1
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2139-2155. [PMID: 35941226 DOI: 10.1007/s00432-022-04247-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION Further clinical investigation of selinexor treatment for solid malignancies is warranted.
Collapse
|
3
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
4
|
Mansoori B, Najafi S, Mohammadi A, AsadollahSeraj H, Savadi P, Mansoori B, Nazari A, Mokhtarzadeh A, Roshani E, Duijf PH, Cho WCS, Baradaran B. The synergy between miR-486-5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells. Biomed Pharmacother 2021; 141:111925. [PMID: 34323695 DOI: 10.1016/j.biopha.2021.111925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Breast cancer (BC) is the most common type of malignancy in women. A subset of breast cancers show resistance to endocrine-based therapies. The estrogen receptor (ER) plays a critical role in developing hormone-dependent BC. Loss of ER contributes to resistance to tamoxifen therapy and may contribute to mortality. Thus, it is crucial to overcome this problem. Here, using luciferase reporter assays, qRT-PCR, and Western blot analyses, we demonstrate that the microRNA miR-486-5p targets HMGA1 mRNA, decreasing its mRNA and protein levels in ER-positive (ER+) BC cells. Consistently, miR-486-5p is significantly downregulated, whereas HMGA1 is considerably upregulated in ER+ BC samples. Remarkably, while both miR-486-5p and tamoxifen individually cause G2/M cell cycle arrest, combination treatment synergistically causes profound cell death, specifically in tamoxifen-resistant ER+ cells but not in tamoxifen-sensitive ER+ cells. Combined treatment with miR-486-5p and tamoxifen also additively reduces cell migration, invasion, colony formation, mammary spheroid formation and a CD24-CD44+ cell population, representing decreased cancer stemness. However, these phenomena are independent of the tamoxifen responsiveness of the ER+ BC cells. Thus, miR-486-5p and tamoxifen exhibit additive and synergistic tumor-suppressive effects, most importantly causing profound cell death specifically in tamoxifen-resistant BC cells. Therefore, our work suggests that combining miR-486-5p replacement therapy with tamoxifen treatment is a promising strategy to treat endocrine therapy-resistant BC.
Collapse
Affiliation(s)
- Behzad Mansoori
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Pouria Savadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Pascal Hg Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
6
|
Cervantes-Badillo MG, Paredes-Villa A, Gómez-Romero V, Cervantes-Roldán R, Arias-Romero LE, Villamar-Cruz O, González-Montiel M, Barrios-García T, Cabrera-Quintero AJ, Rodríguez-Gómez G, Cancino-Villeda L, Zentella-Dehesa A, León-Del-Río A. IFI27/ISG12 Downregulates Estrogen Receptor α Transactivation by Facilitating Its Interaction With CRM1/XPO1 in Breast Cancer Cells. Front Endocrinol (Lausanne) 2020; 11:568375. [PMID: 33117284 PMCID: PMC7575815 DOI: 10.3389/fendo.2020.568375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
The estrogen receptor alpha (ERα) is a ligand-activated transcription factor whose activity is modulated by its interaction with multiple protein complexes. In this work, we have identified the protein interferon alpha inducible protein 27 (IFI27/ISG12) as a novel ERα-associated protein. IFI27/ISG12 transcription is regulated by interferon and estradiol and its overexpression is associated to reduced overall survival in ER+ breast cancer patients but its function in mammary gland tissue remains elusive. In this study we showed that overexpression of IFI27/ISG12 in breast cancer cells attenuates ERα transactivation activity and the expression of ERα-dependent genes. Our results demonstrated that IFI27/ISG12 overexpression in MCF-7 cells reduced their proliferation rate in 2-D and 3-D cell culture assays and impaired their ability to migrate in a wound-healing assay. We show that IFI27/ISG12 downregulation of ERα transactivation activity is mediated by its ability to facilitate the interaction between ERα and CRM1/XPO1 that mediates the nuclear export of large macromolecules to the cytoplasm. IFI27/ISG12 overexpression was shown to impair the estradiol-dependent proliferation and tamoxifen-induced apoptosis in breast cancer cells. Our results suggest that IFI27/ISG12 may be an important factor in regulating ERα activity in breast cancer cells by modifying its nuclear versus cytoplasmic protein levels. We propose that IFI27/ISG12 may be a potential target of future strategies to control the growth and proliferation of ERα-positive breast cancer tumors.
Collapse
Affiliation(s)
- Mayte Guadalupe Cervantes-Badillo
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Paredes-Villa
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vania Gómez-Romero
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Miroslava González-Montiel
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tonatiuh Barrios-García
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alberto J. Cabrera-Quintero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Gabriel Rodríguez-Gómez
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Cancino-Villeda
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Zentella-Dehesa
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Cotul EK, Zuo Q, Santaliz-Casiano A, Imir OB, Mogol AN, Tunc E, Duong K, Lee JK, Ramesh R, Odukoya E, Kesavadas MP, Ziogaite M, Smith BP, Mao C, Shapiro DJ, Park BH, Katzenellenbogen BS, Daly D, Aranda E, O’Neill JD, Walker C, Landesman Y, Madak-Erdogan Z. Combined Targeting of Estrogen Receptor Alpha and Exportin 1 in Metastatic Breast Cancers. Cancers (Basel) 2020; 12:E2397. [PMID: 32847042 PMCID: PMC7563274 DOI: 10.3390/cancers12092397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/23/2022] Open
Abstract
The majority of breast cancer specific deaths in women with estrogen receptor positive (ER+) tumors occur due to metastases that are resistant to therapy. There is a critical need for novel therapeutic approaches to achieve tumor regression and/or maintain therapy responsiveness in metastatic ER+ tumors. The objective of this study was to elucidate the role of metabolic pathways that undermine therapy efficacy in ER+ breast cancers. Our previous studies identified Exportin 1 (XPO1), a nuclear export protein, as an important player in endocrine resistance progression and showed that combining selinexor (SEL), an FDA-approved XPO1 antagonist, synergized with endocrine agents and provided sustained tumor regression. In the current study, using a combination of transcriptomics, metabolomics and metabolic flux experiments, we identified certain mitochondrial pathways to be upregulated during endocrine resistance. When endocrine resistant cells were treated with single agents in media conditions that mimic a nutrient deprived tumor microenvironment, their glutamine dependence for continuation of mitochondrial respiration increased. The effect of glutamine was dependent on conversion of the glutamine to glutamate, and generation of NAD+. PGC1α, a key regulator of metabolism, was the main driver of the rewired metabolic phenotype. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and our findings reveal a critical role that ERα-XPO1 crosstalk plays in reducing cancer recurrences. Combining SEL with current therapies used in clinical management of ER+ metastatic breast cancer shows promise for treating and keeping these cancers responsive to therapies in already metastasized patients.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu Cotul
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
| | - Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
| | - Ayca Nazli Mogol
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
| | - Elif Tunc
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Kevin Duong
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (K.D.); (R.R.)
| | - Jenna Kathryn Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Rithva Ramesh
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (K.D.); (R.R.)
| | - Elijah Odukoya
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Mrinali P. Kesavadas
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
| | - Monika Ziogaite
- Department of Interdisciplinary Health Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Brandi Patrice Smith
- Department of Informatics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.M.); (D.J.S.)
| | - David J. Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.M.); (D.J.S.)
- Cancer Center at Illinois, Urbana, IL 61801, USA;
| | - Ben Ho Park
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Benita S. Katzenellenbogen
- Cancer Center at Illinois, Urbana, IL 61801, USA;
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Drew Daly
- Xylyx Bio, Inc., Brooklyn, NY 11226, USA; (D.D.); (E.A.); (J.D.O.)
| | - Evelyn Aranda
- Xylyx Bio, Inc., Brooklyn, NY 11226, USA; (D.D.); (E.A.); (J.D.O.)
| | - John D. O’Neill
- Xylyx Bio, Inc., Brooklyn, NY 11226, USA; (D.D.); (E.A.); (J.D.O.)
| | | | - Yosef Landesman
- Karyopharm Therapeutics, Newton, MA 02459, USA; (C.W.); (Y.L.)
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.K.C.); (Q.Z.); (E.T.); (J.K.L.); (M.P.K.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.S.-C.); (O.B.I.); (A.N.M.)
- Cancer Center at Illinois, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Zhou Y, Liu F, Xu Q, Yang B, Li X, Jiang S, Hu L, Zhang X, Zhu L, Li Q, Zhu X, Shao H, Dai M, Shen Y, Ni B, Wang S, Zhang Z, Teng Y. Inhibiting Importin 4-mediated nuclear import of CEBPD enhances chemosensitivity by repression of PRKDC-driven DNA damage repair in cervical cancer. Oncogene 2020; 39:5633-5648. [PMID: 32661323 PMCID: PMC7441007 DOI: 10.1038/s41388-020-1384-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) remains highest in the mortality of female reproductive system cancers, while cisplatin (CDDP) resistance is the one of main reasons for the lethality. Preceding evidence has supported that karyopherins are associated with chemoresistance. In this study, we simultaneously compared CDDP-incomplete responders with CDDP-complete responders of CC patients and CDDP‐insensitive CC cell lines with CDDP‐sensitive group. We finally identified that DNA-PKcs (PRKDC) was related to CDDP sensitivity after overlapping in CC sample tissues and CC cell lines. Further functional assay revealed that targeting PRKDC by shRNA and NU7026 (specific PRKDC inhibitor) could enhance CDDP sensitivity in vitro and in vivo, which was mediated by impairing DNA damage repair pathway in CC. Mechanistically, we found that PRKDC was transcriptionally upregulated by CCAAT/enhancer-binding protein delta (CEBPD), while intriguingly, CDDP treatment strengthened the transcriptional activity of CEBPD to PRKDC. We further disclosed that Importin 4 (IPO4) augmented the nuclear translocation of CEBPD through nuclear localization signals (NLS) to activate PRKDC-mediated DNA damage repair in response to CDDP. Moreover, we demonstrated that IPO4 and CEBPD knockdown improved CDDP-induced cytotoxicity in vitro and in vivo. Together, we shed the novel insight into the role of IPO4 in chemosensitivity and provide a clinical translational potential to enhance CC chemosensitivity since the IPO4-CEBPD-PRKDC axis is actionable via NU7026 (PRKDC inhibitor) or targeting IPO4 in combination with CDDP.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China.,Department of Gynecology and Obstetrics, Shanghai Eighth People's Hospital, Affiliated to Jiangsu University, Shanghai, 200233, PR China
| | - Fei Liu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China.,Global Clinical Medical Affairs (GCMA), Shanghai Henlius Biotech, Inc. 7/F, Innov Tower, Zone A, No.1801 HongMei Rd. Xuhui District, Shanghai, 200233, PR China
| | - Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Bikang Yang
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Shuheng Jiang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lipeng Hu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueli Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lili Zhu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Li
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaolu Zhu
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Hongfang Shao
- Center of Reproductive Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Yifei Shen
- Department of Orthopedics, Shanghai East Hospital, School of Medicine, Shanghai Tongji University, Shanghai, 200120, PR China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, PR China
| | - Shuai Wang
- Jacobi medical center, bronx, New York, NY, 10461, USA
| | - Zhigang Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Yincheng Teng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China. .,Department of Gynecology and Obstetrics, Shanghai Eighth People's Hospital, Affiliated to Jiangsu University, Shanghai, 200233, PR China.
| |
Collapse
|
9
|
Combined Targeting of Estrogen Receptor Alpha and XPO1 Prevent Akt Activation, Remodel Metabolic Pathways and Induce Autophagy to Overcome Tamoxifen Resistance. Cancers (Basel) 2019; 11:cancers11040479. [PMID: 30987380 PMCID: PMC6520695 DOI: 10.3390/cancers11040479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023] Open
Abstract
A majority of breast cancer specific deaths in women with ERα (+) tumors occur due to metastases that are resistant to endocrine therapy. There is a critical need for novel therapeutic approaches to resensitize recurrent ERα (+) tumors to endocrine therapies. The objective of this study was to elucidate mechanisms of improved effectiveness of combined targeting of ERα and the nuclear transport protein XPO1 in overcoming endocrine resistance. Selinexor (SEL), an XPO1 antagonist, has been evaluated in multiple late stage clinical trials in patients with relapsed and /or refractory hematological and solid tumor malignancies. Our transcriptomics analysis showed that 4-Hydroxytamoxifen (4-OHT), SEL alone or their combination induced differential Akt signaling- and metabolism-associated gene expression profiles. Western blot analysis in endocrine resistant cell lines and xenograft models validated differential Akt phosphorylation. Using the Seahorse metabolic profiler, we showed that ERα-XPO1 targeting changed the metabolic phenotype of TAM-resistant breast cancer cells from an energetic to a quiescent profile. This finding demonstrated that combined targeting of XPO1 and ERα rewired the metabolic pathways and shut down both glycolytic and mitochondrial pathways that would eventually lead to autophagy. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and given the need for better strategies to improve therapy response in relapsed ERα (+) tumors, our findings show great promise for uncovering the role that ERα-XPO1 crosstalk plays in reducing cancer recurrences.
Collapse
|
10
|
Madak-Erdogan Z, Band S, Zhao YC, Smith BP, Kulkoyluoglu-Cotul E, Zuo Q, Santaliz Casiano A, Wrobel K, Rossi G, Smith RL, Kim SH, Katzenellenbogen JA, Johnson ML, Patel M, Marino N, Storniolo AMV, Flaws JA. Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling. Cancer Res 2019; 79:2494-2510. [PMID: 30862719 DOI: 10.1158/0008-5472.can-18-2849] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/09/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Obesity is a risk factor for postmenopausal estrogen receptor alpha (ERα)-positive (ER+) breast cancer. Molecular mechanisms underlying factors from plasma that contribute to this risk and how these mechanisms affect ERα signaling have yet to be elucidated. To identify such mechanisms, we performed whole metabolite and protein profiling in plasma samples from women at high risk for breast cancer, which led us to focus on factors that were differentially present in plasma of obese versus nonobese postmenopausal women. These studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with increased proliferation and aggressiveness in ER+ breast cancer cells. FFAs activated both the ERα and mTOR pathways and rewired metabolism in breast cancer cells. Pathway preferential estrogen-1 (PaPE-1), which targets ERα and mTOR signaling, was able to block changes induced by FFA and was more effective in the presence of FFA. Collectively, these data suggest a role for obesity-associated gene and metabolic rewiring in providing new targetable vulnerabilities for ER+ breast cancer in postmenopausal women. Furthermore, they provide a basis for preclinical and clinical trials where the impact of agents that target ERα and mTOR signaling cross-talk would be tested to prevent ER+ breast cancers in obese postmenopausal women. SIGNIFICANCE: These findings show that obesity-associated changes in certain blood metabolites rewire metabolic programs in cancer cells, influence mammary epithelial cell tumorigenicity and aggressiveness, and increase breast cancer risk.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois. .,Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois.,National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Urbana, Illinois.,Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Shoham Band
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Yiru C Zhao
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Brandi P Smith
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Eylem Kulkoyluoglu-Cotul
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Qianying Zuo
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Ashlie Santaliz Casiano
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Kinga Wrobel
- Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Gianluigi Rossi
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | | | - Mariah L Johnson
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana
| | - Meera Patel
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana
| | - Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
11
|
Chen KLA, Zhao YC, Hieronymi K, Smith BP, Madak-Erdogan Z. Bazedoxifene and conjugated estrogen combination maintains metabolic homeostasis and benefits liver health. PLoS One 2017; 12:e0189911. [PMID: 29267318 PMCID: PMC5739449 DOI: 10.1371/journal.pone.0189911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
The bazedoxifene and conjugated estrogens (CE+BZA) combination has been shown to prevent visceral adiposity and weight gain after ovariectomy. However, its impact on the liver transcriptomes associated with prevention of hepatosteatosis is yet to be determined. In the present study, we use liver transcriptomics and plasma metabolomics analysis to characterize the effects of various estrogens on liver. The CE+BZA combination was very effective at preventing ovariectomy-induced weight gain in mice fed a high-fat diet (HFD). In CE+BZA treated animals, liver weight and hepatic lipid deposition were significantly lower than in Vehicle (Veh) treated animals. Additionally, CE+BZA induced unique liver transcriptome and plasma metabolome profiles compared to estradiol, conjugated estrogens alone, and bazedoxifene alone. Blood plasma metabolite analysis identified several metabolites similar to and distinct from other estrogen treatments. Integrated pathway analysis showed that gene networks that were associated with inflammation, reactive oxygen species pathway and lipid metabolism and their relevant metabolites were regulated significantly by CE+BZA treatment. Thus, long-term CE+BZA treatment modulated hepatic metabolic gene networks and their associated metabolites and improves hepatic health without stimulating the uterus.
Collapse
Affiliation(s)
- Karen Lee Ann Chen
- Division of Nutritional Sciences, UIUC, Urbana, Illinois, United States of America
| | - Yiru Chen Zhao
- Department of Food Science and Human Nutrition, UIUC, Urbana, Illinois, United States of America
| | - Kadriye Hieronymi
- Department of Food Science and Human Nutrition, UIUC, Urbana, Illinois, United States of America
| | - Brandi Patricia Smith
- Department of Food Science and Human Nutrition, UIUC, Urbana, Illinois, United States of America
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, UIUC, Urbana, Illinois, United States of America
- Department of Food Science and Human Nutrition, UIUC, Urbana, Illinois, United States of America
- Institute for Genomic Biology, UIUC, Urbana, Illinois, United States of America
- National Center for Supercomputing Applications, UIUC, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chen S, Yao F, Xiao Q, Liu Q, Yang Y, Li X, Jiang G, Kuno T, Fang Y. EZH2 inhibition sensitizes tamoxifen‑resistant breast cancer cells through cell cycle regulation. Mol Med Rep 2017; 17:2642-2650. [PMID: 29207119 DOI: 10.3892/mmr.2017.8160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Enhancer of zeste homologue 2 (EZH2), a catalytic subunit of polycomb repressive complex 2, is overexpressed in a number of different tumors including breast cancer, and serves important roles in cell cycle regulation, proliferation, apoptosis, tumorigenesis and drug resistance. However, it remains unclear whether EZH2 contributes to tamoxifen resistance in breast cancer. In the present study, the role of EZH2 in tamoxifen resistance in MCF‑7 cells was investigated. EZH2 was overexpressed in MCF‑7 tamoxifen‑resistant (MCF‑7 TamR) cells. EZH2 overexpression decreased the sensitivity of MCF‑7 cells to tamoxifen, and EZH2 knockdown improved the sensitivity of MCF‑7 TamR cells to tamoxifen. Furthermore, EZH2 knockdown induced cell cycle arrest in MCF‑7 TamR cells, accompanied by a decrease in cyclin D1 expression and an increase in p16 expression. EZH2 knockdown reduced p16 gene methylation in MCF‑7 TamR cells. These findings suggested that EZH2 overexpression may contribute to tamoxifen resistance in breast cancer, and EZH2 inhibition may reverse tamoxifen resistance in breast cancer by regulating the cell cycle via the demethylation of the p16 gene. Thus, EZH2 inhibitors may be effective for treating tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Yikun Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Xuejuan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning 110112, P.R. China
| |
Collapse
|
13
|
Li M, Zhang C, Zhong Y, Zhao J. Cellular localization of ATBF1 protein and its functional implication in breast epithelial cells. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell Signal 2017; 34:121-132. [PMID: 28341599 DOI: 10.1016/j.cellsig.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70% cases of breast cancers exhibit high expression and activity levels of estrogen receptor alpha (ERα), a transcription regulator that induces the expression of genes associated with cellular proliferation and survival. These nuclear functions of the receptor are associated with the development of breast cancer. However, ERα localization is not static, but rather, dynamic with continuous shuttling between the nucleus and the cytoplasm. Interestingly, both the nuclear import and export of ERα are modulated by several stimuli that include estradiol, antiestrogens, and growth factors. As ERα nuclear accumulation is critical to the regulation of gene expression, nuclear export of this receptor modulates the intensity and duration of its transcriptional activity. Thus, the subcellular spatial distribution of ERα ensures tight modulation of its concentration in cellular compartments, as well as of its nuclear and extranuclear functions. In this review, we will discuss current findings regarding the biological importance of molecular mechanisms of, and proteins responsible for, the nuclear import and export of ERα in breast cancer cells.
Collapse
|