1
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Gou MJ, Kose MC, Crommen J, Nix C, Cobraiville G, Caers J, Fillet M. Contribution of Capillary Zone Electrophoresis Hyphenated with Drift Tube Ion Mobility Mass Spectrometry as a Complementary Tool to Microfluidic Reversed Phase Liquid Chromatography for Antigen Discovery. Int J Mol Sci 2022; 23:13350. [PMID: 36362139 PMCID: PMC9659090 DOI: 10.3390/ijms232113350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 10/14/2023] Open
Abstract
The discovery of new antigens specific to multiple myeloma that could be targeted by novel immunotherapeutic approaches is currently of great interest. To this end, it is important to increase the number of proteins identified in the sample by combining different separation strategies. A capillary zone electrophoresis (CZE) method, coupled with drift tube ion mobility (DTIMS) and quadrupole time-of-flight mass spectrometry (QTOF), was developed for antigen discovery using the human myeloma cell line LP-1. This method was first optimized to obtain a maximum number of identifications. Then, its performance in terms of uniqueness of identifications was compared to data acquired by a microfluidic reverse phase liquid chromatography (RPLC) method. The orthogonality of these two approaches and the physicochemical properties of the entities identified by CZE and RPLC were evaluated. In addition, the contribution of DTIMS to CZE was investigated in terms of orthogonality as well as the ability to provide unique information. In conclusion, we believe that the combination of CZE-DTIMS-QTOF and microfluidic RPLC provides unique information in the context of antigen discovery.
Collapse
Affiliation(s)
- Marie-Jia Gou
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Murat Cem Kose
- Laboratory of Hematology, GIGA I3, University of Liège, Avenue de l’Hopital 11, B34, 4000 Liege, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Cindy Nix
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Avenue de l’Hopital 11, B34, 4000 Liege, Belgium
- Department of Hematology, Centre Hospitalier Universitaire (CHU) de Liège, Avenue de l’Hopital 1, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| |
Collapse
|
3
|
Mukherjee A, Pednekar CB, Kolke SS, Kattimani M, Duraisamy S, Burli AR, Gupta S, Srivastava S. Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer. Proteomes 2022; 10:proteomes10020013. [PMID: 35645371 PMCID: PMC9149910 DOI: 10.3390/proteomes10020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Cervical cancer is one of the top malignancies in women around the globe, which still holds its place despite being preventable at early stages. Gynecological conditions, even maladies like cervical cancer, still experience scrutiny from society owing to prevalent taboo and invasive screening methods, especially in developing economies. Additionally, current diagnoses lack specificity and sensitivity, which prolong diagnosis until it is too late. Advances in omics-based technologies aid in discovering differential multi-omics profiles between healthy individuals and cancer patients, which could be utilized for the discovery of body fluid-based biomarkers. Body fluids are a promising potential alternative for early disease detection and counteracting the problems of invasiveness while also serving as a pool of potential biomarkers. In this review, we will provide details of the body fluids-based biomarkers that have been reported in cervical cancer. Here, we have presented our perspective on proteomics for global biomarker discovery by addressing several pertinent problems, including the challenges that are confronted in cervical cancer. Further, we also used bioinformatic methods to undertake a meta-analysis of significantly up-regulated biomolecular profiles in CVF from cervical cancer patients. Our analysis deciphered alterations in the biological pathways in CVF such as immune response, glycolytic processes, regulation of cell death, regulation of structural size, protein polymerization disease, and other pathways that can cumulatively contribute to cervical cancer malignancy. We believe, more extensive research on such biomarkers, will speed up the road to early identification and prevention of cervical cancer in the near future.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | | | - Siddhant Sujit Kolke
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Megha Kattimani
- Undergraduate Department, Indian Institute of Science, Bengaluru 560012, India;
| | - Subhiksha Duraisamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India;
| | - Ananya Raghu Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Sudeep Gupta
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Hospital, Mumbai 400012, India;
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
- Correspondence: ; Tel.: +91-22-2576-7779
| |
Collapse
|
4
|
Muslu O, Hoyt CT, Lacerda M, Hofmann-Apitius M, Frohlich H. GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:491-500. [PMID: 32750869 DOI: 10.1109/tcbb.2020.3003830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The majority of clinical trials fail due to low efficacy of investigated drugs, often resulting from a poor choice of target protein. Existing computational approaches aim to support target selection either via genetic evidence or by putting potential targets into the context of a disease specific network reconstruction. The purpose of this work was to investigate whether network representation learning techniques could be used to allow for a machine learning based prioritization of putative targets. We propose a novel target prioritization approach, GuiltyTargets, which relies on attributed network representation learning of a genome-wide protein-protein interaction network annotated with disease-specific differential gene expression and uses positive-unlabeled (PU) machine learning for candidate ranking. We evaluated our approach on 12 datasets from six diseases of different type (cancer, metabolic, neurodegenerative) within a 10 times repeated 5-fold stratified cross-validation and achieved AUROC values between 0.92 - 0.97, significantly outperforming previous approaches that relied on manually engineered topological features. Moreover, we showed that GuiltyTargets allows for target repositioning across related disease areas. An application of GuiltyTargets to Alzheimer's disease resulted in a number of highly ranked candidates that are currently discussed as targets in the literature. Interestingly, one (COMT) is also the target of an approved drug (Tolcapone) for Parkinson's disease, highlighting the potential for target repositioning with our method. The GuiltyTargets Python package is available on PyPI and all code used for analysis can be found under the MIT License at https://github.com/GuiltyTargets. Attributed network representation learning techniques provide an interesting approach to effectively leverage the existing knowledge about the molecular mechanisms in different diseases. In this work, the combination with positive-unlabeled learning for target prioritization demonstrated a clear superiority compared to classical feature engineering approaches. Our work highlights the potential of attributed network representation learning for target prioritization. Given the overarching relevance of networks in computational biology we believe that attributed network representation learning techniques could have a broader impact in the future.
Collapse
|
5
|
Luo S, Ling Y, Chen LP, Huang RP. Using Antibody Arrays for Biomarker Discovery. Methods Mol Biol 2020; 2237:237-245. [PMID: 33237423 DOI: 10.1007/978-1-0716-1064-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Biomarkers for diseases are important for the development of clinical diagnostic tests and can provide early intervention for cancer or cardiovascular patients. Over the past decade, antibody array technology has achieved significant technological improvement in the quantitative measurement of more than a thousand proteins simultaneously and has been utilized to screen and identify unique proteins as disease biomarkers. However, few biomarkers have been translated into clinical application. This chapter will discuss the protocol for the screening and validation of unique proteins that create a new avenue for biomarker discovery.
Collapse
Affiliation(s)
| | - Yunbiao Ling
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li-Pai Chen
- Department of Gynaecologic Oncology, Cancer Institute and Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruo-Pan Huang
- RayBiotech, Peachtree Corners, GA, USA
- RayBiotech, Inc., Guangzhou, Guangdong, China
- South China Biochip Research Center, Guangzhou, Guangdong, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chanukuppa V, Paul D, Taunk K, Chatterjee T, Sharma S, Shirolkar A, Islam S, Santra MK, Rapole S. Proteomics and functional study reveal marginal zone B and B1 cell specific protein as a candidate marker of multiple myeloma. Int J Oncol 2020; 57:325-337. [PMID: 32377723 DOI: 10.3892/ijo.2020.5056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell‑associated cancer and accounts for 13% of all hematological malignancies, worldwide. MM still remains an incurable plasma cell malignancy with a poor prognosis due to a lack of suitable markers. Therefore, discovering novel markers and targets for diagnosis and therapeutics of MM is essential. The present study aims to identify markers associated with MM malignancy using patient‑derived MM mononuclear cells (MNCs). Label‑free quantitative proteomics analysis revealed a total of 192 differentially regulated proteins, in which 79 proteins were upregulated and 113 proteins were found to be downregulated in MM MNCs as compared to non‑hematological malignant samples. The identified differentially expressed candidate proteins were analyzed using various bioinformatics tools, including Ingenuity Pathway Analysis (IPA), Protein Analysis THrough Evolutionary Relationships (PANTHER), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Database for Annotation, Visualization and Integrated Discovery (DAVID) to determine their biological context. Among the 192 candidate proteins, marginal zone B and B1 cell specific protein (MZB1) was investigated in detail using the RPMI-8226 cell line model of MM. The functional studies revealed that higher expression of MZB1 is associated with promoting the progression of MM pathogenesis and could be established as a potential target for MM in the future.
Collapse
Affiliation(s)
- Venkatesh Chanukuppa
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Khushman Taunk
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tathagata Chatterjee
- Army Hospital (Research and Referral), Dhaula Kuan, New Delhi, Delhi 110010, India
| | | | - Amey Shirolkar
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Sehbanul Islam
- Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Manas K Santra
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
7
|
Meyfour A, Hosseini M, Sobhanian H, Pahlavan S. Iran's Contribution to Human Proteomic Research. CELL JOURNAL 2019; 21:229-235. [PMID: 31210427 PMCID: PMC6582420 DOI: 10.22074/cellj.2019.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/17/2018] [Indexed: 11/04/2022]
Abstract
Proteomics is a powerful approach to study the whole set of proteins expressed in an organism, organ, tissue or cell resulting in valuable information on physiological or pathological state of a biological system. High throughput proteomic data facilitated the understanding of various biological systems with respect to normal and pathological conditions particularly in the instances of human clinical manifestations. The important role of proteins as the functional gene products encouraged scientists to apply this technology to gain a better understanding of extremely complex biological systems. In last two decades, several proteomics teams have been gradually formed in Iran. In this review, we highlight the most important findings of proteomic research groups in Iran at various areas of stem cells, Y chromosome, infertility, infectious disease and biomarker discovery.
Collapse
Affiliation(s)
- Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahya Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.Electronic Address:
| |
Collapse
|
8
|
da Silva Frozza CO, da Silva Brum E, Alving A, Moura S, Henriques JAP, Roesch-Ely M. LC-MS analysis of Hep-2 and Hek-293 cell lines treated with Brazilian red propolis reveals differences in protein expression. J Pharm Pharmacol 2016; 68:1073-84. [DOI: 10.1111/jphp.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/30/2016] [Indexed: 01/21/2023]
Abstract
Abstract
Objective
Red propolis, an exclusive variety of propolis found in the northeast of Brazil has shown to present antitumour activity, among several other biological properties. This article aimed to help to evaluate the underlying molecular mechanisms of the potential anticancer effects of red propolis on tumour, Hep-2, and non-tumour cells, Hek-293.
Methods
Differentially expressed proteins in human cell lines were identified through label-free quantitative MS-based proteomic platform, and cells were stained with Giemsa to show morphological changes.
Key findings
A total of 1336 and 773 proteins were identified for Hep-2 and Hek-293, respectively. Among the proteins here identified, 16 were regulated in the Hep-2 cell line and 04 proteins in the Hek-293 line. Over a total of 2000 proteins were identified under MS analysis, and approximately 1% presented differential expression patterns. The GO annotation using Protein Analysis THrough Evolutionary Relationships classification system revealed predominant molecular function of catalytic activity, and among the biological processes, the most prominent was associated to cell metabolism.
Conclusion
The proteomic profile here presented should help to elucidate further molecular mechanisms involved in inhibition of cancer cell proliferation by red propolis, which remain unclear to date.
Collapse
Affiliation(s)
- Caroline O da Silva Frozza
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Emyle da Silva Brum
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Sidnei Moura
- Laboratory of Natural and Synthetic Products, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - João A P Henriques
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Mariana Roesch-Ely
- Laboratory of Genomics, Proteomics and DNA Repair, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
9
|
Abstract
Many clinicians hoped that the completion of the Human Genome Project would result in "individualized drug therapy," i.e., determining the right medication at the right dose 100% of the time based upon the individual's genetics. The pharmacogenomic prediction of drug efficacy and safety has not become a reality due to continuing realization of the complexity dictating the human-drug interaction. New methods of metabolomics, proteomics, and transcriptomics that account for this complexity hold promise for translational researchers hoping to increase drug efficacy and decrease drug toxicity.
Collapse
|
10
|
Ray S, Reddy PJ, Choudhary S, Raghu D, Srivastava S. Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics 2011; 74:2660-81. [PMID: 21596164 DOI: 10.1016/j.jprot.2011.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 01/29/2023]
Abstract
Availability of genome sequence of human and different pathogens has advanced proteomics research for various clinical applications. One of the prime goals of proteomics is identification and characterization of biomarkers for cancer and other fatal human diseases to aid an early diagnosis and monitor disease progression. However, rapid detection of low abundance biomarkers from the complex biological samples under clinically relevant conditions is extremely difficult, and it requires the development of ultrasensitive, robust and high-throughput technological platform. In order to overcome several technical limitations associated with sensitivity, dynamic range, detection time and multiplexing, proteomics has started integrating several emerging disciplines such as nanotechnology, which has led to the development of a novel analytical platform known as 'nanoproteomics'. Among the diverse classes of nanomaterials, the quantum dots, gold nanoparticles, carbon nanotubes and silicon nanowires are the most promising candidates for diagnostic applications. Nanoproteomics offers several advantages such as ultralow detection, short assay time, high-throughput capability and low sample consumption. In this article, we have discussed the application of nanoproteomics for biomarker discovery in various diseases with special emphasis on various types of cancer. Furthermore, we have discussed the prospects, merits and limitations of nanoproteomics.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
11
|
Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 2011; 11:2139-61. [PMID: 21548090 DOI: 10.1002/pmic.201000460] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 01/22/2023]
Abstract
Serum is an ideal biological sample that contains an archive of information due to the presence of a variety of proteins released by diseased tissue, and serum proteomics has gained considerable interest for the disease biomarker discovery. Easy accessibility and rapid protein changes in response to disease pathogenesis makes serum an attractive sample for clinical research. Despite these advantages, the analysis of serum proteome is very challenging due to the wide dynamic range of proteins, difficulty in finding low-abundance target analytes due to the presence of high-abundance serum proteins, high levels of salts and other interfering compounds, variations among individuals and paucity of reproducibility. Sample preparation introduces pre-analytical variations and poses major challenges to analyze the serum proteome. The label-free detection techniques such as surface plasmon resonance, microcantilever, few nanotechniques and different resonators are rapidly emerging for the analysis of serum proteome and they have exhibited potential to overcome few limitations of the conventional techniques. In this article, we will discuss the current status of serum proteome analysis for the biomarker discovery and address key technological advancements, with a focus on challenges and amenable solutions.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
12
|
Yamidanov RS, Salimgareeva MK, Sadovnikov SV, Vakhitova YV, Govorun VM, Seredenin SB. Proteomic analysis and identification of ladasten target proteins in rat brain. Bull Exp Biol Med 2010; 149:775-8. [PMID: 21165444 DOI: 10.1007/s10517-010-1050-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two-dimensional electrophoresis and mass spectrometry detection were used to evaluate the range of proteins in rat brain after single treatment with ladasten (50 mg/kg). We identified 13 proteins with various levels of expression.
Collapse
Affiliation(s)
- R S Yamidanov
- Laboratory of Molecular Immunology and Pharmacology, Institute of Biochemistry and Genetics, Ufa Research Center, Russian Academy of Sciences
| | | | | | | | | | | |
Collapse
|
13
|
Jordan JD, Nyquist P. Biomarkers and vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 2010; 21:381-91. [PMID: 20380977 DOI: 10.1016/j.nec.2009.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Subarachnoid hemorrhage from the rupture of a saccular aneurysm is a devastating neurological disease that has a high morbidity and mortality not only from the initial hemorrhage, but also from the delayed complications, such as cerebral vasospasm. Cerebral vasospasm can lead to delayed ischemic injury 1 to 2 weeks after the initial hemorrhage. Although the pathophysiology of vasospasm has been described for decades, the molecular basis remains poorly understood. With the many advances in the past decade in the development of sensitive molecular biological techniques, imaging, biochemical purification, and protein identification, new insights are beginning to reveal the etiology of vasospasm. These findings will not only help to identify markers of vasospasm and prognostic outcome, but will also yield potential therapeutic targets for the treatment of this disease. This review focuses on the methods available for the identification of biological markers of vasospasm and their limitations, the current understanding as to the utility and prognostic significance of identified biomarkers, the utility of these biomarkers in predicting vasospasm and outcome, and future directions of research in this field.
Collapse
Affiliation(s)
- J Dedrick Jordan
- Johns Hopkins School of Medicine, 600 North Wolfe Street, Meyer 8-140, Baltimore, MD 21287-7840, USA
| | | |
Collapse
|
14
|
Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS One 2009; 4:e4346. [PMID: 19194489 PMCID: PMC2631151 DOI: 10.1371/journal.pone.0004346] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/11/2008] [Indexed: 11/24/2022] Open
Abstract
It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are related to each other based on the underlying biology could provide new insights into disease etiology, classification, and shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1) systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195 candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease relationships. We examined properties of this network and provided examples of novel disease relationships which cannot be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights into the design of novel, pathway-guided therapeutic interventions for diseases.
Collapse
Affiliation(s)
- Yong Li
- Computational Biology, GlaxoSmithKline R&D, King of Prussia, Pennsylvania, United States of America.
| | | |
Collapse
|
15
|
Lee CS, Kang KR, Lee JY, Park CS, Hahn KH, Sohn JW, Kim BJ. Proteomic analysis of rat brains following exposure to electroconvulsive therapy. J Korean Med Sci 2009; 24:132-7. [PMID: 19270826 PMCID: PMC2650984 DOI: 10.3346/jkms.2009.24.1.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 06/03/2008] [Indexed: 11/30/2022] Open
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments used in psychiatry to date. The mechanisms of ECT action, however, are the least understood and still unclear. As a tool to elucidate the mechanisms of action of ECT, we employed proteomic analysis based on the identification of differentially expressed proteins after exposure to repeated ECT in rat brains. The expression of proteins was visualized by silver stain after two-dimensional gel electrophoresis. Of 24 differentially expressed protein spots (p<0.05 by Student t-test), six different proteins from 7 spots were identified by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF)/mass spectrometry. Among the identified proteins, there were five dominantly expressed proteins in the ECT-treated rat brain tissues (p<0.05); S100 protein beta chain, 14-3-3 protein zeta/delta, similar to ubiquitin-like 1 (sentrin) activating enzyme subunit 1, suppressor of G2 allele of SKP1 homolog, and phosphatidylinositol transfer protein alpha. The expression of only one protein, ACY1 protein, was repressed (p<0.05). These findings likely serve for a better understanding of mechanisms involved in the therapeutic effects of ECT.
Collapse
Affiliation(s)
- Cheol Soon Lee
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Ryeon Kang
- Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
- MRC for Neural Dysfunction, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Ji-Young Lee
- Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
- MRC for Neural Dysfunction, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Chul Soo Park
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kyu Hee Hahn
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jin Wook Sohn
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
16
|
Lv J, Zhu X, Dong K, Lin Y, Hu Y, Zhu C. Reduced expression of 14-3-3 gamma in uterine leiomyoma as identified by proteomics. Fertil Steril 2008; 90:1892-8. [DOI: 10.1016/j.fertnstert.2007.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 11/28/2022]
|
17
|
Barclay D, Zamora R, Torres A, Namas R, Steed D, Vodovotz Y. A simple, rapid, and convenient Luminex-compatible method of tissue isolation. J Clin Lab Anal 2008; 22:278-81. [PMID: 18623112 DOI: 10.1002/jcla.20253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Various pathological conditions are associated with changes in multiple protein biomarkers, and these changes can be assessed using xMAP beads and the Luminex platform. Although this platform is most commonly utilized in the analysis of biomarkers in serum, plasma, or urine, it is often desirable to measure these analytes in tissues (e.g., biopsy specimens). We have developed a simple, rapid method of tissue isolation in which excised tissues are permeabilized in RNAlater at 4 degrees C overnight, followed by Luminex analysis for inflammatory biomarkers (cytokines). This method was compared with flash-freezing in both mouse liver and human debrided wound specimens, and may be of utility in other clinical settings.
Collapse
Affiliation(s)
- Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
18
|
Robinson JM, Ackerman WE, Kniss DA, Takizawa T, Vandré DD. Proteomics of the human placenta: promises and realities. Placenta 2008; 29:135-43. [PMID: 18222537 DOI: 10.1016/j.placenta.2007.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 02/08/2023]
Abstract
Proteomics is an area of study that sets as its ultimate goal the global analysis of all of the proteins expressed in a biological system of interest. However, technical limitations currently hamper proteome-wide analyses of complex systems. In a more practical sense, a desired outcome of proteomics research is the translation of large protein data sets into formats that provide meaningful information regarding clinical conditions (e.g., biomarkers to serve as diagnostic and/or prognostic indicators of disease). Herein, we discuss placental proteomics by describing existing studies, pointing out their strengths and weaknesses. In so doing, we strive to inform investigators interested in this area of research about the current gap between hyperbolic promises and realities. Additionally, we discuss the utility of proteomics in discovery-based research, particularly as regards the capacity to unearth novel insights into placental biology. Importantly, when considering under studied systems such as the human placenta and diseases associated with abnormalities in placental function, proteomics can serve as a robust 'shortcut' to obtaining information unlikely to be garnered using traditional approaches.
Collapse
Affiliation(s)
- J M Robinson
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|