's and Children's Hospital, Hull Royal Infirmary, Hull, United Kingdom
| | - Vimal Ramachandran
- Division of Research, MicroRNA Core Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ilhame Diboun
- Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Anna Halama
- Division of Research, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - S. Hani Najafi-Shoushtari
- Division of Research, MicroRNA Core Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, United States
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons Ireland, Adliya, Bahrain
| |
Collapse
|
15
|
Yang H, Fu L, Luo Q, Li L, Zheng F, Wen J, Li C, Luo X, Zhao Z, Xu H. Identification and validation of key miRNAs and miRNA-mRNA regulatory network associated with uterine involution in postpartum Kazakh sheep. Arch Anim Breed 2021; 64:119-129. [PMID: 34084910 PMCID: PMC8131964 DOI: 10.5194/aab-64-119-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are widely expressed in different mammalian tissues and
exert their biological effects through corresponding target genes. miRNA
target genes can be rapidly and efficiently identified and screened by
combining bioinformatics prediction and experimental validation. To
investigate the possible molecular regulatory mechanisms involving miRNAs
during uterine involution in postpartum ewes, we used Illumina HiSeq
sequencing technology to screen for the number and characteristics of miRNAs
in faster uterine involution and normal uterine involution group. A total of
118 differentially expressed miRNAs, including 33 known miRNAs and 85 new
miRNAs, were identified in the hypothalamic library, whereas 54 miRNAs,
including 5 known miRNAs and 49 new miRNAs, were identified in the uterine
library. Screening with four types of gene prediction software revealed 73
target genes associated with uterine involution, and subsequently, GO
annotation and KEGG pathway analysis were performed. The results showed
that, in the hypothalamic–uterine axis, uterine involution in postpartum
ewes might primarily involve two miRNA-target gene pairs, namely,
miRNA-200a–PTEN and miRNA-133–FGFR1, which can participate in GnRH signal
transduction in the upstream hypothalamus and in the remodeling process at
the downstream uterus, through the PI3K–AKT signaling pathway to influence
the recovery of the morphology and functions of the uterus during the
postpartum period in sheep. Therefore, identification of differentially
expressed miRNAs in this study fills a gap in the research related to miRNAs
in uterine involution in postpartum ewes and provides an important reference
point for a comprehensive understanding of the molecular mechanisms
underlying the regulation of postpartum uterine involution in female
livestock.
Collapse
Affiliation(s)
- Heng Yang
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Rongchang 402460, Chongqing, China
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Rongchang 402460, Chongqing, China
| | - Qifeng Luo
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Licai Li
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Fangling Zheng
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Jiayu Wen
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Chenjing Li
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Xingxiu Luo
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Huihao Xu
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| |
Collapse
|
16
|
Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals (Basel) 2021; 11:ani11041134. [PMID: 33921032 PMCID: PMC8071398 DOI: 10.3390/ani11041134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The reproduction of mammals is regulated by the hypothalamic-pituitary-gonadal axis. Follicle stimulating hormone, as one of the gonadotropins secreted by the pituitary gland, plays an immeasurable role. This article mainly reviews the molecular basis and classical signaling pathways that regulate the synthesis and secretion of follicle stimulating hormone, and summarizes its internal molecular mechanism, which provides a certain theoretical basis for the research of mammalian reproduction regulation and the application of follicle stimulating hormone in production practice. Abstract Mammalian reproduction is mainly driven and regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, is a key regulator that ultimately affects animal fertility. As a dimeric glycoprotein hormone, the biological specificity of FSH is mainly determined by the β subunit. As research techniques are being continuously innovated, studies are exploring the underlying molecular mechanism regulating the secretion of mammalian FSH. This article will review the current knowledge on the molecular mechanisms and signaling pathways systematically regulating FSH synthesis and will present the latest hypothesis about the nuclear cross-talk among the various endocrine-induced pathways for transcriptional regulation of the FSH β subunit. This article will provide novel ideas and potential targets for the improved use of FSH in livestock breeding and therapeutic development.
Collapse
|
17
|
Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction. Int J Mol Sci 2021; 22:ijms22073312. [PMID: 33805020 PMCID: PMC8038027 DOI: 10.3390/ijms22073312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor.
Collapse
|
18
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
19
|
Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031243. [PMID: 33573212 PMCID: PMC7908627 DOI: 10.3390/ijerph18031243] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Diet deeply impacts brain functions like synaptic plasticity and cognitive processes, neuroendocrine functions, reproduction and behaviour, with detrimental or protective effects on neuronal physiology and therefore consequences for health. In this respect, the activity of metabolic sensors within the brain is critical for the maintenance of health status and represents a possible therapeutic target for some diseases. This review summarizes the main activity of Sirtuin1 (Sirt1), a metabolic sensor within the brain with a focus on the link between the central control of energy homeostasis and reproduction. The possible modulation of Sirt1 by natural phytochemical compounds like polyphenols is also discussed.
Collapse
|
20
|
He J, Xu S, Ji Z, Sun Y, Cai B, Zhang S, Wang P. The role of miR-7 as a potential switch in the mouse hypothalamus-pituitary-ovary axis through regulation of gonadotropins. Mol Cell Endocrinol 2020; 518:110969. [PMID: 32781248 DOI: 10.1016/j.mce.2020.110969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
The hypothalamus-pituitary-ovary (HPO) axis plays fundamental roles in female neuroendocrinology and reproduction. Pituitary gonadotropins are located in the center of this axis. Previous investigation suggested that miR-7 is closely linked with gonadotropins. However, the interaction between miR-7 and the HPO axis remains unclear. This study aims to determine whether and how miR-7 functions in this axis. A mouse ovariectomy model and mouse primary pituitary cells were used in this study. The results showed that miR-7 is localized to gonadotrophs and somatotrophs. miR-7 can inhibit the expression, synthesis and secretion of gonadotropins, but not growth hormones. Gonadotropin-releasing hormone (GnRH) has inhibitory effects on miR-7, while estrogen enhances miR-7 expression. miR-7 is vital for the pathway by which GnRH and estrogen regulate gonadotropins by targeting v-raf-leukemia viral oncogene 1 (Raf1). Together, these results indicate that miR-7 acts as a potential switch in the feedback loop of the HPO axis by regulating gonadotropins.
Collapse
Affiliation(s)
- Jing He
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Shirong Xu
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Zengjun Ji
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Youhong Sun
- Department of Gynecology, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Bingyan Cai
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, People's Republic of China
| | - Shanhui Zhang
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China.
| | - Pingping Wang
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
22
|
Han DX, Sun XL, Wang CJ, Yu ZW, Zheng Y, Huang YJ, Wang WH, Jiang H, Gao Y, Yuan B, Zhang JB. Differentially expressed lncRNA-m433s1 regulates FSH secretion by functioning as a miRNA sponge in male rat anterior pituitary cells†. Biol Reprod 2020; 101:416-425. [PMID: 31201415 DOI: 10.1093/biolre/ioz100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/11/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators that have multiple functions in a variety of biological processes. However, the contributions of lncRNAs to follicle-stimulating hormone (FSH) secretion remain largely unknown. In this study, we first identified a novel lncRNA, lncRNA-m433s1, as an intergenic lncRNA located in the cytoplasm. We next used MS2-RIP assays to demonstrate that lncRNA-m433s1 interacted with miR-433. Furthermore, we detected the levels of lncRNA-m433s1, miR-433, and Fshβ expression, FSH concentrations, and apoptosis upon overexpression and knockdown of lncRNA-m433s1, revealing that lncRNA-m433s1 upregulated Fshβ expression. Globally, lncRNA-m433s1 reduced the inhibitory effect of miR-433 on Fshβ and further regulated FSH secretion as a competing endogenous RNA (ceRNA) by sponging miR-433. This ceRNA model will provide novel insight into the regulatory mechanisms of lncRNAs associated with rat reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Jie Huang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wen-Hua Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
23
|
Erdem Guzel E, Kaya N, Tektemur A, Ulker N, Yardimci A, Akkoc RF, Canpolat S, Ozan IE. Chronic effects of maternal tobacco-smoke exposure and/or α-lipoic acid treatment on reproductive parameters in female rat offspring. Syst Biol Reprod Med 2020; 66:387-399. [PMID: 32951465 DOI: 10.1080/19396368.2020.1815248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Prenatal tobacco-smoke exposure negatively affects the reproductive functions of female offspring and oxidative stress plays a major role at this point. Alpha-lipoic acid (ALA), well known as a biological antioxidant, has been used as a nutritional supplement and as a therapeutic agent in the treatment of certain complications during pregnancy. We aimed to investigate the effects of maternal tobacco-smoke exposure and/or ALA administration on puberty onset, sexual behavior, gonadotrophin levels, apoptosis-related genes, apoptotic cell numbers and oxidative stress markers in the adult female rat offspring. Sprague-Dawley rats were divided into four groups; control, tobacco smoke (TS), TS+ALA and ALA groups. Animals were exposed to TS and/or ALA for 8 weeks before pregnancy and throughout pregnancy. All treatments ended with birth and later newborn female rats were selected for each experimental group. The experiment ended at postnatal day 74-77. Maternal tobacco smoke advanced the onset of puberty in the female offspring of the TS group (p < 0.05). In all treatment groups; the mean number of anogenital investigations and lordosis quality scores showed a decline, serum luteinizing hormone levels significantly increased (p < 0.05) and several histopathological changes in ovaries were observed compared to the control group. In addition, an increase in apoptotic marker levels and apoptotic cell numbers was detected in the ovaries of all treatment groups. Decreased TAS and increased TOS levels were detected in all treatment groups compared to control. These findings suggested that maternal tobacco smoke and/or ALA administration may be leading to the impaired reproductive health of female offspring. Abbreviations: ALA: alpha-lipoic acid; LH: luteinizing hormone; FSH: follicle-stimulating hormone; TAS: total antioxidant status; TOS: total oxidant status; Apaf1: apoptotic protease-activating factor 1; Casp3: caspase 3; Casp9: caspase 9; CF: cyst follicles; 4-HNE: 4-Hidroxynonenal; 8-OHdG: 8-hydroxydeoxyguanosine; TUNEL: terminal deoxynucleotidyl transferase-mediated deoxyuridine-biotin nick end labeling; ROS: reactive oxygen species; GnRHR: gonadotropin-releasing hormone receptor; HPG: hypothalamic-pituitary-gonadal; AMPK: AMP-activated protein kinase; ELISA: enzyme-linked immunosorbent assay; cDNA: complementary DNA; qPCR: quantitative real-time PCR; FC: follicular cysts; PF: primary follicle; SF: secondary follicle; GF: graafian follicle; CL: corpus luteum; DF: degenerated follicle; AF: atretic follicle.
Collapse
Affiliation(s)
- Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University , Mardin, Turkey
| | - Nalan Kaya
- Department of Histology and Embryology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Nazife Ulker
- Department of Physiology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Ramazan Fazil Akkoc
- Department of Anatomy, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Ibrahim Enver Ozan
- Department of Histology and Embryology, Faculty of Medicine, Firat University , Elazig, Turkey
| |
Collapse
|
24
|
Ju M, Yang L, Zhu J, Chen Z, Zhang M, Yu J, Tian Z. MiR-664-2 impacts pubertal development in a precocious-puberty rat model through targeting the NMDA receptor-1†. Biol Reprod 2020; 100:1536-1548. [PMID: 30916745 DOI: 10.1093/biolre/ioz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/07/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Precocious puberty (PP) commonly results from premature activation of the hypothalamic-pituitary-gonadal axis (HPGA). Gonadotropin-releasing hormone (GnRH) is the initial trigger for HPGA activation and plays an important role in puberty onset. N-methyl-D-aspartate (NMDA) can promote pulsatile GnRH secretion and accelerates puberty onset. However, the mechanism of N-methyl-D-aspartate receptors (NMDARs) in PP pathogenesis remains obscure. We found that serum GnRH, luteinizing hormone (LH), follicle-stimulating hormone (FSH), estrogen (E2) levels, hypothalamic NMDAR1, and GnRH mRNA expression peaked at the vaginal opening (VO) day. Next, the hypothalamic NMDAR1 mRNA and protein levels in rats treated with danazol, a chemical commonly effecting on the reproductive system, were significantly increased at the VO day (postnatal day 24) compared to controls, accompanied by enhanced serum GnRH, LH, FSH, and E2 levels. Further, microRNA-664-2 (miR-664-2) was selected after bioinformatics analysis and approved in primary hypothalamic neurons, which binds to the 3'-untranslated regions of NMDAR1. Consistently, the miR-664-2 expression in hypothalamus of the Danazol group was decreased compared to Vehicle. Our results suggested that attenuated miR-664-2 might participate in PP pathogenesis through enhancing the NMDAR1 signaling.
Collapse
Affiliation(s)
- Minda Ju
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Liu Yang
- Shanghai Dunlu Biomedical Technology Co., Ltd, Shanghai, China
| | - Jing Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhejun Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Mizhen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Institute of Acupuncture and Moxibustion Research, Academy of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Zhang H, Chen T, Xiong J, Hu B, Luo J, Xi Q, Jiang Q, Sun J, Zhang Y. MiR-130a-3p Inhibits PRL Expression and Is Associated With Heat Stress-Induced PRL Reduction. Front Endocrinol (Lausanne) 2020; 11:92. [PMID: 32194503 PMCID: PMC7062671 DOI: 10.3389/fendo.2020.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (MiRNAs) play critical roles in the regulation of pituitary function. MiR-130a-3p has previously been found to be down-regulated in prolactinoma, but its roles in prolactin (PRL) regulation and the underlying mechanisms are still unclear. Heat stress has been shown to induce alteration of endocrine hormones and miRNAs expressions. However, there is limited information regarding the emerging roles of miRNAs in heat stress response. In this study, we transfected miR-130a-3p mimic into the pituitary adenoma cells (GH3 cells) to investigate the function of miR-130a-3p in regulating PRL. Our results showed that miR-130a-3p overexpression significantly decreased the PRL expression at both mRNA and protein levels. Subsequently, estrogen receptor α (ERα) was identified as a direct target of miR-130a-3p by bioinformatics prediction, luciferase reporter assay and western blotting assay. Furthermore, the inhibition of ERα caused by estrogen receptor antagonist significantly reduced the PRL expression. Overexpression of ERα rescued the suppressed expression of PRL caused by miR-130a-3p mimic. Besides, we also studied the effect of heat stress on PRL and miRNAs expressions. Interestingly, we found that heat stress reduced PRL and ERα expressions while it increased miR-130a-3p expression both in vitro and in vivo. Taken together, our results indicate that miR-130a-3p represses ERα by targeting its 3'UTR leading to a decrease in PRL expression, and miR-130a-3p is correlative with heat stress-induced PRL reduction, which provides a novel mechanism that miRNAs are involved in PRL regulation.
Collapse
Affiliation(s)
- Haojie Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Jiali Xiong
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoyu Hu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Qingyang Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiajie Sun
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
- Yongliang Zhang
| |
Collapse
|
26
|
Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y, Wang HY, Yong YT, Liu YB, Hu HJ, Cui W, Sun SG, Li BH, Zhang F, Han M. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res 2019; 47:3580-3593. [PMID: 30820544 PMCID: PMC6468289 DOI: 10.1093/nar/gkz141] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/31/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
NF-κB-mediated inflammatory phenotypic switching of vascular smooth muscle cells (VSMCs) plays a central role in atherosclerosis and neointimal formation. However, little is known about the roles of circRNAs in the regulation of NF-κB signaling. Here, we identify the involvement of circ-Sirt1 that was one of transcripts of SIRT1 host gene in VSMC inflammatory response and neointimal hyperplasia. First, in the cytoplasm, circ-Sirt1 directly interacts with and sequesters NF-κB p65 from nuclear translocation induced by TNF-α in a sequence-dependent manner. The inhibitory complex of circ-Sirt1-NF-κB p65 is not dependent on IκBα. Second, circ-Sirt1 binds to miR-132/212 that interferes with SIRT1 mRNA, and facilitates the expression of host gene SIRT1. Increased SIRT1 results in deacetylation and inactivation of the nuclear NF-κB p65. These findings illustrate that circ-Sirt1 is a novel non-coding RNA regulator of VSMC phenotype.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yuan Yu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yong-Qing Dou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Xu-Hui Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Hai-Yue Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu-Tao Yong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Ya-Bin Liu
- Department of Surgery, the Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hai-Juan Hu
- Department of Cardiovascular Medicine, the Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wei Cui
- Department of Cardiovascular Medicine, the Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Bing-Hui Li
- Department of Surgery, the Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Wang CJ, Guo HX, Han DX, Yu ZW, Zheng Y, Jiang H, Gao Y, Yuan B, Zhang JB. Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells. PeerJ 2019; 7:e6458. [PMID: 30993031 PMCID: PMC6461031 DOI: 10.7717/peerj.6458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
The follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, plays an important role in regulating reproductive processes. In this study, using the TargetScan program, we predicted that microRNAs (miRNAs) regulate FSH secretion. Dual-luciferase reporter assays were performed and identified miR-7a-5p. MiR-7a-5p has been reported to regulate diverse cellular functions. However, it is unclear whether miR-7a-5p binds to mRNAs and regulates reproductive functions. Therefore, we constructed a suspension of rat anterior pituitary cells and cultured them under adaptive conditions, transfected miR-7a-5p mimics or inhibitor into the cell suspension and detected expression of the FSHb gene. The results demonstrated that miR-7a-5p downregulated FSHb expression levels, while treatment with miR-7a-5p inhibitors upregulated FSHb expression levels relative to those of negative control groups, as shown by quantitative PCR analysis. The results were confirmed with a subsequent experiment showing that FSH secretion was reduced after treatment with mimics and increased in the inhibitor groups, as shown by enzyme-linked immunosorbent assay. Our results indicated that miR-7a-5p downregulates FSHb expression levels, resulting in decreased FSH synthesis and secretion, which demonstrates the important role of miRNAs in the regulation of FSH and animal reproduction.
Collapse
Affiliation(s)
- Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Abstract
The hypothalamic decapeptide, GnRH, is the gatekeeper of mammalian reproductive development and function. Activation of specific, high-affinity cell surface receptors (GnRH receptors) on gonadotropes by GnRH triggers signal transduction cascades to stimulate the coordinated synthesis and secretion of the pituitary gonadotropins FSH and LH. These hormones direct gonadal steroidogenesis and gametogenesis, making their tightly regulated production and secretion essential for normal sexual maturation and reproductive health. FSH and LH are glycoprotein heterodimers comprised of a common α-subunit and a unique β-subunit (FSHβ and LHβ, respectively), which determines the biological specificity of the gonadotropins. The unique β-subunit is the rate-limiting step for the production of the mature gonadotropins. Therefore, FSH synthesis is regulated at the transcriptional level by Fshb gene expression. The overarching goal of this review is to expand our understanding of the mechanisms and pathways underlying the carefully orchestrated control of FSH synthesis and secretion by GnRH, focusing on the transcriptional regulation of the Fshb gene. Identification of these regulatory mechanisms is not only fundamental to our understanding of normal reproductive function but will also provide a context for the elucidation of the pathophysiology of reproductive disorders and infertility to lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Yale New Haven Health, Bridgeport Hospital, Bridgeport, Connecticut
- School of Medicine, University of Crete, Heraklion, Greece
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Rickert E, Fernandez MO, Choi I, Gorman M, Olefsky JM, Webster NJG. Neuronal SIRT1 Regulates Metabolic and Reproductive Function and the Response to Caloric Restriction. J Endocr Soc 2018; 3:427-445. [PMID: 30746504 PMCID: PMC6364627 DOI: 10.1210/js.2018-00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Sirt1 is an NAD-dependent, class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. In this study, we generated mice expressing an enzymatically inactive form (N-MUT) or wild-type (WT) SIRT1 (N-OX) in mature neurons. N-OX male and female mice had impaired glucose tolerance, and N-MUT female, but not male, mice had improved glucose tolerance compared with that of WT littermates. Furthermore, glucose tolerance was improved in all mice with caloric restriction (CR) but was greater in the N-OX mice, who had better glucose tolerance than their littermates. At the reproductive level, N-OX females had impaired estrous cycles, with increased cycle length and more time in estrus. LH and progesterone surges were absent on the evening of proestrus in the N-OX mice, suggesting a defect in spontaneous ovulation, which was confirmed by the ovarian histology revealing fewer corpora lutea. Despite this defect, the mice were still fertile when mated to WT mice on the day of proestrus, indicating that the mice could respond to normal pheromonal or environmental cues. When subjected to CR, the N-OX mice went into diestrus arrest earlier than their littermates. Together, these results suggested that the overexpression of SIRT1 rendered the mice more sensitive to the metabolic improvements and suppression of reproductive cycles by CR, which was independent of circadian rhythms.
Collapse
Affiliation(s)
- Emily Rickert
- VA San Diego Healthcare System, San Diego, California.,Department of Medicine, University of California San Diego, La Jolla, California
| | | | - Irene Choi
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Michael Gorman
- Department of Psychology, University of California San Diego, La Jolla, California
| | - Jerrold M Olefsky
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, California.,Department of Medicine, University of California San Diego, La Jolla, California.,Moores Cancer Center, University of California San Diego, La Jolla, California
| |
Collapse
|
30
|
Garrel G, Denoyelle C, L'Hôte D, Picard JY, Teixeira J, Kaiser UB, Laverrière JN, Cohen-Tannoudji J. GnRH Transactivates Human AMH Receptor Gene via Egr1 and FOXO1 in Gonadotrope Cells. Neuroendocrinology 2018; 108:65-83. [PMID: 30368511 DOI: 10.1159/000494890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVES Anti-Müllerian hormone (AMH) signaling is critical for sexual differentiation and gonadal function. AMH receptor type 2 (AMHR2) is expressed in extragonadal sites such as brain, and pituitary and emerging evidence indicates that AMH biological action is much broader than initially thought. We recently reported that AMH signaling enhances follicle-stimulating hormone synthesis in pituitary gonadotrope cells. However, mechanisms regulating AMHR2 expression in these extragonadal sites remain to be explored. METHOD/RESULTS Here, we demonstrated in perifused murine LβT2 gonadotrope cells that Amhr2 expression is differentially regulated by GnRH pulse frequency with an induction under high GnRH pulsatility. Furthermore, we showed that GnRH transactivates the human AMHR2 promoter in LβT2 cells. Successive deletions of the promoter revealed the importance of a short proximal region (-53/-37 bp) containing an Egr1 binding site. Using site-directed mutagenesis of Egr1 motif and siRNA mediated-knockdown of Egr1, we demonstrated that Egr1 mediates basal and GnRH-dependent activity of the promoter, identifying Egr1 as a new transcription factor controlling hAMHR2 expression. We also showed that SF1 and β-catenin are required for basal promoter activity and demonstrated that both factors contribute to the GnRH stimulatory effect, independently of their respective binding sites. Furthermore, using a constitutively active mutant of FOXO1, we identified FOXO1 as a negative regulator of basal and GnRH-dependent AMHR2 expression in gonadotrope cells. CONCLUSIONS This study identifies GnRH as a regulator of human AMHR2 expression, further highlighting the importance of AMH signaling in the regulation of gonadotrope function.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Physiologie de l'axe gonadotrope U1133, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Biologie Fonctionnelle et Adaptative UMR 8251, Sorbonne Paris Cité, Université Paris-Diderot, Paris, France
| | - Chantal Denoyelle
- Physiologie de l'axe gonadotrope U1133, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Biologie Fonctionnelle et Adaptative UMR 8251, Sorbonne Paris Cité, Université Paris-Diderot, Paris, France
| | - David L'Hôte
- Physiologie de l'axe gonadotrope U1133, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Biologie Fonctionnelle et Adaptative UMR 8251, Sorbonne Paris Cité, Université Paris-Diderot, Paris, France
| | - Jean-Yves Picard
- Physiologie de l'axe gonadotrope U1133, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Biologie Fonctionnelle et Adaptative UMR 8251, Sorbonne Paris Cité, Université Paris-Diderot, Paris, France
| | - Jose Teixeira
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Noël Laverrière
- Physiologie de l'axe gonadotrope U1133, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Biologie Fonctionnelle et Adaptative UMR 8251, Sorbonne Paris Cité, Université Paris-Diderot, Paris, France
| | - Joëlle Cohen-Tannoudji
- Physiologie de l'axe gonadotrope U1133, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Biologie Fonctionnelle et Adaptative UMR 8251, Sorbonne Paris Cité, Université Paris-Diderot, Paris,
| |
Collapse
|
31
|
Feldman A, Saleh A, Pnueli L, Qiao S, Shlomi T, Boehm U, Melamed P. Sensitivity of pituitary gonadotropes to hyperglycemia leads to epigenetic aberrations and reduced follicle‐stimulating hormone levels. FASEB J 2018; 33:1020-1032. [DOI: 10.1096/fj.201800943r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alona Feldman
- Faculty of BiologyTechnion–Israel Institute of Technology Haifa Israel
| | - Ayah Saleh
- Faculty of BiologyTechnion–Israel Institute of Technology Haifa Israel
| | - Lilach Pnueli
- Faculty of BiologyTechnion–Israel Institute of Technology Haifa Israel
| | - Sen Qiao
- Experimental PharmacologyCenter for Molecular Signaling (PZMS)Saarland University School of Medicine Homburg Germany
| | - Tomer Shlomi
- Faculty of BiologyTechnion–Israel Institute of Technology Haifa Israel
- Department of Computer ScienceTechnion–Israel Institute of Technology Haifa Israel
| | - Ulrich Boehm
- Experimental PharmacologyCenter for Molecular Signaling (PZMS)Saarland University School of Medicine Homburg Germany
| | - Philippa Melamed
- Faculty of BiologyTechnion–Israel Institute of Technology Haifa Israel
| |
Collapse
|
32
|
Ye J, Yao Z, Si W, Gao X, Yang C, Liu Y, Ding J, Huang W, Fang F, Zhou J. Identification and characterization of microRNAs in the pituitary of pubescent goats. Reprod Biol Endocrinol 2018; 16:51. [PMID: 29801455 PMCID: PMC5970454 DOI: 10.1186/s12958-018-0370-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Puberty is the period during a female mammal's life when it enters estrus and ovulates for the first time; this indicates that a mammal is capable of reproduction. The onset of puberty is a complex and tightly coordinated biological event; it has been reported that microRNAs (miRNAs) are involved in regulating the initiation of puberty. METHODS We performed miRNA sequencing on pituitary tissue from prepubescent and pubescent goats to investigate differences in miRNA expression during the onset of puberty in female goats. The target genes of these miRNAs were evaluated by GO enrichment and KEGG pathway analysis to identify critical pathways regulated by these miRNAs during puberty in goats. Finally, we selected four known miRNA and one novel miRNAs to evaluate expression patterns in two samples via qRT-PCR to validate the RNA-seq data. RESULTS In this study, 476 miRNAs were detected in goat pituitary tissue; 13 of these were specifically expressed in the pituitary of prepubescent goats, and 17 were unique to the pituitary of pubescent goats. Additionally, 73 novel miRNAs were predicted in these two libraries. 20 differentially expressed miRNAs were identified in this study. KEGG pathway enrichment analysis revealed that the differentially expressed miRNA target genes were enriched in pathways related to ovary development during puberty, including the GABAergic synapse, oxytocin signaling pathway, the cAMP signaling pathway, progesterone-mediated oocyte maturation. In this study, differential miRNA expression in the pituitary tissue of prepubescent and pubescent goats were identified and characterized. CONCLUSION These results provide important information regarding the potential regulation of the onset of goat puberty by miRNAs, and contribute to the elucidation of miRNA regulated processes during maturation and reproduction.
Collapse
Affiliation(s)
- Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Zhiqiu Yao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Wenyu Si
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaoxiao Gao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Chen Yang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Jie Zhou
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| |
Collapse
|
33
|
Zhai M, Xie Y, Liang H, Lei X, Zhao Z. Comparative profiling of differentially expressed microRNAs in estrous ovaries of Kazakh sheep in different seasons. Gene 2018; 664:181-191. [PMID: 29704632 DOI: 10.1016/j.gene.2018.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Seasonal estrus is a critical limiting factor for animal fecundity. However, estrus occurs in some seasonally estrous sheep in the non-breeding season, and this phenomenon involves changes in ovarian biology. Previous studies indicated that small RNAs, such as microRNAs (miRNAs), play important regulatory roles in ovarian biology. Differentially expressed miRNAs in the ovaries of estrous sheep were identified using Solexa sequencing technology. A total of 423 known miRNAs were identified in ovaries of estrous sheep in the breeding season and non-breeding season. In the comparison of these two groups, 48 miRNAs were identified that were differentially expressed between the two groups (including 5 up-regulated and 43 down-regulated miRNAs). KEGG pathway analysis revealed that the target genes of some differentially expressed miRNAs were involved in pathways related to reproductive hormone signaling and follicular development. Furthermore, the levels of estradiol (E2), progesterone (P4), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were lower in anestrus sheep than in sheep during the breeding season. Upon combining the pathway enrichment analysis, target gene expression and hormone measurement results, we suggest that these differentially expressed miRNAs might influence ovarian activity in the non-breeding season by regulating the above pathways. The identification of miRNAs that are differentially expressed between ovines in the breeding season and non-breeding season will contribute to our understanding of the role of miRNAs in estrus regulation, and these data may provide a basis for regulating estrus in sheep during the non-breeding season.
Collapse
Affiliation(s)
- Manjun Zhai
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yifan Xie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Huihui Liang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaoping Lei
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
34
|
Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018; 88:130-137. [DOI: 10.1016/j.mcn.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
|
35
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
36
|
Han DX, Xiao Y, Wang CJ, Jiang H, Gao Y, Yuan B, Zhang JB. Regulation of FSH expression by differentially expressed miR-186-5p in rat anterior adenohypophyseal cells. PLoS One 2018. [PMID: 29534107 PMCID: PMC5849326 DOI: 10.1371/journal.pone.0194300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicle-stimulating hormone (FSH) has key roles in animal reproduction, including spermatogenesis and ovarian maturation. Many factors influence FSH secretion. However, despite the broad functions of microRNAs (miRNAs) via the regulation of target genes, little is known about their roles in FSH secretion. Our previous results suggested that miR-186-5p targets the 3′ UTR of FSHb; therefore, we examined whether miR-186-5p could regulate FSH secretion in rat anterior adenohypophyseal cells. miR-186-5p was transfected into rat anterior pituitary cells. The expression of FSHb and the secretion of FSH were examined by RT-qPCR and ELISA. A miR-186-5p mimic decreased the expression of FSHb compared with expression in the control group and decreased FSH secretion. In contrast, both the mRNA levels and secretion of FSH increased in response to miR-186-5p inhibitors. Our results demonstrate that miR-186-5p regulates FSH secretion by directly targeting the FSHb 3′ UTR, providing additional functional evidence for the importance of miRNAs in the regulation of animal reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yue Xiao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (JBZ); (BY)
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (JBZ); (BY)
| |
Collapse
|
37
|
Xie B, Liu Z, Jiang L, Liu W, Song M, Zhang Q, Zhang R, Cui D, Wang X, Xu S. Increased Serum miR-206 Level Predicts Conversion from Amnestic Mild Cognitive Impairment to Alzheimer's Disease: A 5-Year Follow-up Study. J Alzheimers Dis 2018; 55:509-520. [PMID: 27662297 DOI: 10.3233/jad-160468] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evidence suggests that individuals with amnestic mild cognitive impairment (aMCI) tend to progress to probable Alzheimer's disease (AD) with aging. This study was performed to examine whether circulating miRNAs could be potential predictors for the progression of aMCI to AD. A total of 458 patients with aMCI were included in this study, and the clinical data were collected at two time points: the baseline and the follow-up assessment. These aMCI patients were classified into two groups after 5 years: aMCI-stable group (n = 330) and AD-conversion group (n = 128). The expression of miR-206 and miR-132 and the levels of BDNF and SIRT1 in serum were detected using a quantitative real-time RT-PCR (qPCR) and the ELISA method, respectively. Kaplan-Meier method (Log-rank test) was used for univariate survival analysis. Cox proportional hazard model was used to estimate the prognostic value of miRNAs in conversion from aMCI to AD. At the baseline, serum levels of miR-206 in aMCI-AD group were significantly elevated compared to aMCI-aMCI group and the same trend was found at 5-year follow-up time point as well. There were no significant differences in serum levels of miR-132 between the conversion and non-conversion group at both time points. Kaplan-Meier analysis showed significant correlation between AD conversion and higher serum levels of miR-206 for aMCI patients (HR = 3.60, 95% CI: 2.51- 5.36, p < 0.001). Multivariate Cox regression analysis revealed that serum miR-206 and its target BDNF were significant independent predictors for AD conversion (HR = 4.22, p < 0.001). These results suggested that increased serum miR-206 level might be a potential predictor of conversion from aMCI to AD.
Collapse
Affiliation(s)
- Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zanchao Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang City, Shijiazhuang, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Mei Song
- Department of Mental Health, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Mental Health, Hebei Medical University, Shijiazhuang, P.R. China
| | - Qingfu Zhang
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Burn Engineering Center of Hebei Province, Shijiazhuang, P.R. China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Xueyi Wang
- Department of Mental Health, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Mental Health, Hebei Medical University, Shijiazhuang, P.R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
38
|
Yamamoto M, Takahashi Y. The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Front Endocrinol (Lausanne) 2018; 9:605. [PMID: 30405528 PMCID: PMC6205959 DOI: 10.3389/fendo.2018.00605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/24/2018] [Indexed: 01/28/2023] Open
Abstract
The endocrine system plays an essential role in the physiological adaptation to malnutrition. The adaptive response of various hormones directs the energy utilization toward the survival functions and away from growth and reproduction. Particularly, the hypothalamic pituitary axis plays an integral and a central role in the regulation of endocrine organs. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that is activated in response to calorie restriction (CR). SIRT1 is involved in cellular processes via the deacetylation of histone as well as various transcription factors and signal transduction molecules and thereby modulates the endocrine/metabolic functions. There is much evidence to demonstrate clearly that SIRT1 in the hypothalamus, pituitary gland, and other target organs modifies the synthesis, secretion, and activities of hormones and in turn induces the adaptive responses. In this review, we discussed the role of SIRT1 in the hypothalamic pituitary axis and its pathophysiological significance.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- *Correspondence: Yutaka Takahashi
| |
Collapse
|
39
|
Wierinckx A, Roche M, Legras-Lachuer C, Trouillas J, Raverot G, Lachuer J. MicroRNAs in pituitary tumors. Mol Cell Endocrinol 2017; 456:51-61. [PMID: 28089822 DOI: 10.1016/j.mce.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Since the presence of microRNAs was first observed in normal pituitary, the majority of scientific publications addressing their role and the function of microRNAs in the pituitary have been based on pituitary tumor studies. In this review, we briefly describe the involvement of microRNAs in the synthesis of pituitary hormones and we present a comprehensive inventory of microRNA suppressors and inducers of pituitary tumors. Finally, we summarize the functional role of microRNAs in tumorigenesis, progression and aggressiveness of pituitary tumors, mechanisms contributing to the regulation (transcription factors, genomic modifications or epigenetic) or modulation (pharmacological treatment) of microRNAs in these tumors, and the interest of thoroughly studying the expression of miRNAs in body fluids.
Collapse
Affiliation(s)
- Anne Wierinckx
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France.
| | | | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France; ViroScan3D, F-01600 Trévoux, France; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale, F-69100 Villeurbanne Cedex, France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon, Lyon, France; Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon, Lyon, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, F-69677, France Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France
| |
Collapse
|
40
|
MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017; 8:12433-12450. [PMID: 27999212 PMCID: PMC5355356 DOI: 10.18632/oncotarget.14015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, metastasis and angiogenesis, thereby facilitating tumor initiation and progression. A complex network of protein and non-coding RNAs mediates the expression and activity of forkhead box transcription factors. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs and forkhead box transcription factors and describe the roles of microRNAs-forkhead box axis in various disease states including tumor initiation and progression. Additionally, we describe some of the technical challenges in the use of the microRNA-forkhead box signaling pathway in cancer treatment.
Collapse
|
41
|
Messina A, Langlet F, Prevot V. [MicroRNAs: new players in the hypothalamic control of fertility]. Med Sci (Paris) 2017; 33:506-511. [PMID: 28612726 DOI: 10.1051/medsci/20173305014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that modulate gene expression post-transcriptionally. Discovered more than 15 years ago, their functions start to be unraveled. Increasing evidence points to an important functional role of microRNAs in brain development. In particular, miRNAs have recently been established to play a vital role in the mechanisms underlying the infantile rise in gonadotropin-releasing hormone (GnRH) production by neurons in the hypothalamus, a phenomenon necessary for the onset of puberty in mammals.
Collapse
Affiliation(s)
- Andrea Messina
- Service d'Endocrinologie, Diabétologie et Métabolisme, Hôpital universitaire de Lausanne, Lausanne, Suisse
| | - Fanny Langlet
- Columbia University Medical Center and Berrie Diabetes Center, New York, États-Unis
| | - Vincent Prevot
- Laboratoire de Développement et de Plasticité du Cerveau Neuroendocrine, FHU 1000 days for health, Inserm U1172, Université de Lille, Lille, France
| |
Collapse
|
42
|
Lannes J, L'Hôte D, Fernandez-Vega A, Garrel G, Laverrière JN, Cohen-Tannoudji J, Quérat B. [microRNA and inactivation of the pituitary gonadotrope function]. Med Sci (Paris) 2017; 33:386-388. [PMID: 28497733 DOI: 10.1051/medsci/20173304006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jérôme Lannes
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - David L'Hôte
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Ambra Fernandez-Vega
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Ghislaine Garrel
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Jean-Noël Laverrière
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Joëlle Cohen-Tannoudji
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| | - Bruno Quérat
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Inserm, Biologie fonctionnelle et adaptative UMR 8251, Physiologie de l'axe gonadotrope, U1133, 5, rue Thomas Mann, 75205 Paris Cedex, France
| |
Collapse
|
43
|
Menon B, Gulappa T, Menon KMJ. Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. Mol Cell Endocrinol 2017; 442:81-89. [PMID: 27940300 PMCID: PMC5371357 DOI: 10.1016/j.mce.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
We have previously reported that LHCGR expression in the ovary is regulated through a post-transcriptional mechanism involving an mRNA binding protein designated as LRBP, which is regulated, at least in part, by a non-coding RNA, miR-122. Our present study examined the regulatory role of miR-122 in FSH-induced LHCGR expression during follicle development. Treatment of rat granulosa cells concurrently with FSH and 17β estradiol showed, as expected, a time-dependent increase in LHCGR mRNA levels as well as hCG-induced progesterone production. However, miR-122 expression was decreased during the early time periods, which preceded the increased expression of LHCGR mRNA. The role of miR-122 in FSH-induced LHCGR mRNA expression was then examined by overexpressing miR-122 prior to FSH stimulation by infecting granulosa cells with an adenoviral vector containing a miR-122 insert (AdmiR-122). Pretreatment with AdmiR-122 resulted in complete abrogation of FSH- mediated upregulation of LHCGR. AdmiR-122 also blocked FSH-induced decrease in LRBP expression and increased the binding of LHCGR mRNA to LRBP. Based on these results, we conclude that miR-122 plays a regulatory role in LHCGR expression by modulating LRBP levels during FSH-induced follicle growth.
Collapse
Affiliation(s)
- Bindu Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - Thippeswamy Gulappa
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA.
| |
Collapse
|
44
|
Terasaka T, Adakama ME, Li S, Kim T, Terasaka E, Li D, Lawson MA. Reactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope. Front Endocrinol (Lausanne) 2017; 8:286. [PMID: 29163358 PMCID: PMC5671645 DOI: 10.3389/fendo.2017.00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive development and function relies on control through rhythmic stimulation. Central to this axis is the pulsatile stimulation of the gonadotropes by hypothalamic neurons through episodic release of the neuropeptide gonadotropin-releasing hormone. Alterations in pulsatile stimulation of the gonadotropes result in differential synthesis and secretion of the gonadotropins LH and FSH and changes in the expression of their respective hormone subunit genes. The requirement to amplify signals arising from activation of the gonadotropin-releasing hormone (GnRH) receptor and to rapidly quench the resultant signal to preserve an adaptive response suggests the need for rapid activation and feedback control operating at the level of intracellular signaling. Emerging data suggest that reactive oxygen species (ROS) can fulfill this role in the GnRH receptor signaling through activation of MAP kinase signaling cascades, control of negative feedback, and participation in the secretory process. Results obtained in gonadotrope cell lines or other cell models indicate that ROS can participate in each of these regulatory cascades. We discuss the potential advantage of reactive oxygen signaling for modulating the gonadotrope response to GnRH stimulation and the potential mechanisms for this action. These observations suggest further targets of study for regulation in the gonadotrope.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mary E. Adakama
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Song Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- Neonatal Intensive Care Unit, Dongguan Eighth People’s Hospital Dongguan City, Dongguan, China
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Eri Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Mark A. Lawson,
| |
Collapse
|
45
|
Ye RS, Li M, Li CY, Qi QE, Chen T, Cheng X, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Xi QY, Zhang YL. miR-361-3p regulates FSH by targeting FSHB in a porcine anterior pituitary cell model. Reproduction 2016; 153:341-349. [PMID: 27998941 DOI: 10.1530/rep-16-0373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
FSH plays an essential role in processes involved in human reproduction, including spermatogenesis and the ovarian cycle. While the transcriptional regulatory mechanisms underlying its synthesis and secretion have been extensively studied, little is known about its posttranscriptional regulation. A bioinformatics analysis from our group indicated that a microRNA (miRNA; miR-361-3p) could regulate FSH secretion by potentially targeting the FSHB subunit. Herein, we sought to confirm these findings by investigating the miR-361-3p-mediated regulation of FSH production in primary pig anterior pituitary cells. Gonadotropin-releasing hormone (GnRH) treatment resulted in an increase in FSHB synthesis at both the mRNA, protein/hormone level, along with a significant decrease in miR-361-3p and its precursor (pre-miR-361) levels in time- and dose-dependent manner. Using the Dual-Luciferase Assay, we confirmed that miR-361-3p directly targets FSHB. Additionally, overexpression of miR-361-3p using mimics significantly decreased the FSHB production at both the mRNA and protein levels, with a reduction in both protein synthesis and secretion. Conversely, both synthesis and secretion were significantly increased following miR-361-3p blockade. To confirm that miR-361-3p targets FSHB, we designed FSH-targeted siRNAs, and co-transfected anterior pituitary cells with both the siRNA and miR-361-3p inhibitors. Our results indicated that the siRNA blocked the miR-361-3p inhibitor-mediated upregulation of FSH, while no significant effect on non-target expression. Taken together, our results demonstrate that miR-361-3p negatively regulates FSH synthesis and secretion by targeting FSHB, which provides more functional evidence that a miRNA is involved in the direct regulation of FSH.
Collapse
Affiliation(s)
| | | | - Chao-Yun Li
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qi-En Qi
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao Cheng
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Song-Bo Wang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li-Na Wang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao-Tong Zhu
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing-Yan Jiang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qian-Yun Xi
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong-Liang Zhang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Kapali J, Kabat BE, Schmidt KL, Stallings CE, Tippy M, Jung DO, Edwards BS, Nantie LB, Raeztman LT, Navratil AM, Ellsworth BS. Foxo1 Is Required for Normal Somatotrope Differentiation. Endocrinology 2016; 157:4351-4363. [PMID: 27631552 PMCID: PMC5086538 DOI: 10.1210/en.2016-1372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The etiology for half of congenital hypopituitarism cases is unknown. Our long-term goal is to expand the molecular diagnoses for congenital hypopituitarism by identifying genes that contribute to this condition. We have previously shown that the forkhead box transcription factor, FOXO1, is present in approximately half of somatotropes at embryonic day (e) 18.5, suggesting it may have a role in somatotrope differentiation or function. To elucidate the role of FOXO1 in somatotrope differentiation and function, Foxo1 was conditionally deleted from the anterior pituitary (Foxo1Δpit). Uncommitted progenitor cells are maintained and able to commit to the somatotrope lineage normally based on the expression patterns of Sox2, a marker of uncommitted pituitary progenitors, and Pou1f1 (also known as Pit1), which marks committed progenitors. Interestingly, Foxo1Δpit embryonic mice exhibit delayed somatotrope differentiation as evidenced by an almost complete absence of GH immunoreactivity at e16.5 and reduced expression of Gh at e18.5 and postnatal day (P) 3. Consistent with this conclusion, expression of GHRH receptor, a marker of terminally differentiated somatotropes, is significantly reduced at e18.5 and P3 in the absence of FOXO1. The mechanism of FOXO1 regulation of somatotrope differentiation may involve the basic helix-loop-helix transcription factor, Neurod4, which has been implicated in somatotrope differentiation and is significantly reduced in Foxo1Δpit mice. Foxo1Δpit mice do not exhibit growth defects, and at P21 their pituitary glands exhibit a normal distribution of somatotropes. These studies demonstrate that FOXO1 is important for initial somatotrope specification embryonically but is dispensable for postnatal somatotrope expansion and growth.
Collapse
Affiliation(s)
- Jyoti Kapali
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Brock E Kabat
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kelly L Schmidt
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Caitlin E Stallings
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mason Tippy
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Deborah O Jung
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Brian S Edwards
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Leah B Nantie
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Lori T Raeztman
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Amy M Navratil
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Buffy S Ellsworth
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
47
|
Laverrière JN, L'Hôte D, Tabouy L, Schang AL, Quérat B, Cohen-Tannoudji J. Epigenetic regulation of alternative promoters and enhancers in progenitor, immature, and mature gonadotrope cell lines. Mol Cell Endocrinol 2016; 434:250-65. [PMID: 27402603 DOI: 10.1016/j.mce.2016.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/25/2022]
Abstract
Gonadotrope cell identity genes emerge in a stepwise process during mouse pituitary development. Cga, encoding for the α-subunit of TSH, LH, and FSH, is initially detected at E11.5 followed by Gnrhr and steroidogenic factor Sf1 at E13.5, specifying cells engaged in a gonadotrope cell fate. Lhb and Fshb appear at E16.5 and 17.5, respectively, typifying differentiated gonadotrope cells. Using the αT1-1, αT3-1 and LβT2 cell lines recapitulating these stages of gonadotrope differentiation, DNA methylation at Gnrhr and Sf1 was investigated. Regulatory regions were found hypermethylated in progenitor αT1-1 cells and hypomethylated in differentiated LβT2 cells. Abundance of RNA polymerase II together with active histone modifications including H3K4me1, H3K4me3, and H3K27ac were strictly correlated with DNA hypomethylation. Analyses of epigenomic modifications and chromatin accessibility were further extended to Isl1, Lhx3, Gata2, and Pitx2, highlighting alternative usages of specific regulatory gene domains in progenitor αT1-1, immature αT3-1, and mature LβT2 gonadotrope cells.
Collapse
Affiliation(s)
- Jean-Noël Laverrière
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France.
| | - David L'Hôte
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Laure Tabouy
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Anne-Laure Schang
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Bruno Quérat
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Joëlle Cohen-Tannoudji
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| |
Collapse
|
48
|
Abstract
MicroRNAs (miRNAs) are non-coding RNAs generated from endogenous hairpin-shaped transcripts that powerfully regulate gene expression at post-transcriptional level. Each miRNA is capable to regulate the expression levels of hundreds of transcripts and each mRNA may have more than one miRNA recognition sequence. There is emerging evidence that deregulation of miRNA expression leads to the alteration of pivotal physiological functions contributing to the development of diseases and neoplasms, including pituitary adenoma. This review is aimed at providing the up-to-date knowledge concerning deregulated miRNAs of pituitary tumors and their functions. In order to take stock, pituitary tumors have been sub-divided in different classes on the basis of tumor features (histotype, dimension, aggressiveness). The overview takes full consideration of the recent advances in miRNAs role as potential therapeutics and biomarkers.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Ettore Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy.
| |
Collapse
|
49
|
Abstract
The brain is considered a major site for microRNA (miRNA) expression; as evidenced by several studies reporting microarray data of different brain substructures. The hypothalamus is among the brain regions that plays a crucial role in integrating signals from other brain nuclei as well as environmental, hormonal, metabolic and neuronal signals from the periphery in order to deliver an adequate response. The hypothalamus controls vital functions such as reproduction, energy homeostasis, water balance, circadian rhythm and stress. These functions need a high neuronal plasticity to adequately respond to physiological, environmental and psychological stimuli that could be limited to a specific temporal period during life or are cyclic events. In this context, miRNAs constitute major regulators and coordinators of gene expression. Indeed, in response to specific stimuli, changes in miRNA expression profiles finely tune specific mRNA targets to adequately fit to the immediate needs through mainly the modulation of neuronal plasticity.
Collapse
Affiliation(s)
- Mohammed Taouis
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University Paris-Sud, Orsay, France; NMPA, Neurosciences Paris Saclay Institute (NeuroPSI), Department Molecules & Circuits, CNRS UMR 9197, Orsay, France.
| |
Collapse
|
50
|
A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep 2016; 6:31563. [PMID: 27539363 PMCID: PMC4990909 DOI: 10.1038/srep31563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
The GnRH neurohormone is the main activator of the pituitary gonadotropins, LH and FSH. Here we investigated the contribution of microRNAs in mediating GnRH activation. We first established that miR-125b targets several actors of Gαq/11 signalling pathway, without altering Gαs pathway. We then showed that a Gαs-mediated, PKA-dependent phosphorylation of NSun2 methyltransferase leads to miR-125b methylation and thereby induces its down-regulation. We demonstrated that NSun2 mRNA is a target of miR-132 and that NSun2 may be inactivated by the PP1α phosphatase. Time-course analysis of GnRH treatment revealed an initial NSun2-dependent down-regulation of miR-125b with consecutive up-regulation of LH and FSH expression. Increase of miR-132 and of the catalytic subunit of PP1α then contributed to NSun2 inactivation and to the return of miR-125b to its steady-state level. The Gαq/11-dependent pathway was thus again silenced, provoking the down-regulation of LH, FSH and miR-132. Overall, this study reveals that a regulatory loop that tends to maintain or restore high and low levels of miR-125b and miR-132, respectively, is responsible for gonadotrope cells desensitization to sustained GnRH. A dysregulation of this loop might be responsible for the inverted dynamics of these two miRNAs reported in several neuronal and non-neuronal pathologies.
Collapse
|