1
|
Maeda Y, Murakami T. Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics (Basel) 2023; 12:antibiotics12020263. [PMID: 36830173 PMCID: PMC9952535 DOI: 10.3390/antibiotics12020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is characterized as the increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract and accompanies various bowel symptoms such as abdominal pain, bloating, gases, diarrhea, and so on. Clinically, SIBO is diagnosed by microbial culture in duodenum/jejunum fluid aspirates and/or the breath tests (BT) of hydrogen/methane gases after ingestion of carbohydrates such as glucose. The cultural analysis of aspirates is regarded as the golden standard for the diagnosis of SIBO; however, this is invasive and is not without risk to the patients. BT is an inexpensive and safe diagnostic test but lacks diagnostic sensitivity and specificity depending on the disease states of patients. Additionally, the urinary excretion tests are used for the SIBO diagnosis using chemically synthesized bile acid conjugates such as cholic acid (CA) conjugated with para-aminobenzoic acid (PABA-CA), ursodeoxycholic acid (UDCA) conjugated with PABA (PABA-UDCA) or conjugated with 5-aminosalicylic acid (5-ASA-UDCA). These conjugates are split by bacterial bile acid (cholylglycine) hydrolase. In the tests, the time courses of the urinary excretion rates of PABA or 5-ASA, including their metabolites, are determined as the measure of hydrolytic activity of intestinal bacteria. Although the number of clinical trials with this urinary excretion tests is small, results demonstrated the usefulness of bile acid conjugates as SIBO diagnostic substrates. PABA-UDCA disulfate, a single-pass type unabsorbable compound without the hydrolysis of conjugates, was likely to offer a simple and rapid method for the evaluation of SIBO without the use of radioisotopes or expensive special apparatus. Treatments of SIBO with antibiotics, probiotics, therapeutic diets, herbal medicines, and/or fecal microbiota transplantation are also reviewed.
Collapse
Affiliation(s)
- Yorinobu Maeda
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Sanzou, Gakuen-cho, Fukuyama 729-0292, Hiroshima, Japan
| | - Teruo Murakami
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure 737-0112, Hiroshima, Japan
- Correspondence: ; Tel.: +81-82-872-4310
| |
Collapse
|
2
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
3
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
4
|
Zhang BZ, Ma KS, Liu JJ, Lu LY, Chen XL, Zhang SP, Gao XW. Differential expression of genes in greenbug (Schizaphis graminum Rondani) treated by imidacloprid and RNA interference. PEST MANAGEMENT SCIENCE 2019; 75:1726-1733. [PMID: 30525307 DOI: 10.1002/ps.5293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Insecticides act as toxins, inhibitors of digestion and deterrents, and affect the expression of many genes in insects. To assess key genes associated with the detoxification or regulation of imidacloprid in greenbug, Schizaphis graminum (Rondani), the transcriptome and digital gene expression (DGE) profile were analyzed using Illumina sequencing. RESULTS In total, 48 763 494 clean reads were obtained by sequencing. Expression profile analysis showed that 2782 unigenes were differently expressed between the imidacloprid treatment and control groups. After exposure to imidacloprid, the expression levels of 1846 unigenes were upregulated and 936 were downregulated in comparison with controls. Expression patterns of the top 20 highly expressed genes show that they could be involved in the detoxification of imidacloprid. Silencing of multidrug resistance-associated gene (MRA), GATA-binding gene (GAT) and takeout-like precursor gene (TLP) resulted in increasing susceptibility to imidacloprid. CONCLUSIONS The differentially expressed genes in S. graminum have potential regulatory or detoxification roles in response to imidacloprid. These results should be useful in understanding the molecular mechanisms of greenbug adaption to imidacloprid. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kang-Sheng Ma
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Jun-Jie Liu
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Liu-Yang Lu
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Xi-Ling Chen
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Shou-Ping Zhang
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Intestinal multidrug resistance-associated protein 2 is down-regulated in fructose-fed rats. J Nutr Biochem 2016; 40:178-186. [PMID: 27915161 DOI: 10.1016/j.jnutbio.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
Expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2) and glutathione-S-transferase (GST) were examined in fructose fed Wistar rats, an experimental model of metabolic syndrome. Animals were fed on (a) control diet or (b) control diet plus 10% w/vol fructose in the drinking water. Mrp2 and the α class of GST proteins as well as their corresponding mRNAs were decreased, suggesting a transcriptional regulation by fructose. Confocal microscopy studies reaffirmed down-regulation of Mrp2. Everted intestinal sacs were incubated with 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl- S-glutathione (DNP-SG; model Mrp2 substrate), was measured in the same compartment to estimate Mrp2 activity. Excretion of DNP-SG was substantially decreased by fructose treatment, consistent with simultaneous down-regulation of Mrp2 and GST. In addition, the effect of fructose on intestinal barrier function exerted by Mrp2 was evaluated in vivo using valsartan, a recognized Mrp2 substrate of therapeutic use. After intraduodenal administration as a bolus, intestinal absorption of valsartan was increased in fructose-drinking animals. Fructose administration also induced oxidative stress in intestinal tissue as demonstrated by significant increases of intestinal lipid peroxidation end products and activity of the antioxidant enzyme superoxide dismutase, by a decreased GSH/GSSG ratio. Moreover, fructose treatment conduced to increased intestinal levels of the proinflammatory cytokines IL-β1 and IL-6. Collectively, our results demonstrate that metabolic syndrome-like conditions, induced by a fructose-rich diet, result in down-regulation of intestinal Mrp2 expression and activity and consequently in an impairment of its barrier function.
Collapse
|
6
|
Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 2016; 91:63-81. [PMID: 27422290 DOI: 10.1007/s00204-016-1803-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.
Collapse
|
7
|
Yokooji T. Role of ABC Efflux Transporters in the Oral Bioavailability and Drug-induced Intestinal Toxicity. YAKUGAKU ZASSHI 2013; 133:815-22. [DOI: 10.1248/yakushi.13-00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoharu Yokooji
- Department of Pathophysiology and Therapeutics, Institute of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
8
|
Involvement of Multiple Transporters-mediated Transports in Mizoribine and Methotrexate Pharmacokinetics. Pharmaceuticals (Basel) 2012; 5:802-36. [PMID: 24280676 PMCID: PMC3763673 DOI: 10.3390/ph5080802] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 12/19/2022] Open
Abstract
Mizoribine is administered orally and excreted into urine without being metabolized. Many research groups have reported a linear relationship between the dose and peak serum concentration, between the dose and AUC, and between AUC and cumulative urinary excretion of mizoribine. In contrast, a significant interindividual variability, with a small intraindividual variability, in oral bioavailability of mizoribine is also reported. The interindividual variability is mostly considered to be due to the polymophisms of transporter genes. Methotrexate (MTX) is administered orally and/or by parenteral routes, depending on the dose. Metabolic enzymes and multiple transporters are involved in the pharmacokinetics of MTX. The oral bioavailability of MTX exhibits a marked interindividual variability and saturation with increase in the dose of MTX, with a small intraindividual variability, where the contribution of gene polymophisms of transporters and enzymes is suggested. Therapeutic drug monitoring of both mizoribine and MTX is expected to improve their clinical efficacy in the treatment of rheumatoid arthritis.
Collapse
|
9
|
Calatayud M, Barrios JA, Vélez D, Devesa V. In Vitro Study of Transporters Involved in Intestinal Absorption of Inorganic Arsenic. Chem Res Toxicol 2012; 25:446-53. [DOI: 10.1021/tx200491f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marta Calatayud
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Av. Agustín Escardino, 7,
46980 Paterna, Valencia, Spain
| | - Julio A. Barrios
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Av. Agustín Escardino, 7,
46980 Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Av. Agustín Escardino, 7,
46980 Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Av. Agustín Escardino, 7,
46980 Paterna, Valencia, Spain
| |
Collapse
|
10
|
Yokooji T, Mori N, Murakami T. Modulated pharmacokinetics and increased small intestinal toxicity of methotrexate in bilirubin-treated rats. J Pharm Pharmacol 2011; 63:206-13. [PMID: 21235584 DOI: 10.1111/j.2042-7158.2010.01213.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The effect of bilirubin treatment on the pharmacokinetics and small intestinal toxicity of methotrexate was evaluated in rats, since bilirubin and its glucuronide conjugates can suppress multidrug resistance-associated protein-mediated transport. METHODS Rats were treated intravenously with bilirubin and the various clearances and tissue distribution of methotrexate were estimated under a steady-state plasma concentration. Intestinal toxicity induced by methotrexate was also evaluated by measuring the leakage of alkaline phosphatase (ALP) activity. Probenecid, an inhibitor for multidrug resistance-associated protein and organic anion transporters, was used for comparison. KEY FINDINGS The treatment with bilirubin increased the steady-state plasma concentration and reduced biliary excretion clearance, urinary excretion clearance and intestinal exsorption clearance of methotrexate, as did treatment with probenecid. The intestinal absorption and jejunum distribution of methotrexate also significantly increased in bilirubin- and probenecid-treated rats. A greater leakage of ALP activity to the luminal fluid, with a lower ALP activity in the intestinal mucosal membrane after intestinal perfusion of methotrexate, was observed in bilirubin- and probenecid-treated rats. CONCLUSIONS Hyperbilirubinemia, which is involved under various disease states, may increase the small intestinal accumulation and toxicities of methotrexate, since high plasma concentrations of conjugated bilirubin can suppress the function of multidrug resistance-associated proteins, which facilitate the efflux of methotrexate out of cells.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima, Japan
| | | | | |
Collapse
|
11
|
Yokooji T, Mori N, Murakami T. Modulated function of tissue efflux transporters under hyperbilirubinemia in rats. Eur J Pharmacol 2010; 636:166-72. [PMID: 20362568 DOI: 10.1016/j.ejphar.2010.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 12/12/2022]
Abstract
The effect of hyperbilirubinemia on the function of tissue efflux transporters such as multidrug resistance-associated proteins (Mrps) and organic anion transporting polypeptides (Oatps) was examined by measuring tissue accumulation of 2,4-dinitrophenyl-S-glutathione (DNP-SG) after intravenous administration of 1-chloro-2,4-dinitrobenzene (CDNB), a precursor of DNP-SG, in rats. DNP-SG is known as a substrate of both Mrps and Oatps. Hyperbilirubinemia was induced by a bolus intravenous administration of bilirubin. Treatment with probenecid, an inhibitor for both Mrps and Oatps, significantly increased DNP-SG concentrations in the brain, heart, liver, kidney, jejunum, spleen and skeletal muscle as compared with those in control rats, suggesting the expression of some probenecid-sensitive efflux transporters in these tissues. Rats with more than 70 microM of unconjugated/conjugated bilirubin in plasma exhibited significantly higher DNP-SG concentrations in the brain, liver, jejunum, and skeletal muscle. These results suggested that probenecid-sensitive efflux transporters in tissues were suppressed functionally under hyperbilirubinemia. In conclusion, hyperbilirubinemia accompanied by obstructive jaundice is caused by various disease states, which may increase harmful toxicities of exogenously administered Mrps and/or Oatps substrate drugs at various tissues, by suppressing the efflux transporter's function systemically.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | | | | |
Collapse
|
12
|
Yokooji T, Murakami T, Yumoto R, Nagai J, Takano M. Role of intestinal efflux transporters in the intestinal absorption of methotrexate in rats. J Pharm Pharmacol 2010; 59:1263-70. [PMID: 17883898 DOI: 10.1211/jpp.59.9.0011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
The role of intestinal efflux transporters such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in intestinal absorption of methotrexate was examined in rats. In everted intestine, the mucosal efflux of methotrexate after application to serosal side was higher in jejunum than ileum, and the efflux in jejunum was suppressed by pantoprazole, a BCRP inhibitor, and probenecid, an MRP inhibitor, but not by verapamil, a P-gp inhibitor. The mucosal methotrexate efflux in ileum was suppressed by pantoprazole, but not by other inhibitors. On the other hand, the serosal efflux of methotrexate after application to mucosal side was greater in ileum than jejunum, and was suppressed by probenecid. In in-vivo rat studies, the intestinal absorption of methotrexate was significantly higher when methotrexate was administered to ileum than jejunum. Pantoprazole increased methotrexate absorption from jejunum and ileum. Probenecid increased the absorption of methotrexate from jejunum but decreased the absorption from ileum, as evaluated by peak plasma methotrexate levels. In conclusion, BCRP and MRPs are involved in the regional difference in absorption of methotrexate along the intestine, depending on their expression sites.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
13
|
Yokooji T, Mori N, Murakami T. Site-specific contribution of proton-coupled folate transporter/haem carrier protein 1 in the intestinal absorption of methotrexate in rats. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
Methotrexate is reportedly a substrate for proton-coupled folate transporter/haem carrier protein 1 (PCFT/HCP1) and reduced folate carrier 1 (RFC1). In this study, we examined the contribution of PCFT/HCP1 and RFC1 in the intestinal absorption of methotrexate in rats.
Methods
Western blot analysis was carried out to evaluate the protein levels of PCFT/HCP1 and multidrug resistance-associated protein 2 in brush-border membrane of rat small intestine. Mucosal uptake of methotrexate was studied in the rat everted small intestine and an in-situ intestinal perfusion study of methotrexate was also carried out in rats.
Key findings
In transport studies using everted intestine, the mucosal methotrexate influx rate in proximal intestine at pH 5.5 was significantly greater than that at pH 7.4. Coadministration of folate or its analogues, such as folinate and 5-methyltetrahydrofolate, substrates for both PCFT/HCP1 and RFC1, significantly suppressed the methotrexate influx at pH 5.5, whereas thiamine pyrophosphate, an inhibitor for RFC1 alone, exerted no significant effect. Western blot analysis showed higher PCFT/HCP1 expression in proximal than distal small intestine. In distal small intestine, methotrexate influx rate was low and was not pH dependent. Also, folate and its analogues exerted no significant effect on methotrexate absorption.
Conclusions
Based on the present and our previous results, the site-specific contributions of various transporters including PCFT/HCP1 in methotrexate intestinal absorption were discussed. The variation in luminal pH and the involvement of multiple transporters in methotrexate absorption may cause variation in oral bioavailability among patients.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Nobuhiro Mori
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
14
|
Bridges CC, Zalups RK. Transport of inorganic mercury and methylmercury in target tissues and organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:385-410. [PMID: 20582853 PMCID: PMC6943924 DOI: 10.1080/10937401003673750] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Owing to the prevalence of mercury in the environment, the risk of human exposure to this toxic metal continues to increase. Following exposure to mercury, this metal accumulates in numerous organs, including brain, intestine, kidneys, liver, and placenta. Although a number of mechanisms for the transport of mercuric ions into target organs were proposed in recent years, these mechanisms have not been characterized completely. This review summarizes the current literature related to the transport of inorganic and organic forms of mercury in various tissues and organs. This review identifies known mechanisms of mercury transport and provides information on additional mechanisms that may potentially play a role in the transport of mercuric ions into target cells.
Collapse
Affiliation(s)
- Christy C Bridges
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | |
Collapse
|
15
|
In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates. Eur J Pharm Biopharm 2009; 72:561-6. [DOI: 10.1016/j.ejpb.2009.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/13/2009] [Accepted: 03/24/2009] [Indexed: 01/19/2023]
|
16
|
Yumoto R, Hamada S, Okada K, Kato Y, Ikehata M, Nagai J, Takano M. Effect of ursodeoxycholic acid treatment on the expression and function of multidrug resistance-associated protein 2 in rat intestine. J Pharm Sci 2009; 98:2822-31. [DOI: 10.1002/jps.21628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Arias A, Villanueva SSM, Ruiz ML, Luquita MG, Veggi LM, Pellegrino JM, Vore M, Catania VA, Mottino AD. Regulation of Expression and Activity of Rat Intestinal Multidrug Resistance-Associated Protein 2 by Cholestatic Estrogens. Drug Metab Dispos 2009; 37:1277-85. [DOI: 10.1124/dmd.108.025643] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
|
19
|
Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol 2008; 4:923-39. [DOI: 10.1517/17425255.4.7.923] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|