Vanniasinghe AS, Bender V, Manolios N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis.
Semin Arthritis Rheum 2008;
39:182-96. [PMID:
18926560 DOI:
10.1016/j.semarthrit.2008.08.004]
[Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 07/23/2008] [Accepted: 08/09/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE
To review the use of liposomes as a delivery agent in inflammatory arthritis.
METHODS
The literature on liposomes and liposomal drug delivery for the treatment of inflammatory arthritis was reviewed. A PubMed search of articles in the English-language journals from 1965 to 2007 was performed. The index words used were as follows: "rheumatoid arthritis," "liposomes," and "targeted delivery." Papers identified were reviewed, abstracted, and summarized.
RESULTS
Liposomes have the capacity to be used as delivery and targeting agents for the administration of antirheumatic drugs at lower doses with reduced toxicity. In other areas of medicine, the pace of progress has been rapid. In the case of infectious diseases and cancer, liposomal drug delivery has progressed and developed into commercially viable therapeutic options for the treatment of fungal infections (amphotericin B), or metastatic breast cancer and Kaposi sarcoma (doxorubicin, daunorubicin), respectively. In arthritis, the efficacy of prednisolone-loaded long-circulating liposomes is currently being evaluated in a phase II clinical trial. Liposome's application to arthritis is still in its infancy but appears promising as new patents are filed. With improvements in liposomal formulation and targeted synovial delivery, liposomes offer increased therapeutic activity and improvement in the risk-benefit ratio.
CONCLUSION
Recent research into synovial targets and improved liposomal formulations continues to improve our capacity to use liposomes for targeted delivery. With time, this approach has the potential to improve drug delivery and reduce systemic complications.
Collapse