1
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
2
|
De Hoon I, Boukherroub R, De Smedt SC, Szunerits S, Sauvage F. In Vitro and Ex Vivo Models for Assessing Drug Permeation across the Cornea. Mol Pharm 2023. [PMID: 37314950 DOI: 10.1021/acs.molpharmaceut.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug permeation across the cornea remains a major challenge due to its unique and complex anatomy and physiology. Static barriers such as the different layers of the cornea, as well as dynamic aspects such as the constant renewal of the tear film and the presence of the mucin layer together with efflux pumps, all present unique challenges for effective ophthalmic drug delivery. To overcome some of the current ophthalmic drug limitations, the identification and testing of novel drug formulations such as liposomes, nanoemulsions, and nanoparticles began to be considered and widely explored. In the early stages of corneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with the principles of the 3Rs (Replacement, Reduction, and Refinement), with such methods being in addition faster and more ethical alternatives to in vivo studies. The ocular field remains limited to a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used when it comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are the model of choice to study corneal permeation and promising advancements have been reported over the years. Interspecies characteristics must be considered in detail when using such models. This review updates the current knowledge about in vitro and ex vivo corneal permeability models and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Otake H, Goto R, Ogata F, Isaka T, Kawasaki N, Kobayakawa S, Matsunaga T, Nagai N. Fixed-Combination Eye Drops Based on Fluorometholone Nanoparticles and Bromfenac/Levofloxacin Solution Improve Drug Corneal Penetration. Int J Nanomedicine 2021; 16:5343-5356. [PMID: 34413642 PMCID: PMC8369340 DOI: 10.2147/ijn.s317046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The multi-instillation of three commercially available (CA) eye drops [fluorometholone (FL)-, bromfenac (BF)- and levofloxacin (LV)-eye drops] has been used to manage pain and inflammation post-intraocular surgery. However, the multi-instillation of these three eye drops causes corneal damage, and the FL drops have the disadvantage of low ocular bioavailability. To overcome these problems, we prepared fixed-combination eye drops based on FL nanoparticles (FL-NPs) and BF/LV solution (nFBL-FC), and evaluated the corneal toxicity and transcorneal penetration of the nFBL-FC eye drops. Methods FL powder was mixed in 2-hydroxypropyl-β-cyclodextrin solution containing benzalkonium chloride, mannitol and methylcellulose, and milled with a Bead Smash 12 (5500 rpm for 30 s×30 times). The BF/LV solution was then added to the milled-dispersions to be used as nFBL-FC. The FL, BF and LV concentrations were measured by HPLC methods, and transcorneal penetration was evaluated in rabbits. Results The FL particle size in nFBL-FC was 40–150 nm, with only 0.0018% in liquid form. No aggregation of FL particles in the nFBL-FC was observed for 1 month. The viability of human corneal epithelial cells treated with nFBL-FC was remarkably higher than that of cells subjected to the multi-instillation of the corresponding three CA-eye drops. In addition, the corneal penetrations (AUC) of the FL, BF and LV in nFBL-FC were 4.9-, 1.8-, and 7.1-fold those of the corresponding CA-eye drops, respectively. Moreover, the caveolae-dependent endocytosis (CavME) inhibitor (nystatin) significantly prevented the transcorneal penetration of these drugs. Conclusion We prepared fixed-combination eye drops based on FL-NPs and BF/LV solution (nFBL-FC), and show that high levels of FL-NPs and dissolved BF/LV (liquid drugs) can be delivered into the aqueous humor by the instillation of nFBL-FC. Further, we show that CavME is mainly related to the enhancement of transcorneal penetration of both the solid (NPs) and liquid drugs.
Collapse
Affiliation(s)
- Hiroko Otake
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Ryoka Goto
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Takumi Isaka
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shinichiro Kobayakawa
- Department of Ophthalmology, Nippon Medical School, Musashi-Kosugi Hospital, Kawasaki, Kanagawa, 211-8533, Japan
| | - Toru Matsunaga
- Design and Development, SEED Co., Ltd., Kounosu-shi, Saitama, 369-0131, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
4
|
In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim 2021; 57:207-237. [PMID: 33544359 DOI: 10.1007/s11626-020-00533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Testing of all manufactured products and their ingredients for eye irritation is a regulatory requirement. In the last two decades, the development of alternatives to the in vivo Draize eye irritation test method has substantially advanced due to the improvements in primary cell isolation, cell culture techniques, and media, which have led to improved in vitro corneal tissue models and test methods. Most in vitro models for ocular toxicology attempt to reproduce the corneal epithelial tissue which consists of 4-5 layers of non-keratinized corneal epithelial cells that form tight junctions, thereby limiting the penetration of chemicals, xenobiotics, and pharmaceuticals. Also, significant efforts have been directed toward the development of more complex three-dimensional (3D) equivalents to study wound healing, drug permeation, and bioavailability. This review focuses on in vitro reconstructed 3D corneal tissue models and their utilization in ocular toxicology as well as their application to pharmacology and ophthalmic research. Current human 3D corneal epithelial cell culture models have replaced in vivo animal eye irritation tests for many applications, and substantial validation efforts are in progress to verify and approve alternative eye irritation tests for widespread use. The validation of drug absorption models and further development of models and test methods for many ophthalmic and ocular disease applications is required.
Collapse
|
5
|
Shafaie S, Hutter V, Cook MT, Brown MB, Chau DYS. In Vitro Cell Models for Ophthalmic Drug Development Applications. Biores Open Access 2016; 5:94-108. [PMID: 27158563 PMCID: PMC4845647 DOI: 10.1089/biores.2016.0008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering is a rapidly expanding field that aims to establish feasible techniques to fabricate biologically equivalent replacements for diseased and damaged tissues/organs. Emerging from this prospect is the development of in vitro representations of organs for drug toxicity assessment. Due to the ever-increasing interest in ocular drug delivery as a route for administration as well as the rise of new ophthalmic therapeutics, there is a demand for physiologically accurate in vitro models of the eye to assess drug delivery and safety of new ocular medicines. This review summarizes current existing ocular models and highlights the important factors and limitations that need to be considered during their use.
Collapse
Affiliation(s)
- Sara Shafaie
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| | - Victoria Hutter
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| | - Michael T Cook
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| | - Marc B Brown
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, United Kingdom.; MedPharm Ltd., Guildford, Surrey, United Kingdom
| | - David Y S Chau
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| |
Collapse
|
6
|
Kawazu K, Fujii S, Yamada K, Shinomiya K, Katsuta O, Horibe Y. Characterization of monocarboxylate uptake and immunohistochemical demonstration of monocarboxylate transporters in cultured rabbit corneal epithelial cells. J Pharm Pharmacol 2012; 65:328-36. [DOI: 10.1111/j.2042-7158.2012.01600.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/30/2012] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
This study aimed to characterize the mechanisms of monocarboxylate uptake by cultured rabbit corneal epithelial cells (RCECs) using l- and d-lactic acids as model substrates.
Methods
l-/d-Lactic acid uptake was evaluated by measuring the accumulation in confluent RCECs. Also, we demonstrated the distribution of monocarboxylate transporters (MCTs) in RCECs by immunohistochemistry.
Key findings
The accumulation of 14C-labelled l- and d-lactic acids was dependent on time, pH and temperature. The Arrhenius plots of the uptake were biphasic. The initial uptake of 14C-labelled l-lactic acid exhibited concentration dependence and was greater than that of the d-isomer. The initial uptake of 14C-labelled l- and d-lactic acids involved saturable and nonsaturable processes; the saturable process exhibited higher affinity for l-lactic acid than for the d-isomer. l-/d-lactic acid uptake was inhibited by chiral monocarboxylate in a stereoselective manner. The uptake of 14C-labelled l- and d-lactic acids was sensitive to metabolic inhibitors and other monocarboxylates. MCT expression in RCECs was confirmed immunohistochemically. In particular, MCT2 expression was detected in RCECs, whereas MCT1, MCT4 and MCT5 expression was detected in the surface layer.
Conclusion
These results indicate that the carrier-mediated transport system specific for monocarboxylates elicits lactic acid uptake in RCECs. Therefore, the transcorneal permeation of drugs with a monocarboxylic moiety may be dependent on the activity of a specific pH-dependent transporter as well as passive diffusion according to the pH-partition theory.
Collapse
Affiliation(s)
- Kouichi Kawazu
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Shinobu Fujii
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Kazuhito Yamada
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Katsuhiko Shinomiya
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Osamu Katsuta
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Nara, Japan
| | - Yoshihide Horibe
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Nara, Japan
| |
Collapse
|
7
|
Fujii S, Hayashi H, Itoh K, Yamada S, Deguchi Y, Kawazu K. Characterization of the carrier-mediated transport of ketoprofen, a nonsteroidal anti-inflammatory drug, in rabbit corneal epithelium cells. ACTA ACUST UNITED AC 2012; 65:171-80. [PMID: 23278684 DOI: 10.1111/j.2042-7158.2012.01583.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Using rabbit corneal epithelial cells (RCECs), the transport of a nonsteroidal anti-inflammatory drug (NSAID) [(3)H]ketoprofen across the cornea was investigated with the aim of revealing the mechanism of uptake. METHODS [(3)H]Ketoprofen transport was evaluated by measuring the permeability across the RCECs layers. KEY FINDINGS [(3)H]Ketoprofen uptake was time, temperature and pH dependent. Maximal uptake occurred from a solution with a pH of 5.25. Uptake was also reduced by metabolic inhibitors (sodium azide and dinitrophenol (DNP)) and proton-linked monocarboxylate transporter (MCT) inhibitors (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and α-cyano-4-hydroxycinnamic acid (CHC)). [(3)H]Ketoprofen uptake was significantly inhibited by various monocarboxylates and other NSAIDs and by MCT and/or organic anion transporter (OAT) inhibitors probenecid and p-aminohippurate, but was unaffected by organic anion-transporting polypeptide (OATP) inhibitors bromosulfophthalein and taurocholate. The specific uptake of [(3)H]ketoprofen was saturable. Eadie-Hofstee plots indicated the involvement of high- and low-affinity components. The K(m) and V(max) values for the high- and low-affinity components of [(3)H]ketoprofen uptake were 0.56 and 24 mm, and 0.37 and 61 nmol/min/mg of protein, respectively. Benzoic acid, a substrate and inhibitor of MCTs, selectively inhibited low-affinity [(3)H]ketoprofen uptake. Conversely, indometacin inhibited high-affinity [(3)H]ketoprofen uptake. CONCLUSION The results of this study suggest that the monocarboxylate transport system partly accounts for the low-affinity component of [(3)H]ketoprofen uptake, and that the carrier-mediated transport systems such as the OAT family, shared by NSAIDs account for the high-affinity component.
Collapse
Affiliation(s)
- Shinobu Fujii
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd, Ikoma-shi, Nara
| | | | | | | | | | | |
Collapse
|
8
|
Reichl S, Kölln C, Hahne M, Verstraelen J. In vitro cell culture models to study the corneal drug absorption. Expert Opin Drug Metab Toxicol 2011; 7:559-78. [PMID: 21381983 DOI: 10.1517/17425255.2011.562195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. AREAS COVERED This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. EXPERT OPINION Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.
Collapse
Affiliation(s)
- Stephan Reichl
- Technische Universita¨t Braunschweig, Institut fu¨r Pharmazeutische Technologie, Braunschweig, Germany.
| | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
The ocular toxicity of fluoroquinolones and the risks of their use in the treatment of ocular infection were reviewed. Systematic identification, selection, review and synthesis of published English-language studies relating to fluoroquinolone use and safety in animals and humans was conducted. Although not free of complications, fluoroquinolones are generally safe when used to treat ocular infection. Ocular toxicity appears to be dose-dependent and results from class-effects and specific fluoroquinolone structures. Phototoxicity and neurotoxicity have been reported, and toxic effects on ocular collagen may be associated with Achilles tendinopathy. Corneal precipitation may provide an advantageous drug depot but delay healing and result in corneal perforation in approximately 10% of cases. Although human toxicity studies are limited, the current recommended dose for intracameral injection of ciprofloxacin is less than 25 microg. Intravitreal injections of ciprofloxacin 100 microg, ofloxacin 50 microg/mL, trovafloxacin 25 microg or less, moxifloxacin 160 microg/0.1 mL or less and pefloxacin 200 microg/0.1 mL are considered safe.
Collapse
Affiliation(s)
- Andrew M Thompson
- Section of Ophthalmology, University of Otago Dunedin School of Medicine, New Zealand.
| |
Collapse
|
11
|
Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res 2006; 31:797-809. [PMID: 17038304 DOI: 10.1080/02713680600900206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE The objective of this research was to investigate the presence of sodium-dependent multivitamin transporter (SMVT) on rabbit corneal epithelial cells. METHODS Primary cultured rabbit corneal epithelial cells (rPCECs)and freshly excised rabbit corneas were used for characterization of biotin uptake and transport, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the molecular identity of SMVT. Liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis was performed to examine the presence of biotin in rabbit tears. RESULTS Uptake of biotin by rPCECs was found to be time and concentration dependent with Km of 32.52 microM and Vmax of 10.43 pmol min- 1 mg protein- 1. Biotin was significantly inhibited in the presence of pantothenic acid and lipoic acid. Biotin uptake was found to be energy and Na+ dependent but H+ and Cl- independent. The uptake was inhibited by valeric acid in a concentration-dependent manner but not much affected in the presence of biotin methyl ester and biocytin with no free carboxyl group. Modulators of both PKC- and PKA-mediated pathways had no effect on biotin uptake, but calcium-calmodulin inhibitor significantly inhibited its uptake. Sodium-dependent multivitamin transporter was identified by RT-PCR in rPCECs. Transport experiments across the rabbit corneas revealed the functional localization of SMVT on the apical side of the cornea, and thereby corroborating with in vitro results with cultured corneal cells. Finally, LC-MS/MS analysis showed the presence of biotin in rabbit tears. CONCLUSIONS Results obtained from both in vitro and exvivo studies suggest the possible role of SMVT expressed on corneal epithelial cells for the uptake of biotin, which co-transports pantothenic acid and lipoic acid. Further, the presence of biotin in tears suggests the physiological significance of this transporter in rabbit corneal epithelium.
Collapse
Affiliation(s)
- Kumar G Janoria
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | |
Collapse
|
12
|
Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm 2005; 60:207-25. [PMID: 15939234 DOI: 10.1016/j.ejpb.2005.01.009] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 12/28/2004] [Accepted: 01/10/2005] [Indexed: 12/21/2022]
Abstract
The presence of tight barriers, which regulate the environment of ocular tissues in the anterior and posterior part of the eye, is essential for normal visual function. The development of strategies to overcome these barriers for the targeted ocular delivery of drugs, e.g. to the retina, remains a major challenge. During the last years numerous cell culture models of the ocular barriers (cornea, conjunctiva, blood-retinal barrier) have been established. They are considered to be promising tools for studying the drug transport into ocular tissues, and for numerous other purposes, such as the investigation of pathological ocular conditions, and the toxicological screening of compounds as alternative to in vivo toxicity tests. The further development of these in vitro models will require more detailed investigations of the barrier properties of both the cell culture models and the in vivo ocular barriers. It is the aim of this review to describe the current status in the development of cell culture models of the ocular barriers, and to discuss the applicability of these models in pharmaceutical research.
Collapse
Affiliation(s)
- Margit Hornof
- Department of Pharmaceutics, University of Kuopio, Kuopio, Finland
| | | | | |
Collapse
|
13
|
Koch HR, Kulus SC, Roessler M, Ropo A, Geldsetzer K. Corneal penetration of fluoroquinolones: Aqueous humor concentrations after topical application of levofloxacin 0.5% and ofloxacin 0.3% eyedrops. J Cataract Refract Surg 2005; 31:1377-85. [PMID: 16105610 DOI: 10.1016/j.jcrs.2004.12.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the penetration of topically applied levofloxacin 0.5% and ofloxacin 0.3% eyedrops into the aqueous humor of patients having cataract surgery. SETTING Hochkreuzklinik Eye Hospital, Bonn, Germany. METHODS In this randomized, investigator-masked study, 69 patients received 4 drops of either levofloxacin 0.5% or ofloxacin 0.3% eyedrops within 1 hour (60 min, 45 min, 30 min, and 15 min) of elective cataract surgery. Aqueous humor samples of at least 50 muL were drawn from the anterior chamber at the beginning of the cataract operation. The concentrations of the fluoroquinolones in the anterior chambers were measured using high-performance liquid chromatography. To exclude a dilution effect of the anterior chamber (AC), they were related to the AC volumes (measured by 3-dimensional modeling of central Orbscan [Bausch & Lomb] slit-image photos) and AC depths (measured by ultrasound). RESULTS The mean concentration of levofloxacin (1139.9 ng/mL +/- 717.1 [SD]) in the aqueous humor was significantly higher (P = .0008) than that of ofloxacin (621.7 +/- 368.7 ng/mL). The aqueous humor concentrations correlated negatively with the measured volumes and depths of the ACs. CONCLUSIONS The new fluoroquinolone, levofloxacin, is more soluble in water enabling the use of higher drug concentrations (0.5%) compared with other currently available fluoroquinolone eyedrops (0.3%). The concentration AC with levofloxacin eyedrops was about 2-fold that reached with ofloxacin eyedrops. The concentration of the antibacterial isomer was approximately 3.5 to 4 times higher when levofloxacin was administered, assuming negligible stereoselective uptake.
Collapse
|
14
|
Abstract
The choice of an antibacterial is based on considerations of pharmacodynamic, pharmacokinetic and bacteriological characteristics, risk of selecting resistant mutants, and cost. In this article we review 16 commercially available ophthalmic antibacterial preparations. Fusidic acid and bacitracin are selective for gram-positive bacteria whereas polymyxin B targets gram-negative species. Aminoglycosides and quinolones are broad spectrum antibacterials. The widespread use of an antibacterial increases risks of selecting resistance to it. Acquired resistance is well documented for fusidic acid and rifamycin, and newly described for quinolones. The bioavailability of an antibacterial agent depends on the target bacterial species, the site of infection and the integrity of the haemato-aqueous barrier. Some agents (fusidic acid, quinolones) penetrate the cornea, passing into the anterior chamber of normal eyes at therapeutic concentrations, whereas others (polymixin B, bacitracin) have no penetrating powers and remain at the surface of the eye. Toxicity is mostly manifested by allergic reactions to excipients or active ingredients in topical antibacterial preparations. A few cases of haematological toxicity have brought suspicion on topical chloramphenicol, but the link has yet to be proven. Erythromycin and polymyxin B are probably okay to use as topical applications in pregnant women and nursing mothers. Costs of treatment must be evaluated as a whole (regimen, drug associations). Prices for a bottle of eyedrops may vary 3-fold. The cheapest drugs include chloramphenicol, polymyxin B and gentamicin, the most expensive being fusidic acid and the quinolones.
Collapse
Affiliation(s)
- P Y Robert
- Service d'Ophtalmologie, Centre Hospitalier Universitaire de Limoge, Hopital Universitaire Dupuytren, Limoges, France
| | | |
Collapse
|