1
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
2
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Pišlar A, Tratnjek L, Glavan G, Živin M, Kos J. Upregulation of Cysteine Protease Cathepsin X in the 6-Hydroxydopamine Model of Parkinson's Disease. Front Mol Neurosci 2018; 11:412. [PMID: 30450037 PMCID: PMC6225071 DOI: 10.3389/fnmol.2018.00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNc). In vitro, a contribution to neuroinflammation and neurotoxicity has been shown for the lysosomal protease cathepsin X; however, its expression and its role in PD remain unknown. Therefore, the current study was designed to address the regional, cellular, and subcellular localization and activity of cathepsin X in hemi-parkinsonian rats with 6-hydroxydopamine (6-OHDA)-induced excitotoxicity in the unilateral medial forebrain bundle (MFB) lesion. We report for the first time that cathepsin X expression and activity are rapidly increased in the ipsilateral SNc after injection of 6-OHDA into the MFB reaching a maximum after 12 h but seem to stay strongly upregulated after 4 weeks after injection. At early time points of 6-OHDA injection into the MFB, the increased cathepsin X is localized in the lysosomes in the neuronal, predominantly tyrosine hydroxylase-positive dopaminergic cells. After 12 h of 6-OHDA induced lesion, only a few activated microglial cells are positive for cathepsin X whereas, in 4 weeks post-lesion accompanied with complete loss of dopaminergic neurons, there is persistent cathepsin X upregulation restricted to activated glia cells. Taken together, our results demonstrate that cathepsin X upregulation in the lesioned dopaminergic system may play a role as a pathogenic factor in PD. Moreover, inhibition of cathepsin X expression or activity may be useful in protecting the nigrostriatal dopaminergic projection in the PD.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Živin
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
4
|
Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: A model for early Parkinson's disease. Neurosci Res 2015; 92:71-9. [DOI: 10.1016/j.neures.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 11/23/2022]
|
5
|
Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1675-90. [PMID: 22986582 PMCID: PMC3776095 DOI: 10.1007/s11357-012-9470-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/30/2012] [Indexed: 05/24/2023]
Abstract
The possible interaction between brain hypoperfusion related to aging and/or vascular disease, vascular parkinsonism and Parkinson's disease, as well as the possible contribution of aging-related chronic brain hypoperfusion in the development or severity of Parkinson's disease are largely unknown. We used a rat model of chronic cerebral hypoperfusion to study the long-term effects of hypoperfusion on dopaminergic neurons and the possible synergistic effects between chronic hypoperfusion and factors that are deleterious to dopaminergic neurons, such as the dopaminergic neurotoxin 6-hydroxydopamine. Chronic hypoperfusion induced significant loss of dopaminergic neurons and striatal dopaminergic terminals and a reduction in striatal dopamine levels. Furthermore, intrastriatal administration of 6-hydroxydopamine in rats subjected to chronic hypoperfusion induced a significantly greater loss of dopaminergic neurons than in sham-operated control rats. The dopaminergic neuron loss was significantly reduced by oral treatment with angiotensin type 1 receptor antagonist candesartan (3 mg/kg/day). The levels of angiotensin type 2 receptors were lower and the levels of angiotensin type 1 receptors, interleukin-1 β and nicotinamide adenine dinucleotide phosphate oxidase activity were higher in the substantia nigra of rats subjected to chronic hypoperfusion than in control rats; this was significantly reduced by treatment with candesartan. The results suggest that early treatment of vascular disease should be considered in the treatment of aged Parkinson's disease patients and Parkinson's disease patients with cerebrovascular risk factors. The findings also suggest that inhibition of brain renin-angiotensin activity may be useful as a neuroprotective strategy.
Collapse
Affiliation(s)
- Ana I. Rodriguez-Perez
- />Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- />Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Santiago de Compostela, Spain
| | - Antonio Dominguez-Meijide
- />Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- />Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Santiago de Compostela, Spain
| | - Jose L. Lanciego
- />Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain
- />Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Santiago de Compostela, Spain
| | - Maria J. Guerra
- />Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- />Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Santiago de Compostela, Spain
| | - Jose L. Labandeira-Garcia
- />Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- />Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Santiago de Compostela, Spain
| |
Collapse
|
6
|
Videnovic A, Golombek D. Circadian and sleep disorders in Parkinson's disease. Exp Neurol 2012; 243:45-56. [PMID: 22935723 DOI: 10.1016/j.expneurol.2012.08.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
Abstract
Impaired sleep and alertness, initially recognized by James Parkinson in his famous monograph "An Essay on the Shaking Palsy" in 1817, is one of the most common and disabling nonmotor symptoms of Parkinson's disease (PD). It is only recently, however, that sleep disturbances in PD have received the attention of medical and research community. Dopamine, the major neurotransmitter implicated in the pathogenesis of PD, plays a pivotal role in the regulation of sleep and circadian homeostasis. Sleep dysfunction affects up to 90% of patients with PD, and may precede the onset of the disease by decades. Sleep dysfunction in PD may be categorized into disturbances of overnight sleep and daytime alertness. Etiology of impaired sleep and alertness in PD is multifactorial. Co-existent primary sleep disorders, medication side effects, overnight re-emergence of motor symptoms, and primary neurodegeneration itself, are main causes of sleep disruption and excessive daytime sleepiness among patients with PD. Increasing body of evidence suggests that the circadian system becomes dysregulated in PD, which may lead to poor sleep and alertness. Treatment options are limited and frequently associated with unwanted side effects. Further studies that will examine pathophysiology of sleep dysfunction in PD, and focus on novel treatment approaches are therefore very much needed. In this article we review the role of dopamine in regulation of sleep and alertness and discuss main sleep and circadian disturbances associated with PD.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- PD and Movement Disorders Center, Circadian Rhythms and Sleep Research Laboratory, Department of Neurology, Northwestern University, 710 N Lake Shore Dr #1106, Chicago, IL 60611, USA.
| | | |
Collapse
|
7
|
Lax P, Esquiva G, Esteve-Rudd J, Otalora BB, Madrid JA, Cuenca N. Circadian Dysfunction in a Rotenone-Induced Parkinsonian Rodent Model. Chronobiol Int 2012; 29:147-56. [DOI: 10.3109/07420528.2011.649870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Brown AR, Antle MC, Hu B, Teskey GC. High frequency stimulation of the subthalamic nucleus acutely rescues motor deficits and neocortical movement representations following 6-hydroxydopamine administration in rats. Exp Neurol 2011; 231:82-90. [PMID: 21683073 DOI: 10.1016/j.expneurol.2011.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 05/22/2011] [Indexed: 11/25/2022]
Abstract
Loss of frontal neocortical activation is one of the main neurophysiological abnormalities of Parkinson's disease (PD) and can be observed in rodent models of nigrostriatal degeneration. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus improves motor deficits in PD. However, it is unknown whether this general therapeutic effect is associated with a restoration of frontal output function. To address this question, chronic stimulating electrodes were implanted bilaterally into the subthalamic nuclei of adult rats that received either bilateral intrastriatal 6-hydroxydopamine (6-OHDA) or vehicle infusion to induce nigrostriatal degeneration. Forelimb use and locomotor activity were assessed based on the cylinder and open field tests in intact, post-lesion+sham DBS, and post-lesion+DBS conditions. Intracortical microstimulation was then used to probe frontal output function of forelimb motor areas. DBS was found to improve motor deficits arising from 6-OHDA lesions, increase forelimb map area, and decrease movement thresholds relative to baseline. These effects were significantly greater in 6-OHDA lesion rats compared to vehicle controls. Results indicate that changes in motor map expression can take place during subthalamic DBS following dopamine depletion in a rodent model of PD.
Collapse
Affiliation(s)
- Andrew R Brown
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
9
|
Yu YP, Ju WP, Li ZG, Wang DZ, Wang YC, Xie AM. Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Res 2010; 1336:58-65. [DOI: 10.1016/j.brainres.2010.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
10
|
Boulamery A, Simon N, Vidal J, Bruguerolle B. EFFECTS OF L-DOPA ON CIRCADIAN RHYTHMS OF 6-OHDA STRIATAL LESIONED RATS: A RADIOTELEMETRIC STUDY. Chronobiol Int 2010; 27:251-64. [DOI: 10.3109/07420521003664213] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Slack K, Billing R, Matthews S, Allbutt HN, Einstein R, Henderson JM. Subtle cardiovascular dysfunction in the unilateral 6-hydroxydopamine-lesioned rat. PARKINSONS DISEASE 2010; 2010:427810. [PMID: 20976085 PMCID: PMC2957224 DOI: 10.4061/2010/427810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/17/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022]
Abstract
The present study evaluated whether the unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson's disease produces autonomic deficits. Autonomic parameters were assessed by implanting a small radiofrequency telemetry device which measured heart rate variability (HRV), diurnal rhythms of heart rate (HR), core body temperature (cBT) and locomotor activity (LA). Rats then received 6-OHDA lesion or sham surgery. 6-OHDA lesioned rats exhibited head and body axis biases, defective sensorimotor function ("disengage" test), and prominent apomorphine rotation (all P < .05 versus controls). Diurnal rhythm of HR was lower for 6-OHDA lesioned rats (n = 8) versus controls (n = 6; P < .05). Whilst HR decreased similarly in both groups during the day, there was a greater decrease in HR for the 6-OHDA lesioned rats at night (by 38 b.p.m. relative to 17 b.p.m. for controls). LA and cBT did not differ between surgery groups. This study indicates the unilateral 6-OHDA model of PD shows subtle signs of cardiovascular autonomic dysfunction.
Collapse
Affiliation(s)
- K Slack
- Department of Pharmacology, Bosch Institute and School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Brown AR, Hu B, Antle MC, Teskey GC. Neocortical movement representations are reduced and reorganized following bilateral intrastriatal 6-hydroxydopamine infusion and dopamine type-2 receptor antagonism. Exp Neurol 2009; 220:162-70. [PMID: 19703443 DOI: 10.1016/j.expneurol.2009.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
The neurophysiologic model of Parkinson's disease predicts nigrostriatal dopamine depletion leads to increased inhibitory basal ganglia output resulting in frontal neocortical hypoactivity. The nature of this hypoactivation is not well understood and modeled predominantly by a unilateral representation. Intracortical microstimulation (ICMS) was used to probe topographic movement representations of the left forelimb motor area 2 weeks following sham, unilateral left hemisphere or bilateral intrastriatal 6-hydroxydopamine (6-OHDA) infusion and under acute dopamine receptor antagonism with haloperidol in non-lesioned rats. 6-OHDA infusions induced a significant loss of substantia nigra pars compacta (SNc) dopamine neurons. Bilateral SNc lesions and haloperidol significantly reduced map area which was preserved in unilateral lesions. All lesion conditions and haloperidol induced significant map reorganization, characterized by increased representation of distal forelimb movements. Results suggest basal ganglia dopamine deficiency can affect the topographic organization of sensorimotor neocortex and lead to significant reduction in the size of motor representations. We conclude that the neurophysiologic model is supported but that bilateral loss of dopamine is required to see a reduction in the size of motor maps.
Collapse
Affiliation(s)
- Andrew R Brown
- Department of Neuroscience, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
13
|
Kobayashi K, Yasuhara T, Agari T, Muraoka K, Kameda M, Ji Yuan W, Hayase H, Matsui T, Miyoshi Y, Shingo T, Date I. Control of dopamine-secretion by Tet-Off system in an in vivo model of parkinsonian rat. Brain Res 2006; 1102:1-11. [PMID: 16806124 DOI: 10.1016/j.brainres.2006.04.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 03/23/2006] [Accepted: 04/16/2006] [Indexed: 11/28/2022]
Abstract
We established a PC12 cell line (PC12TH Tet-Off) in which human tyrosine hydroxylase (TH) expression can be negatively controlled by Doxycycline (Dox). First, dopamine (DA)-secretion from PC12TH Tet-Off cells was controlled by Dox-administration in a dose-responsive manner ranging from 0 to 100 ng/ml for 70 days in vitro. Furthermore, Parkinson's disease model of rats receiving encapsulated PC12TH Tet-Off cells displayed a significant decrease of dopamine concentration in the cerebrospinal fluid (CSF) and increase of the number of apomorphine-induced rotations by Dox-administration, as compared to transplanted rats without Dox-administration, although the significant decrease of the reduction ratio of DA concentration in the CSF with Dox-administration was recognized over time. At 2 months post-implantation, concentration of dopamine in the implanted striatum and from the retrieved capsules demonstrated that the control of DA-secretion could be partially achieved for 2 months in vivo. Our results support both the value of cell therapy using Tet-Off system and the technique of encapsulation might be a feasible option for Parkinson's disease especially in resolving the problem of dopamine oversupply in the future, although a more efficient way to control DA-secretion with quicker regulation and much titration of dose should be explored before clinical application.
Collapse
Affiliation(s)
- Kazuki Kobayashi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bruguerolle B, Simon N. Biologic rhythms and Parkinson's disease: a chronopharmacologic approach to considering fluctuations in function. Clin Neuropharmacol 2002; 25:194-201. [PMID: 12151906 DOI: 10.1097/00002826-200207000-00002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The existence of circadian rhythms and their implication in many pathologic processes have been underlined in several diseases but have not been evaluated in Parkinson's disease. The aim of this paper is to review diurnal variations of clinical, biologic, or experimental factors described with Parkinson's disease. Clinical data often report daily fluctuations of motor activity pattern, but the effect of the stage of the disease and the respective roles of drugs are difficult to evaluate. Sleep disturbances in Parkinson's disease patients also reveal alterations of circadian rhythms. Autonomic dysfunction, described in Parkinson's disease, reveals numerous alterations in circadian regulations including loss of circadian rhythm of blood pressure, increased diurnal blood pressure variability, and postprandial hypotension. Many biologic indices such as cortisol, catecholamines, and melatonin are also altered. Circadian rhythms in dopaminergic systems as well as possible daily fluctuations in kinetics of drug treatments are likely involved in such variations. Few clinical studies have been devoted to circadian patterns of drug response. As for other diseases where biologic rhythms are concerned Parkinson's disease therapy may be influenced by further understanding of circadian influence.
Collapse
Affiliation(s)
- Bernard Bruguerolle
- Laboratoire de Pharmacologie Médicale, Faculté de Médecine de Marseille et CHU Timone, Marseille, France.
| | | |
Collapse
|
15
|
Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 2002; 175:303-17. [PMID: 12061862 DOI: 10.1006/exnr.2002.7891] [Citation(s) in RCA: 547] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by degeneration of the dopaminergic neurons of the nigrostriatal pathway. Different 6-OHDA rat models of PD have been developed in which this toxin has been injected into different parts of the nigrostriatal pathway: (a) the medial forebrain bundle which leads to extensive dopamine (DA) depletion; (b) the substantia nigra pars compacta, which leads to more specific and moderate DA depletions; and (c) subregions of the caudate-putamen complex (CPu), which also leads to specific DA depletions. In this article we review the dopaminergic depletion and behavioral consequences of 6-OHDA lesions in the rat. It was examined whether the relation between DA depletion and behavioral deficits mimic idiopathic PD. In addition, it was evaluated which model most closely approximates the human situation, especially in relation to the stage of this progressive disease. It was concluded that with respect to the site of the lesion, rats with partial lesions of the ventrolateral CPu are the most appropriate models to study early and late stages of PD. The choice of the behavioral parameters determines the use of unilateral or bilateral lesions, although it is obvious that the bilateral model mimics the human situation more closely.
Collapse
Affiliation(s)
- Ronald Deumens
- Department of Psychiatry and Neuropsychology, Brain and Behavior Institute, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
16
|
Simon N, Mouchet J, Bruguerolle B. Effects of a seven-day continuous infusion of L-DOPA on daily rhythms in the rat. Eur J Pharmacol 2000; 401:79-83. [PMID: 10915840 DOI: 10.1016/s0014-2999(00)00422-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was conducted to evaluate the effect of L-3, 4-dihydroxyphenylalanine (L-DOPA) on the daily rhythms of temperature, heart rate and locomotor activity in rats that received a 7-day continuous infusion. Our results indicate that L-DOPA does not induce a loss of the daily rhythmicity of temperature, heart rate and locomotor activity but modifies the main parameters of these rhythms, e.g. it increased the MESOR (midline estimating statistic of rhythm) of temperature and heart rate and increased the amplitude of temperature but decreased the amplitude of heart rate. Taking into account these results obtained after constant rate delivery, we now plan to investigate the effects of DOPA therapy by changing the time of its administration.
Collapse
Affiliation(s)
- N Simon
- Laboratoire de Pharmacologie Médicale (Développement et Pathologie du Mouvement, UMR-FRE), Faculté de Médecine de Marseille, Université de la Méditerranée, 27, Bd J. Moulin F-13385, Cedex 5, Marseille, France
| | | | | |
Collapse
|