1
|
Keser S, Maravić-Vlahoviček G, Lovrić J, Vanić Ž. Vesicular phospholipid gels: A new strategy to improve topical antimicrobial dermatotherapy. Int J Pharm 2024; 667:124931. [PMID: 39522836 DOI: 10.1016/j.ijpharm.2024.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Therapeutically effective and biocompatible dermal formulations that can ensure localization of a high level of antimicrobial drug at the site of action for an appropriate duration, while at the same time providing intrinsic reepithelization properties, are of particular importance for the treatment of infected and injured skin. The current research aimed to explore the potentials of using vesicular phospholipid gels (VPGs), semisolid formulations consisting of tightly packed liposomes (100-200 nm), as innovative local depot drug vehicles for advanced topical dermatotherapy. Ciprofloxacin hydrocholoride (CPX) was selected as a model hydrophilic antibacterial drug and was loaded into several VPGs, differing in their composition. Various CPX-loaded VPGs (CPX-VPGs) were evaluated in vitro for the rheological and physicochemical characteristics, drug release profile, stability under in vivo mimicked conditions and during storage, skin permeability, biocompatibility with the epidermal cells, antibacterial efficacy and wound healing assay, to determine the optimal CPX-VPG for topical dermatotherapy. Viscosity and bilayers fluidity of VPGs affected the release of CPX from CPX-VPGs and its skin localization, limiting CPX percutaneous absorption. All CPX-VPGs exhibited even a 2-fold increase in anti-biofilm activity against both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) clinical isolate compared to the free drug, while showing no toxic effects on human keratinocytes in vitro. Based on the pronounced proliferative effects on keratinocytes, superior in vitro wound healing effect and drug localization on/inside the skin, CPX-VPGs containing chitosan and hydrogenated phospholipid proved to be the most promising for topical dermatotherapy. These findings, along with increased bioadhesiveness and the slow drug release, with CPX concentrations significantly above the minimum biofilm inhibitory concentrations for bacteria typical in infected wounds, would contribute not only to the improvement of the antimicrobial dermatotherapy, but also to reduction of the frequency of the drug administration.
Collapse
Affiliation(s)
- Sabina Keser
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Gordana Maravić-Vlahoviček
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Željka Vanić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Kaur P, Muskan, Kriplani P. Quality by design for Niosome-Based nanocarriers to improve transdermal drug delivery from lab to industry. Int J Pharm 2024; 666:124747. [PMID: 39326474 DOI: 10.1016/j.ijpharm.2024.124747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Niosomes are essentially multilamellar or unilamellar vesicles based on non-ionic surfactants. They consist of surfactant macromolecules arranged in a bilayer, which surrounds an aqueous solute solution. Amphiphilic, biodegradable, biocompatible, and environmentally friendly materials are utilized for encapsulating the drugs in vesicles that enhance the bioavailability, therapeutic efficacy, penetration of drug via the skin, and drug release in a controlled or sustained manner, and are employed to target the anticipated area via modifying composition that acts to minimize undesirable effects. With cholesterol as the lipid, Tween 20, Span 60, and Tween 60 are mostly employed as surfactants. Many medications, including Glibenclamide for diabetic kidney disease and anti-cancer medications including gemcitabine, cisplatin, and nintedanib, have been effectively encapsulated into niosomes. The traditional approach for creating niosomes at the lab scale is a thin film hydration process. The ideal ratio between primary components as well as critical manufacturing process parameters is key component in creating the best niosomal formulations with substantial drug loading and nanometric form. Utilizing the Design of Experiments (DoE) and Response Surface Methodology (RSM) in conjunction with Quality by design (QbD) is essential for comprehending how these variables interact both during lab preparation and during the scale-up process. Research on the development of anti-aging cosmetics is being done by Loreal. Niosomal preparations like Lancome are sold in stores. An overview of niosomes, penetration mechanisms, and quality by design from laboratory to industrial scale is provided in this article.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Muskan
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India.
| |
Collapse
|
3
|
Aralelimath K, Sahoo J, Wairkar S. Dermal drug delivery via bilosomes: a synergistic integration for better therapeutic outcomes. J Microencapsul 2024; 41:818-831. [PMID: 39508079 DOI: 10.1080/02652048.2024.2423618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.
Collapse
Affiliation(s)
- Kartik Aralelimath
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
4
|
Hatem S, Kamel AO, Elkheshen SA, Nasr M, Moftah NH, Ragai MH, El Hoffy NM, Elezaby RS. Nano-vesicular systems for melanocytes targeting and melasma treatment: In-vitro characterization, ex-vivo skin retention, and preliminary clinical appraisal. Int J Pharm 2024; 665:124731. [PMID: 39306205 DOI: 10.1016/j.ijpharm.2024.124731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Melasma represents an acquired melanogenesis disorder resulting in skin's hyperpigmentation effect. Although several approaches are adopted for melasma treatment, nanotechnology presents the most convenient one. Therefore, the present work aimed to formulate and characterize three nano-vesicular systems namely, liposomes, penetration enhancer containing vesicles (PEVs) and invasomes to enhance the topical delivery of the skin whitening agent; alpha arbutin (α-arbutin) for the treatment of melasma. Liposomes were prepared according to a 23 full factorial design and the selected formula was further employed for the preparation of PEVs and invasomes. Results showed that the three vesicular systems exhibited nano-sizes ranging from 151.95 to 672.5 nm, negative charges ranging from -12.50 to -28.20 mV, high entrapment efficiencies ranging from 80.59 to 99.53 %, good stability and prolonged-release of α-arbutin for 24 h after dispersion in hydrogel form. The deposition study from the vesicular hydrogel confirmed their effectiveness for the drug's accumulation in the skin reaching an average of 1.6-fold higher in the stratum corneum, 1.6-1.8-fold higher in the epidermis, and 1.6-1.8-fold higher in the dermis compared to the free drug dispersion in hydrogel. A preliminary clinical split-face study on patients suffering from melasma revealed that α-arbutin-loaded liposomes and PEVs in hydrogel forms showed better clinical outcomes compared to the free α-arbutin hydrogel as well as to the previously published α-arbutin encapsulated in chitosan nanoparticles and dispersed in hydrogel form. This delineates the aforementioned nano-vesicular systems as effective and clinically superior delivery means for melasma management.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H Moftah
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Al- Minia, Egypt
| | - Maha H Ragai
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Al- Minia, Egypt
| | - Nada M El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Demartis S, Rassu G, Anjani QK, Volpe-Zanutto F, Hutton ARJ, Sabri AB, McCarthy HO, Giunchedi P, Donnelly RF, Gavini E. Improved pharmacokinetic and lymphatic uptake of Rose Bengal after transfersome intradermal deposition using hollow microneedles. J Control Release 2024; 369:363-375. [PMID: 38554770 DOI: 10.1016/j.jconrel.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - Giovanna Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Akmal B Sabri
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Paolo Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Elisabetta Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
6
|
Bonet IJM, Araldi D, Green PG, Levine JD. Topical coapplication of hyaluronan with transdermal drug delivery enhancers attenuates inflammatory and neuropathic pain. Pain 2023; 164:2653-2664. [PMID: 37467181 PMCID: PMC10794581 DOI: 10.1097/j.pain.0000000000002993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 07/21/2023]
Abstract
ABSTRACT We have previously shown that intradermal injection of high-molecular-weight hyaluronan (500-1200 kDa) produces localized antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the therapeutic effect of topical hyaluronan, when combined with each of 3 transdermal drug delivery enhancers (dimethyl sulfoxide [DMSO], protamine or terpene), in preclinical models of inflammatory and neuropathic pain. Topical application of 500 to 1200 kDa hyaluronan (the molecular weight range used in our previous studies employing intradermal administration), dissolved in 75% DMSO in saline, markedly reduced prostaglandin E 2 (PGE 2 ) hyperalgesia, in male and female rats. Although topical 500- to 1200-kDa hyaluronan in DMSO vehicle dose dependently, also markedly, attenuated oxaliplatin chemotherapy-and paclitaxel chemotherapy-induced painful peripheral neuropathy (CIPN) in male rats, it lacked efficacy in female rats. However, following ovariectomy or intrathecal administration of an oligodeoxynucleotide antisense to G-protein-coupled estrogen receptor (GPR30) mRNA, CIPN in female rats was now attenuated by topical hyaluronan. Although topical coadministration of 150 to 300, 300 to 500, or 1500 to 1750 kDa hyaluronan with DMSO also attenuated CIPN, a slightly lower-molecular-weight hyaluronan (70-120 kDa) did not. The topical administration of a combination of hyaluronan with 2 other transdermal drug delivery enhancers, protamine and terpene, also attenuated CIPN hyperalgesia, an effect that was more prolonged than with DMSO vehicle. Repeated administration of topical hyaluronan prolonged the duration of antihyperalgesia. Our results support the use of topical hyaluronan, combined with chemically diverse nontoxic skin penetration enhancers, to induce marked antihyperalgesia in preclinical models of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Anjani QK, Pandya AK, Demartis S, Domínguez-Robles J, Moreno-Castellanos N, Li H, Gavini E, Patravale VB, Donnelly RF. Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int J Pharm 2023; 646:123446. [PMID: 37751787 DOI: 10.1016/j.ijpharm.2023.123446] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevailing bacterial pathogen linked to superficial skin and soft tissue infections (SSTIs). Rifampicin (RIF), a potent antibiotic against systemic and localised staphylococcal infections, faces limitations due to its low solubility. This constraint hampers its therapeutic potential for MRSA-induced SSTIs. To address this, an advanced liposomal system was designed for efficient dermal RIF delivery. Rifampicin-loaded liposomes (LipoRIF) were embedded within polymeric dissolving microneedles (DMNs) to enable targeted intradermal drug delivery. A robust Design of Experiment (DoE) methodology guided the systematic preparation and optimisation of LipoRIF formulations. The optimal LipoRIF formulation integrated within polymeric DMNs. These LipoRIF-DMNs exhibited favourable mechanical properties and effective skin insertion characteristics. Notably, in vitro assays on skin deposition unveiled a transformative result - the DMN platform significantly enhanced LipoRIF deposition within the skin, surpassing LipoRIF dispersion alone. Moreover, LipoRIF-DMNs displayed minimal cytotoxicity toward cells. Encouragingly, rigorous in vitro antimicrobial evaluations demonstrated LipoRIF-DMNs' capacity to inhibit MRSA growth compared to the control group. LipoRIF-DMNs propose a potentially enhanced, minimally invasive approach to effectively manage SSTIs and superficial skin ailments stemming from MRSA infections.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Anjali K Pandya
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, Sassari 07100, Italy
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
8
|
Zhang G, Li X, Huang C, Jiang Y, Su J, Hu Y. Preparation of the Levo-Tetrahydropalmatine Liposome Gel and Its Transdermal Study. Int J Nanomedicine 2023; 18:4617-4632. [PMID: 37600118 PMCID: PMC10438440 DOI: 10.2147/ijn.s422305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose The aim of this study was to develop a liposome gel containing levo-tetrahydropalmatine (l-THP) and evaluate its transdermal properties. Methods A L16 (43) orthogonal experiment was conducted to optimize the preparation of l-THP liposomes and assess their characterization and stability in a gel. The transdermal features were analyzed through in vivo and in vitro experiments on rats and Strat-M® membrane, respectively. The metabolism of l-THP in liver and skin S9 fractions was also studied. Results The optimization of the orthogonal experiment revealed that the ideal mass ratio of phosphatidylcholine, cholesterol, and l-THP during preparation was 10:1:3. The resulting liposome exhibited a particle size of 68 nm, a PDI of 0.27, a drug loading of 4.33%, an encapsulation of 18.79%, and a zeta potential of -41.27 mV. Both the l-THP and its liposome-gel formulation were found to be stable for a duration of 45 days at 4 °C and 30 °C. During the in vivo transdermal study, the maximum concentration (Cmax) of l-THP from the liposome gel was 0.16 μg/mL, and the time to reach this maximum concentration (tmax) was 1.2 hours. The relative bioavailability of l-THP in the liposome gel was 233.8% compared to the emulsion. The concentration of l-THP (prepared in PBS) decreased at a rate of 0.0067 μg/mL/min in the liver S9 fraction and 0.0027 μg/mL/min in the skin S9 fraction, however, this difference was not observed when l-THP was encapsulated in liposomes. l-THP passed through the Strat-M® membrane at a rate of 0.0032 mg/cm2/h and 0.002 mg/cm2/h for the emulsion and liposome gel, respectively. Conclusion The optimal process for the preparation of l-THP liposomes was obtained. Compared to the emulsion, the liposomes provided greater bioavailability when used transdermally. The liposomes also provided greater stability for l-THP during storage.
Collapse
Affiliation(s)
- Guizhen Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xuejian Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Chunyun Huang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yuanyuan Jiang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jian Su
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Ying Hu
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
9
|
Filipiuc SI, Neagu AN, Uritu CM, Tamba BI, Filipiuc LE, Tudorancea IM, Boca AN, Hâncu MF, Porumb V, Bild W. The Skin and Natural Cannabinoids-Topical and Transdermal Applications. Pharmaceuticals (Basel) 2023; 16:1049. [PMID: 37513960 PMCID: PMC10386449 DOI: 10.3390/ph16071049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The chemical constituents of the Cannabis plant known as cannabinoids have been extensively researched for their potential therapeutic benefits. The use of cannabinoids applied to the skin as a potential method for both skin-related benefits and systemic administration has attracted increasing interest in recent years. This review aims to present an overview of the most recent scientific research on cannabinoids used topically, including their potential advantages for treating a number of skin conditions like psoriasis, atopic dermatitis, and acne. Additionally, with a focus on the pharmacokinetics and security of this route of administration, we investigate the potential of the transdermal delivery of cannabinoids as a method of systemic administration. The review also discusses the restrictions and difficulties related to the application of cannabinoids on the skin, emphasizing the potential of topical cannabinoids as a promising route for both localized and systemic administration. More studies are required to fully comprehend the efficacy and safety of cannabinoids in various settings.
Collapse
Affiliation(s)
- Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I bvd, No. 20A, 700505 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Andreea Nicoleta Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | | | - Vlad Porumb
- Department Surgery, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Walther Bild
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| |
Collapse
|
10
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
11
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
12
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
13
|
Bernasqué A, Cario M, Krisa S, Lecomte S, Faure C. Transport of hydrocortisone in targeted layers of the skin by multi-lamellar liposomes. J Liposome Res 2023:1-14. [PMID: 36779686 DOI: 10.1080/08982104.2023.2177309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Hydrocortisone (HyC), a hydrophobic pharmaceutical active, was encapsulated in multi-lamellar liposomes (MLLs) composed of P100, a mixture of phospholipids, and Tween®80. Three different HyC-loaded formulations were designed to target the stratum corneum, the living epidermis and the hypodermis. The impact of encapsulation on their size, elasticity and zeta potential, the three key factors controlling MLLs skin penetration, was studied. Raman mapping of phospholipids and HyC allowed the localisation of both components inside an artificial skin, Strat-M®, demonstrating the efficiency of the targeting. Percutaneous permeation profiles through excised human skin were performed over 48 h, supporting results on artificial skin. Their modelling revealed that HyC encapsulated in MLLs, designed to target the stratum corneum and living epidermis, exhibited a non-Fickian diffusion process. In contrast, a Fickian diffusion was found for HyC administered in solution, in a pharmaceutical cream and in transdermal MLLs. These results allowed us to propose a mechanism of interaction between HyC-containing MLLs and the skin.
Collapse
Affiliation(s)
- Antoine Bernasqué
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France.,U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Muriel Cario
- U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Stéphanie Krisa
- INRAE, Bordeaux INP, UR oenologie, Université de Bordeaux, Villenave d'Ornon, France
| | - Sophie Lecomte
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France
| | - Chrystel Faure
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France
| |
Collapse
|
14
|
Anjani QK, Demartis S, Volpe-Zanutto F, Li H, Sabri AHB, Gavini E, Donnelly RF. Fluorescence-Coupled Techniques for Determining Rose Bengal in Dermatological Formulations and Their Application to Ex Vivo Skin Deposition Studies. Pharmaceutics 2023; 15:pharmaceutics15020408. [PMID: 36839730 PMCID: PMC9960589 DOI: 10.3390/pharmaceutics15020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rose Bengal (RB) is a fluorescent dye with several potential biomedical applications, particularly in dermatology. Due to RB's poor physicochemical properties, several advanced delivery systems have been developed as a potential tool to promote its permeation across the skin. Nevertheless, no validated quantitative method to analyse RB within the skin is described in the literature. Considering RB exhibits a conjugated ring system, the current investigation proposes fluorescence-based techniques beneficial for qualitatively and quantitatively determining RB delivered to the skin. Notably, the development and validation of a fluorescence-coupled HPLC method to quantify RB within the skin matrix are herein described for the first time. The method was validated based on the ICH, FDA and EMA guidelines, and the validated parameters included specificity, linearity, LOD, LLOQ, accuracy and precision, and carry-over and dilution integrity. Finally, the method was applied to evaluate RB's ex vivo permeation and deposition profiles when loaded into dermatological formulations. Concerning qualitative determination, multiphoton microscopy was used to track the RB distribution within the skin strata, and fluorescence emission spectra were investigated to evaluate RB's behaviour when interacting with different environments. The analytical method proved specific, precise, accurate and sensitive to analyse RB in the skin. In addition, qualitative side-analytical techniques were revealed to play an essential role in evaluating the performance of RB's dermatological formulation.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Sara Demartis
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| |
Collapse
|
15
|
Lee MS, Kim SJ, Lee JB, Yoo HS. Clinical evaluation of the brightening effect of chitosan-based cationic liposomes. J Cosmet Dermatol 2022; 21:6822-6829. [PMID: 36052771 DOI: 10.1111/jocd.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cationic liposomes can enhance the permeability of drugs in 3-D skin. Chitosan is considered a safe material for percutaneous delivery; thus, this study uses chitosan-incorporated cationic liposomes. AIMS This study investigated the improvement in skin brightness, melanin, and melasma after treatment niacinamide-incorporated chitosan cationic liposomes. METHODS A skin brightening agent, niacinamide, was formulated into cationic liposomes to facilitate percutaneous absorption and was clinically tested in 21 Korean female subjects. Cationic liposomes were prepared using a high-pressure homogenizer after mixing an oil phase containing lecithin and cholesterol and an aqueous phase containing niacinamide and chitosan. RESULTS The cationic liposomes exhibited stability over 28 days, with a particle size of 255-275 nm and zeta potential of 10-14 mV. Cationic liposomes containing niacinamide and a control formulation were applied to the left and right side of the face, respectively, twice daily for 28 days. Skin brightness, melanin index, and area of melasma were significantly enhanced where cationic liposomes were used, in comparison with formulations without cationic liposomes, demonstrating a 1.38-2.08-fold improvement. CONCLUSION Thus, we established that chitosan liposomes augmented the percutaneous absorption of niacinamide and improved the appearance of the skin.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, Korea
| |
Collapse
|
16
|
Partoazar A, Kianvash N, Goudarzi R. New concepts in wound targeting through liposome-based nanocarriers (LBNs). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Gupta N, Gupta GD, Singh D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1006628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topical drug delivery presents a novel substitute to the conventional drug-distribution routes of oral delivery and injection. Apart from the simplicity and non-invasiveness, the skin also serves as a “reservoir” that sustains administration over a period of days. Nanocarriers provide new potential for the treatment of skin disease. The skin’s barrier function offers a considerable obstacle for the potential nanocarriers to infiltrate into the tissue. However, the barrier is partially weakened in case of damage or inflammation, as in the case of skin cancer. Nanoparticles may promote the penetration of the skin. Extensive research has been done into producing nanoparticles for topical distribution; nevertheless, relatively little progress has been achieved in transferring them to the clinic for treating skin malignancies. The prior art features the critical concepts of skin malignancies and techniques in current clinical care. The present review gives a complete viewpoint of the numerous nanoparticle technologies studied for the topical treatment of skin malignancies and outlines the hurdles that hamper its advancement from the bench to the bedside. The review also intends to give knowledge of the routes that control nanoparticle penetration into the skin and their interactions inside the tissue.
Collapse
|
18
|
Demartis S, Anjani QK, Volpe-Zanutto F, Paredes AJ, Jahan SA, Vora LK, Donnelly RF, Gavini E. Trilayer dissolving polymeric microneedle array loading Rose Bengal transfersomes as a novel adjuvant in early-stage cutaneous melanoma management. Int J Pharm 2022; 627:122217. [PMID: 36155790 DOI: 10.1016/j.ijpharm.2022.122217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Melanoma remains a global concern, but current therapies present critical limitations pointing out the urgent need for novel strategies. Among these, the cutaneous delivery of drugs selectively damaging cancer cells is highly attractive. Rose Bengal (RB) is a dye exhibiting selective cytotoxicity towards melanoma, but the high water solubility and low permeability hinder its therapeutic potential. We previously developed RB-loaded transfersomes (RBTF) to mediate the RB dermal delivery; however, a platform efficiently delivering RBTF in the deepest strata is essential for a successful therapeutic activity. In this regard, dissolving microneedles release the encapsulated cargo up to the dermis, painlessly piercing the outmost skin layers. Therefore, herein we developed and characterised a trilayer dissolving microneedle array (RBTF-TDMNs) loading RBTF to maximise RBTF intradermal delivery in melanoma management. RBTF-TDMNs were proven strong enough to pierce excised porcine skin and rapidly dissolve and deposit RBTF intradermally while maintaining their physicochemical properties. Also, 3D visualisation of the system itself and while penetrating the skin was performed by multi-photon microscopy. Finally, a dermatokinetic study showed that RBTF-TDMNs offered unique delivery efficiency advantages compared to RBTF dispersion and free drug-loaded TDMNs. The proposed RBTF-TDMNs represent a valuable potential adjuvant tool for the topical management of melanoma.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy; School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | | - Subrin A Jahan
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Mascarenhas-Melo F, Carvalho A, Beatriz S. Gonçalves M, Cláudia Paiva-Santos A, Veiga F. Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicology. Eur J Pharm Biopharm 2022; 176:95-107. [DOI: 10.1016/j.ejpb.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
|
21
|
Engineering immunity via skin-directed drug delivery devices. J Control Release 2022; 345:385-404. [DOI: 10.1016/j.jconrel.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
22
|
Costa C, Cavaco-Paulo A, Matamá T. Mapping hair follicle-targeted delivery by particle systems: What has science accomplished so far? Int J Pharm 2021; 610:121273. [PMID: 34763036 DOI: 10.1016/j.ijpharm.2021.121273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
The importance of the hair follicle in the process of cutaneous drug penetration has been established since this skin appendage was recognized as an entry point for topically applied substances. A comprehensive review on the hair follicle as a target per se is here provided, exploring the current knowledge on both targeted regions and delivery systems that take advantage of this permeation route. The follicular penetration is a complex process, whose effectiveness and efficiency strongly depends on a diversity of different factors including follicular density and size, activity status of hair follicles and physicochemical properties of the topically applied substances. Nanocarriers represent a heterogeneous assembly of molecules organized into particles and they have revolutionized drug delivery in several areas of medicine, pharmacology and cosmetics. As they possess an inherent ability to use the follicular route, they are reviewed here having in perspective the hair follicle zones that they are able to reach as reported. In this way, a follicular road map for the different delivery systems was compiled to assist as a guiding tool for those that have interest in the development and/or application of such delivery systems for hair and skin treatment or care.
Collapse
Affiliation(s)
- Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
24
|
Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Mol Pharm 2021; 18:4046-4057. [PMID: 34554752 PMCID: PMC8564756 DOI: 10.1021/acs.molpharmaceut.1c00468] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Cutaneous melanoma
is one of the most aggressive and metastatic
forms of skin cancer. However, current therapeutic options present
several limitations, and the annual death rate due to melanoma increases
every year. Dermal delivery of nanomedicines can effectively eradicate
primary melanoma lesions, avoid the metastatic process, and improve
survival. Rose Bengal (RB) is a sono-photosensitizer drug with intrinsic
cytotoxicity toward melanoma without external stimuli but the biopharmaceutical
profile limits its clinical use. Here, we propose deformable lipid
nanovesicles, also known as transfersomes (TF), for the targeted dermal
delivery of RB to melanoma lesions to eradicate them in the absence
of external stimuli. Considering RB’s poor ability to cross
the stratum corneum and its photosensitizer nature, transfersomal
carriers were selected simultaneously to enhance RB penetration to
the deepest skin layers and protect RB from undesired photodegradation.
RB-loaded TF dispersion (RB-TF), prepared by a modified reverse-phase
evaporation method, were nanosized with a ζ-potential value
below −30 mV. The spectrophotometric and fluorimetric analysis
revealed that RB efficiently interacted with the lipid phase. The
morphological investigations (transmission electron microscopy and
small-angle X-ray scattering) proved that RB intercalated within the
phospholipid bilayer of TF originating unilamellar and deformable
vesicles, in contrast to the rigid multilamellar unloaded ones. Such
outcomes agree with the results of the in vitro permeation study,
where the lack of a burst RB permeation peak for RB-TF, observed instead
for the free drug, suggests that a significant amount of RB interacted
with lipid nanovesicles. Also, RB-TF proved to protect RB from undesired
photodegradation over 24 h of direct light exposure. The ex vivo epidermis
permeation study proved that RB-TF significantly increased RB’s
amount permeating the epidermis compared to the free drug (78.31 vs
38.31%). Finally, the antiproliferative assays on melanoma cells suggested
that RB-TF effectively reduced cell growth compared to free RB at
the concentrations tested (25 and 50 μM). RB-TF could potentially
increase selectivity toward cancer cells. Considering the outcomes
of the characterization and cytotoxicity studies performed on RB-TF,
we conclude that RB-TF represents a valid potential alternative tool
to fight against primary melanoma lesions via dermal delivery in the
absence of light.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Florence, Italy
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
25
|
Pandey S, Tripathi P, Gupta A, Yadav JS. A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine. Drug Deliv Transl Res 2021; 12:1541-1555. [PMID: 34550552 DOI: 10.1007/s13346-021-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Psoriasis is an autoimmune, chronic proliferative, inflammatory skin disease with high comorbidity. Psoriasis is not a curable disease; it can only be managed. Cyclosporine A (CyA) is one of the FDA-approved immunosuppressant drug used in severe Psoriasis. Till date only oral route is used for its administration. Administration of CyA by this route causes serious side effects such as hypertension and renal toxicity. Due to these side effects, a number of researches have been done and taking place in the current times for the dermal delivery of CyA for the management of psoriasis. Dermal delivery of CyA is not an easy task because of its physiochemical properties like high molecular weight, lipophilicity and resistance offered by stratum corneum (SC). Because of the above problems in the dermal delivery a number of new approaches such as nanolipid carriers, microemulsion, liposomes, niosomes etc. are explored. To those deep findings for psoriasis management with dermal delivery of CyA have not been discussed. This comprehensive review includes all the studies, advancements and their critical findings which took place in the recent times for the dermal delivery of CyA and along with the suitable modification needed for the efficient dermal delivery of CyA are also suggested.
Collapse
Affiliation(s)
- Sonia Pandey
- Sakshi College of Pharmacy, Kalyanpur, UP, 208017, Kanpur, India.
| | - Purnima Tripathi
- Department of Pharmaceutics, Bundelkhand University, Jhansi, UP, India
| | - Arti Gupta
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| | - Jitendra Singh Yadav
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| |
Collapse
|
26
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
27
|
|
28
|
Akbari J, Saeedi M, Morteza-Semnani K, Hashemi SMH, Babaei A, Eghbali M, Mohammadi M, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Target 2021; 30:108-117. [PMID: 34116599 DOI: 10.1080/1061186x.2021.1941060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this research was to enhance the transdermal delivery of diclofenac sodium niosomal formulations. To characterise the obtained niosomes, SEM, XRPD, DSC and ATR-FTIR were employed. The size of the niosomes increased from 158.00 ± 6.17 to 400.87 ± 4.99 nm when cholesterol was incorporated into the formulations. It was observed that the zeta potential of niofenac varies from -25.40 ± 1.352 to -43.13 ± 1.171 mV when the cholesterol percentage decreased from 2% to 0.2%. The higher entrapment efficiency percentage (63.70 ± 0.18%) was obtained for the formulations with larger particle sizes and higher cholesterol content. The optimised niofenac formulation showed a controlled release fashion where 61.71 ± 0.59% of the drug released within 24 h. The results showed that the value of permeated diclofenac sodium through the skin layers was higher for the niofenac gel formulation (242.3 ± 31.11 µg/cm2) compared to simple gel formulation (127.40 ± 27.80 µg/cm2). Besides, niofenac formulation outperformed the anti-inflammatory activities in the formalin test compared to the control and diclofenac simple gel group. The licking time was significantly lower in both early (40.2 ± 7.3 s) and late stages (432.4 ± 31.7 s) for niofenac compared to conventional formulation (early stage 130.4 ± 8.73 s and late stage 660.6 ± 123.73 s). This study indicates that niosomal formulations can improve drug therapeutic effects by increasing drug delivery to specific sites.
Collapse
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Mohammadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.,Medical Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
29
|
Yu YQ, Yang X, Wu XF, Fan YB. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front Bioeng Biotechnol 2021; 9:646554. [PMID: 33855015 PMCID: PMC8039394 DOI: 10.3389/fbioe.2021.646554] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
The transdermal route of administration provides numerous advantages over conventional routes i.e., oral or injectable for the treatment of different diseases and cosmetics applications. The skin also works as a reservoir, thus deliver the penetrated drug for more extended periods in a sustained manner. It reduces toxicity and local irritation due to multiple sites for absorption and owes the option of avoiding systemic side effects. However, the transdermal route of delivery for many drugs is limited since very few drugs can be delivered at a viable rate using this route. The stratum corneum of skin works as an effective barrier, limiting most drugs' penetration posing difficulty to cross through the skin. Fortunately, some non-invasive methods can significantly enhance the penetration of drugs through this barrier. The use of nanocarriers for increasing the range of available drugs for the transdermal delivery has emerged as a valuable and exciting alternative. Both the lipophilic and hydrophilic drugs can be delivered via a range of nanocarriers through the stratum corneum with the possibility of having local or systemic effects to treat various diseases. In this review, the skin structure and major obstacle for transdermal drug delivery, different nanocarriers used for transdermal delivery, i.e., nanoparticles, ethosomes, dendrimers, liposomes, etc., have been discussed. Some recent examples of the combination of nanocarrier and physical methods, including iontophoresis, ultrasound, laser, and microneedles, have also been discussed for improving the therapeutic efficacy of transdermal drugs. Limitations and future perspectives of nanocarriers for transdermal drug delivery have been summarized at the end of this manuscript.
Collapse
Affiliation(s)
- Yi-Qun Yu
- Scientific Research and Education Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
- Nursing Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Fang Wu
- Nursing Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
30
|
Patel D, Patel B, Thakkar H. Lipid Based Nanocarriers: Promising Drug Delivery System for Topical Application. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Darshana Patel
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| | - Brijesh Patel
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| | - Hetal Thakkar
- Faculty of Pharmacy The Maharaja Sayajirao University of Baroda Vadodara Gujarat 390 001 India
| |
Collapse
|
31
|
Špaglová M, Čuchorová M, Čierna M, Poništ S, Bauerová K. Microemulsions as Solubilizers and Penetration Enhancers for Minoxidil Release from Gels. Gels 2021; 7:gels7010026. [PMID: 33802416 PMCID: PMC7931056 DOI: 10.3390/gels7010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/11/2023] Open
Abstract
Micro- and nanoemulsions are potential drug solubilizers and penetration enhancers through the high surfactant/co-surfactant content. This study aimed to evaluate the influence of minoxidil (MXD) solubilized in the microemulsions (MEs) on drug release by in vitro/ex vivo diffusion through the semi-permeable membrane Spectra/Por® (Spectrum Laboratory, Gardena, CA, USA) and porcine ear skin. Moreover, a residual amount of drug in the skin after ex vivo diffusion was evaluated. The reference MER, lecithin-containing MEL, and gelatin-containing MEG were characterized in terms of their size, polydispersity index, density, viscosity, electrical conductivity and surface tension. Based on the in vitro diffusion, it can be argued that MEL slowed down the drug release, while MER and MEG have no significant effect compared to the sample, in which propylene glycol (PG) was used as a solubilizer. Determination of the residual drug amount in the skin after 6 h of the ex vivo permeation was demonstrated as the most valuable method to evaluate the effectiveness of the ME’s application. The results indicate that the most optimal MXD permeation enhancers in alginate gel were the natural surfactants containing MEs. MXD solubilization in MEG and MEL had caused more than 5% of the drug remaining in the skin, which is almost a 1.5-fold higher amount compared to the reference gel.
Collapse
Affiliation(s)
- Miroslava Špaglová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.Č.); (M.Č.)
- Correspondence: ; Tel.: +421-02-50-117-263
| | - Mária Čuchorová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.Č.); (M.Č.)
| | - Martina Čierna
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.Č.); (M.Č.)
| | - Silvester Poništ
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia; (S.P.); (K.B.)
| | - Katarína Bauerová
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia; (S.P.); (K.B.)
| |
Collapse
|
32
|
Asadi P, Mehravaran A, Soltanloo N, Abastabar M, Akhtari J. Nanoliposome-loaded antifungal drugs for dermal administration: A review. Curr Med Mycol 2021; 7:71-78. [PMID: 34553102 PMCID: PMC8443872 DOI: 10.18502/cmm.7.1.6247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous fungal infections are the fourth most common health problem, which involves approximately one billion people worldwide. Drug delivery to the skin seems to be the best choice for superficial fungal infections. Topical formulations can release a sufficient amount of drug in therapeutical concentrations and permeate higher layers of the skin like the stratum corneum. As the outermost layer of the epidermis, the stratum corneum prevents the drug from penetrating the skin. Liposomes, especially nanosized as topical drug delivery systems to the skin, can show various functions depending on their size, lipids and cholesterol components, the percent of ingredients, lamellarity, and surface charge. Nanoliposomes can increase permeation through the stratum corneum, decrease systemic effects with their localizing actions, and overcome many dermal drug delivery obstacles. Antifungal drugs, such as croconazole, econazole, fluconazole, ketoconazole, terbinafine hydrochloride, tolnaftate, and miconazole entrapped in liposomes have indicated improved skin penetration and localizing effects. According to the literature review summarized in this paper, many studies have identified liposomes as a powerful carrier for topical antifungal drug delivery to the skin. However, a few studies introduced new generations of liposomes like ethosomes and transfersomes. This paper was conducted on almost all liposomal studies of antifungal drugs with dermal application.
Collapse
Affiliation(s)
- Peyman Asadi
- Student Research Committee, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Mehravaran
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nahid Soltanloo
- Student Research Committee, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center/Department of Medical mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
33
|
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021; 2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hanin Alyamani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shatha N Abdeljaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
34
|
Apolinário AC, Hauschke L, Nunes JR, Lopes LB. Towards nanoformulations for skin delivery of poorly soluble API: What does indeed matter? J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Sahu SK, Raj R, Raj PM, Alpana R. Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885513666181112153213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of skin ailments through systemic administration is limited due to toxicity and
patients discomfort. Hence, lower risk of systemic side effects from topical dosage forms like ointments,
creams, emulsions and gels is more preferred for the treatment of skin disease. Application
of lipid based carriers in drug delivery in topical formulations has recently become one of the major
approaches to improve drug permeation, safety, and effectiveness. These delivery systems include
liposomes, ethosomes, transfersomes, Nanoemulsions (NEs), Solid Lipid Nanoparticles (SLNs)
Nanostructured Lipid Carriers (NLCs) and micelles. Most of the liposomes and SLNs based products
are in the market while some are under investigation. Transcutaneous delivery of therapeutics
to the skin layer by novel lipid based carriers has enhanced topical therapy for the treatment of skin
ailments. This article covers an overview of the lipid-based carriers for topical uses to alleviate skin
diseases.
Collapse
Affiliation(s)
- Suresh Kumar Sahu
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Rakesh Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Pooja Mongia Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Ram Alpana
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| |
Collapse
|
36
|
Mancuso A, Cristiano MC, Fresta M, Paolino D. The Challenge of Nanovesicles for Selective Topical Delivery for Acne Treatment: Enhancing Absorption Whilst Avoiding Toxicity. Int J Nanomedicine 2020; 15:9197-9210. [PMID: 33239876 PMCID: PMC7682599 DOI: 10.2147/ijn.s237508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acne is a common skin disease that affect over 80% of adolescents. It is characterized by inflammation of the hair bulb and the attached sebaceous gland. To date, many strategies have been used to treat acne as a function of the disease severity. However, common treatments for acne seem to show several side effects, from local irritation to more serious collateral effects. The use of topical vesicular carriers able to deliver active compounds is currently considered as an excellent approach in the treatment of different skin diseases. Many results in the literature have proven that drug delivery systems are useful in overcoming the toxicity induced by common drug therapies, while maintaining their therapeutic efficacy. Starting from these assumptions, the authors reviewed drug delivery systems already realized for the topical treatment of acne, with a focus on their limitations and advantages over conventional treatment strategies. Although their exact mechanism of permeation is not often completely clear, deformable vesicles seem to be the best solution for obtaining a specific delivery of drugs into the deeper skin layers, with consequent increased local action and minimized collateral effects.
Collapse
Affiliation(s)
- Antonia Mancuso
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro88100, Italy
| |
Collapse
|
37
|
Abd E, Gomes J, Sales CC, Yousef S, Forouz F, Telaprolu KC, Roberts MS, Grice JE, Lopes PS, Leite-Silva VR, Andréo-Filho N. Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test. Int J Cosmet Sci 2020; 43:1-10. [PMID: 32866296 DOI: 10.1111/ics.12659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The permeation of hydrophilic molecules through the skin is still a challenge due to the barrier posed by stratum corneum, the outermost layer of the skin. Liposomes have frequently been used as carriers for different types of drugs and may also function as permeation enhancers. Propylene glycol has also been used as an edge activator in liposomes to increase the permeation. The aim of this work was to prepare liposomes containing an edge activator and loaded with caffeine to evaluate the potential of caffeine reaching the deeper layers in the skin. METHODS The formulations were prepared by a top-down process using high-pressure homogenization at 200 00 psi for 10 min. They were characterized by size, polydispersity index (PI), zeta potential (ZP), pH, caffeine content and encapsulation efficiency (EE%) on preparation (time zero) and after 30 days. Cytotoxicity of blank and loaded liposomes was assessed by MTT proliferation assay with a normal keratinocyte cell line (HaCaT). In vitro permeation tests were performed with human skin in Franz cells over 24 h, and caffeine concentration was determined in the skin surface, stratum corneum, dermo-epidermal fraction and receptor medium by HPLC. RESULTS The caffeine liposomes with (DL-Caf) or without propylene glycol (CL-Caf) showed, respectively, mean size 94.5 and 95.4 nm, PI 0.48 and 0.42, ZP + 1.3 and + 18.1 mV and caffeine content of 78.57 and 80.13%. IC50 values of caffeine in DL-Caf (3.59 v/v %) and CL-Caf (3.65 v/v %) were not significantly different from conventional blank liposome (3.27 v/v %). The DL-Caf formulation presented the best capability to enhance the caffeine permeation through the skin, resulting 1.94-folds higher than caffeine solution. Furthermore, the caffeine flux from DL-Caf was 1.56- and 3.05-folds higher than caffeine solution and CL-Caf, respectively. On the other hand, CL-Caf showed the lowest caffeine penetration revealing the importance of edge activator to aid hydrophilic drug penetration to all skin layers. CONCLUSION The DL-Caf formulation tested was able to improve the permeation of caffeine through the stratum corneum and dermo-epidermal layers, suggesting that this delivery system may be effective for deep skin delivery of hydrophilic drugs.
Collapse
Affiliation(s)
- E Abd
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia
| | - J Gomes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, prédio de vidro, Diadema, SP, CEP 09913-030, Brazil
| | - C C Sales
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, prédio de vidro, Diadema, SP, CEP 09913-030, Brazil
| | - S Yousef
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia.,Faculty of Pharmacy, Helwan University, Helwan, Cairo, 11795, Egypt
| | - F Forouz
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia
| | - K C Telaprolu
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia
| | - M S Roberts
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia.,Clinical and Health Sciences, City West Campus, Level 6 Cancer Research Institute (UniSA CRI), University of South Australia, North Terrace, Adelaide, S.A., 5000, Australia
| | - J E Grice
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia
| | - P S Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, prédio de vidro, Diadema, SP, CEP 09913-030, Brazil
| | - V R Leite-Silva
- Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent Street, Woolloongabba, Qld., 4072, Australia.,Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, prédio de vidro, Diadema, SP, CEP 09913-030, Brazil
| | - N Andréo-Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, prédio de vidro, Diadema, SP, CEP 09913-030, Brazil
| |
Collapse
|
38
|
Ghasemiyeh P, Mohammadi-Samani S. Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: Advantages and Disadvantages. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3271-3289. [PMID: 32848366 PMCID: PMC7429187 DOI: 10.2147/dddt.s264648] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The topical route of administration has many advantages for the treatment of various skin disorders as well as cosmeceutical purposes. This route bypasses hepatic first-pass effect and systemic availability of many pharmaceuticals is limited to skin organelles such as hair follicles and so could avoid unwanted adverse reactions and increase the localized therapeutic effect. Despite such attributed advantages of the topical route, the most important challenge is skin barrier characteristics that should be overcome to obtain dermal or trans-dermal drug delivery. Different approaches have been recruited to overcome this barrier. In this review, different types of nanoparticles for skin permeation enhancement and targeted delivery to skin organelles are discussed. The potential mechanisms of each nanocarrier in permeation enhancement and dermal delivery are considered and finally, the most important advantages and disadvantages of each group are summarized.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Matos C, Lobão P. Non-Steroidal Anti-Inflammatory Drugs Loaded Liposomes for Topical Treatment of Inflammatory and Degenerative Conditions. Curr Med Chem 2020; 27:3809-3829. [DOI: 10.2174/0929867326666190227233321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/27/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Topical administration of drugs presents some advantages over other routes; the drug can be
administered in the anatomical region to be treated, limiting the systemic distribution and side effects.
However, the structure of the skin makes it a highly effective barrier to drug permeation. Amongst the
strategies to overcome this obstacle, liposomes are interesting vehicles for delivering the drugs into the
skin, the synovial cavity or other regions affected by inflammatory or degenerative conditions.
Liposomes are lipid carriers of nanometric size formed by phospholipid bilayers. They have the advantages
of preparation feasibility and biological compatibility associated with the possibility of carrying
either lipophylic and/or hydrophylic compounds, and have been extensively used in various drug delivery
systems, for drug targeting, controlled release and permeation enhancement of drugs. Conventional
liposomes are not very stable and not suitable for dermal administration after topical application, since
they accumulate on the skin surface due to the rigidity of the lipid layers and suffer dehydration, culminating
in their fragmentation. Other formulations have emerged in the meantime, such as transfersomes,
niosomes or ethosomes. The present work consists of a review on the published scientific papers regarding
the development of liposomal formulations containing non-steroidal anti-inflammatory drugs for the
purpose of relieving the symptomatology of inflammatory and degenerative ailments. The exposition
summarizes data relating to liposome type, composition, preparation method, liposome characterization,
topical vehicle used, in vitro permeation studies performed, in vivo anti-inflammatory assays carried out
and results obtained in the different studies published in the last five years.
Collapse
Affiliation(s)
- Carla Matos
- FP-ENAS-UFP Energy, Environment and Health Research Unit/CEBIMED-Centro de Estudos em Biomedicina, Fernando Pessoa University, Porto, Portugal
| | - Paulo Lobão
- Research Centre for Pharmaceutical Sciences, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Hasan M, Khatun A, Fukuta T, Kogure K. Noninvasive transdermal delivery of liposomes by weak electric current. Adv Drug Deliv Rev 2020; 154-155:227-235. [PMID: 32589904 DOI: 10.1016/j.addr.2020.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Noninvasive transdermal drug delivery (NTDD) offers an exciting new method of administration relative to conventional routes, but is associated with some challenges. Liposomes are capable of encapsulating transdermally-unfavorable drugs. However, the horny layer of skin is a significant barrier that limits efficient transdermal delivery of liposomes. Iontophoresis using weak electric current (WEC) represents a NTDD technology. WEC treatment of liposomes applied to the skin surface improves transdermal penetration of encapsulated drugs by cooperative effects. In this review, we provide an overview of the application of WEC/liposomes for transdermal delivery of macromolecules and low molecular weight drugs. We compare the transdermal delivery and therapeutic efficiency of the combined system with conventional routes of administration and their individual use. We discuss a novel perspective on the mechanism of WEC-mediated transdermal delivery of liposomes, which suggests that WEC activates the intracellular signaling pathway for transdermal permeation and induces unique endocytosis in skin cells.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan; Tokyo Biochemical Research Foundation (TBRF) Fellow, Tokushima, Japan
| | - Anowara Khatun
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8505, Japan.
| |
Collapse
|
41
|
What is the fate of multi-lamellar liposomes of controlled size, charge and elasticity in artificial and animal skin? Eur J Pharm Biopharm 2020; 151:18-31. [DOI: 10.1016/j.ejpb.2020.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022]
|
42
|
Lai F, Caddeo C, Manca ML, Manconi M, Sinico C, Fadda AM. What's new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm 2020; 583:119398. [DOI: 10.1016/j.ijpharm.2020.119398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/24/2023]
|
43
|
Chatzinikoli L, Pippa N, Demetzos C. Preparation and physicochemical characterization of elastic liposomes: a road-map library for their design. J Liposome Res 2019; 31:11-18. [PMID: 31631722 DOI: 10.1080/08982104.2019.1682605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elastic liposomes consist of phospholipids and of surfactants, could be considered as promising nanotechnological platforms for skin drug delivery. The aim of the present study was the formation of elastic liposomes by thin film hydration method, using different phospholipids and surfactants, in order to determine the effect of the components on their physical characteristics and on their physical stability. Physical properties of elastic liposomes were evaluated using dynamic light scattering (DLS)method. The particle size at the day of their preparation, was ranged between small and large unilamellar vesicles (SUVs and LUVs), dependent on the hydrophilicity of the surfactant used, while their PDI (Poly Dispersity Index) value was close to zero, indicating monodispersed systems. Physical stability study involved the measure of particle size, as a quantifiable physical property, at selected times over a 30-days period, at storage conditions: (i) 4 °C, (ii) 25 °C, iii) 45 °C, suggested that refrigerated conditions promote physical stability, while high temperatures induce aggregation. According to the physical stability study elastic liposomes composed ofTween80 were found to bemore stable than those composed of Span80, at ambient conditions. The goal of our investigation was centred to the development and evaluation of a well know liposomal category i.e. elastic liposomes, by modified their composition with common surfactants (i.e. Span and/or Tween), creating, a new liposomal class namely, elastic lipo-niosomes. To the best of knowledge this the first time that these hybrid vesicles appeared in the literature exhibiting the aforementioned category lipid/surfactants and molar ratios.
Collapse
Affiliation(s)
- Lydia Chatzinikoli
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
44
|
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144:18-39. [PMID: 31446046 DOI: 10.1016/j.ejpb.2019.08.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Development of nanocarriers for drug delivery has received considerable attention due to their potential in achieving targeted delivery to the diseased site while sparing the surrounding healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as a versatile drug delivery system with a variety of applications ranging from dermal delivery to brain-targeted delivery. A large number of research articles have been published reporting their fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have the same advantages as liposomes, such as the ability to incorporate both hydrophilic and lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less production cost and are stable over an extended period, thus overcoming the major drawbacks of liposomes. This review provides a comprehensive summary of niosomal research to date, it provides a detailed overview of the formulation components, types of niosomes, effects of components on the formation of niosomes, fabrication and purification methods, physical characterization techniques of niosomes, recent applications in pharmaceutical field such as in oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic applications. Finally, limitations and the future outlook for this delivery system have also been discussed.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Sara Hanning
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - James Falconer
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Level 4, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michelle Locke
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Department of Plastic and Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
45
|
Jain S, Khare P, Date T, Katiyar SS, Kushwah V, Katariya MK, Swami R. Mechanistic insights into high permeation vesicle-mediated synergistic enhancement of transdermal drug permeation. Nanomedicine (Lond) 2019; 14:2227-2241. [DOI: 10.2217/nnm-2018-0519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To design a nanocarrier platform for enhanced transdermal drug permeation. Materials & methods: Gel-based high permeation vesicles (HPVs) were developed and their performance in terms of transdermal flux improvement, in vitro release and skin irritancy was assessed. The mechanistic insights of permeation enhancement were explored using confocal laser scanning microscopy, ATR-FTIR, DSC and P31 NMR. Results: HPVs exhibited as vesicles with uniform size (∼150 nm), extended drug-release profile (∼48 h) and improved transdermal flux. HPVs were also nontoxic and nonirritant to skin. Enhanced vesicle deformability, improved vesicle membrane fluidity and synergistic permeation enhancement action of synergistic combination of permeation enhancer components was found to be responsible for HPV-mediated permeation enhancement. Conclusion: Overall, the study established that HPVs demonstrate a promising therapeutic advantage over conventional transdermal drug carriers.
Collapse
Affiliation(s)
- Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Pragati Khare
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Tushar Date
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sameer S Katiyar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Varun Kushwah
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Mahesh K Katariya
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Rajan Swami
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| |
Collapse
|
46
|
Chen Y, Feng X, Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv 2019; 16:847-867. [DOI: 10.1080/17425247.2019.1645119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
47
|
Svenskaya YI, Genina EA, Parakhonskiy BV, Lengert EV, Talnikova EE, Terentyuk GS, Utz SR, Gorin DA, Tuchin VV, Sukhorukov GB. A Simple Non-Invasive Approach toward Efficient Transdermal Drug Delivery Based on Biodegradable Particulate System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17270-17282. [PMID: 30977624 DOI: 10.1021/acsami.9b04305] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transdermal administration via skin appendages enables both localized and systemic drug delivery, as well as minimizes incidental toxicity. However, the design of an appropriate effective method for clinical use remains challenging. Here, we introduce calcium carbonate-based carriers for the transdermal transportation of bioactive substances. The proposed system presents easily manufacturable biodegradable particles with a large surface area enabling a high payload ability. Topical application of submicron porous CaCO3 particles in rats followed by the therapeutic ultrasound treatment results in their deep penetration through the skin along with plentiful filling of the hair follicles. Exploiting the loading capacity of the porous particles, we demonstrate efficient transportation of a fluorescent marker along the entire depth of the hair follicle down the bulb region. In vivo monitoring of the carrier degradation reveals the active dissolution/recrystallization of CaCO3 particles, resulting in their total resorption within 12 days. The proposed particulate system serves as an intrafollicular depot for drug storage and prolonged in situ release over this period. The urinary excretion profile proves the systemic absorption of the fluorescent marker. Hence, the elaborated transdermal delivery system looks promising for medical applications. The drug delivery to different target regions of the hair follicle may contribute to regenerative medicine, immunomodulation, and treatment of various skin disorders. In the meantime, the systemic uptake of the transported drug opens an avenue for prospective delivery routes beyond the scope of dermatology.
Collapse
Affiliation(s)
| | | | | | | | - Ekaterina E Talnikova
- Saratov State Medical University , Saratov 410012 , Russia
- Clinic of Skin and Venereal Diseases , Saratov 410028 , Russia
| | | | - Sergey R Utz
- Saratov State Medical University , Saratov 410012 , Russia
- Clinic of Skin and Venereal Diseases , Saratov 410028 , Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology , Moscow 143026 , Russia
| | - Valery V Tuchin
- Saratov State University , Saratov 410012 , Russia
- Tomsk State University , Tomsk 634050 , Russia
| | | |
Collapse
|
48
|
Lalloz A, Bolzinger MA, Briançon S, Faivre J, Rabanel JM, Garcia Ac A, Hildgen P, Banquy X. Subtle and unexpected role of PEG in tuning the penetration mechanisms of PLA-based nano-formulations into intact and impaired skin. Int J Pharm 2019; 563:79-90. [PMID: 30825557 DOI: 10.1016/j.ijpharm.2019.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/23/2023]
Abstract
We present a systematic study of the role of poly(ethylene glycol) (PEG) content in NPs on drug skin absorption. Cholecalciferol-loaded NPs of 100 nm of diameter were prepared by flash nanoprecipitation from PLA-b-PEG copolymers of various PEG lengths. As PEG content increased in the polymer, we observed a transition from a frozen solid particle structure to a more dynamic particle structure. Skin absorption studies showed that polymer composition influenced drug penetration depending on skin condition (intact or impaired). In intact skin, highly PEGylated NPs achieved the best skin absorption, even if the penetration differences between the NPs were low. In impaired skin, on the contrary, non-PEGylated NPs (PLA NPs) promoted a strong drug deposition. Further investigations revealed that the strong drug accumulation from PLA NPs in impaired skin was mediated by aggregation and sedimentation of NPs due to the release of charged species from the skin. In contrast, the dynamic structure of highly PEGylated NPs promoted wetting of the surface and interactions with skin lipids, improving drug absorption in intact skin. Since NPs structure and surface properties determine the drug penetration mechanisms at the NP-skin interface, this work highlights the importance of properly tuning NPs composition according to skin physiopathology.
Collapse
Affiliation(s)
- Augustine Lalloz
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Marie-Alexandrine Bolzinger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 Boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jimmy Faivre
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Araceli Garcia Ac
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Patrice Hildgen
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
49
|
Potential of nanoparticulate carriers for improved drug delivery via skin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-00418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: A review. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|