1
|
Eo MY, Fan H, Cho YJ, Kim SM, Lee SK. Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam. Biomater Res 2016; 20:16. [PMID: 27418974 PMCID: PMC4944233 DOI: 10.1186/s40824-016-0065-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022] Open
Abstract
The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article.
Collapse
Affiliation(s)
- Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Huan Fan
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Yun Ju Cho
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, 123 Chibyon-dong, Gangneung, 210-702 South Korea
| |
Collapse
|
2
|
Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-Eye: A Novel In Vitro Ocular Flow Model for Use in Preclinical Drug Development. J Pharm Sci 2015; 104:3330-42. [PMID: 26108574 DOI: 10.1002/jps.24480] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
A 2-compartment in vitro eye flow model has been developed to estimate ocular drug clearance by the anterior aqueous outflow pathway. The model is designed to accelerate the development of longer-acting ophthalmic therapeutics. Dye studies show aqueous flow is necessary for a molecule injected into the vitreous cavity to clear from the model. The clearance times of proteins can be estimated by collecting the aqueous outflow, which was first conducted with bevacizumab using phosphate-buffered saline in the vitreous cavity. A simulated vitreous solution was then used and ranibizumab (0.5 mg) displayed a clearance time of 8.1 ± 3.1 days, which is comparable to that observed in humans. The model can estimate drug release from implants or the dissolution of suspensions as a first step in their clearance mechanism, which will be the rate-limiting step for the overall resident time of a candidate dosage form in the vitreous. A suspension of triamcinolone acetonide (Kenalog®) (4.0 mg) displayed clearance times spanning 26-28 days. These results indicate that the model can be used to determine in vitro-in vivo correlations in preclinical studies to develop long-lasting therapeutics to treat blinding diseases at the back of the eye.
Collapse
Affiliation(s)
- Sahar Awwad
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Alastair Lockwood
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Steve Brocchini
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
3
|
Brown M, Evans C, Muddle A, Turner R, Lim S, Reed J, Traynor M. Efficacy, tolerability and consumer acceptability of terbinafine topical spray versus terbinafine topical solution: a phase IIa, randomised, observer-blind, comparative study. Am J Clin Dermatol 2013; 14:413-9. [PMID: 23740211 DOI: 10.1007/s40257-013-0031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Tinea pedis is one of the world's most prevalent dermatophyte infections. MedSpray™ tinea pedis 1 % w/w (topical spray) is a novel, easy-to-use propellant-based spray formulation containing 1 % w/w terbinafine, requiring no manipulation at the site of infection. This is in contrast to the only formulation currently approved in Europe for single application (none are approved in the USA for single use), which is Lamisil(®) Once 1 % w/w (topical solution), containing 1 % w/w terbinafine hydrochloride, which requires manipulation on the affected area. OBJECTIVE The aim of this study was to evaluate the efficacy, tolerability and consumer acceptability of a topical spray versus a topical solution in the treatment of tinea pedis. METHODS This study is a phase IIa, randomised, observer-blind, non-inferiority comparative study of the topical spray compared with the topical solution over a 12-week study period. The study was conducted at Bioskin GmbH, Hamburg and Berlin. Patients (n = 120) who presented with the presence of interdigital tinea pedis caused by dermatophytes on one or both feet were enrolled in the study. Patients were randomly assigned between the two treatment groups. Either the topical spray or the topical solution was administered by the study nurse and consisted of a single application (equivalent to 20 mg of terbinafine per foot) on day 1 of the study. No further applications were made for the duration of the study. The hypothesis formulated before commencement of the study was that the topical spray would prove to be non-inferior to the topical solution. Efficacy assessments, including clinical signs and symptoms, mycology and microscopy were performed at baseline and 1, 6 and 12 weeks after treatment. RESULTS The rate of mycological cure at week 1 was statistically equivalent for both treatments. There was a significant reduction in the overall clinical score as assessed by the Physician's Global Assessment of signs and symptoms for both treatment groups. CONCLUSION The topical spray and the topical solution showed comparable anti-fungal activity. Furthermore, the non-inferiority of topical spray to the topical solution was confirmed as determined by the proportion of patients categorised as successfully treated at week 1. This confirms that a topical spray product, which can be applied once without touching the affected skin, is equally as effective in the treatment of tinea pedis and removes the risk of organism transfer associated with touching infected areas. CLINICAL TRIAL REGISTRATION NUMBER EudraCT-No. 2008-002399-92.
Collapse
Affiliation(s)
- Marc Brown
- MedPharm Ltd., Unit 3/Chancellor Court, 50 Occam Road, Surrey Research Park, Guildford, GU2 7AB, UK
| | | | | | | | | | | | | |
Collapse
|
4
|
Reid ML, Benaouda F, Khengar R, Jones SA, Brown MB. Topical corticosteroid delivery into human skin using hydrofluoroalkane metered dose aerosol sprays. Int J Pharm 2013; 452:157-65. [DOI: 10.1016/j.ijpharm.2013.04.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/15/2013] [Accepted: 04/28/2013] [Indexed: 11/30/2022]
|
5
|
Qiu X, Hu S. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2013; 6:738-781. [PMID: 28809338 PMCID: PMC5512797 DOI: 10.3390/ma6030738] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 11/16/2022]
Abstract
Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Department of Environmental Sciences & Engineering, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuwen Hu
- Department of Environmental Sciences & Engineering, College of Resources & Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
The influence of self-assembling supramolecular structures on the passive membrane transport of ion-paired molecules. Int J Pharm 2012; 439:334-41. [DOI: 10.1016/j.ijpharm.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022]
|
7
|
Benaouda F, Brown MB, Ganguly S, Jones SA, Martin GP. Discriminating the Molecular Identity and Function of Discrete Supramolecular Structures in Topical Pharmaceutical Formulations. Mol Pharm 2012; 9:2505-12. [DOI: 10.1021/mp300127f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- F. Benaouda
- Institute of Pharmaceutical
Science, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United
Kingdom
| | - M. B. Brown
- MedPharm Ltd., Unit 3/Chancellor Court, 50 Occam Road, Surrey
Research Park, Guildford,
GU2 Guildford, GU2 7AB, United Kingdom
- School of Pharmacy, University of Hertfordshire, College Lane Campus, Hatfield,
Hertfordshire, AL10 9AB, United Kingdom
| | - S. Ganguly
- Institute of Pharmaceutical
Science, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United
Kingdom
| | - S. A. Jones
- Institute of Pharmaceutical
Science, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United
Kingdom
| | - G. P. Martin
- Institute of Pharmaceutical
Science, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United
Kingdom
| |
Collapse
|
8
|
The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study. Arch Pharm Res 2012; 35:579-93. [PMID: 22553050 DOI: 10.1007/s12272-012-0401-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/09/2011] [Accepted: 10/31/2011] [Indexed: 10/28/2022]
Abstract
Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.
Collapse
|
9
|
Wood DG, Brown MB, Jones SA. Controlling barrier penetration via exothermic iron oxidation. Int J Pharm 2011; 404:42-8. [DOI: 10.1016/j.ijpharm.2010.10.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/25/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
10
|
Fiala S, Brown MB, Jones SA. An investigation into the influence of binary drug solutions upon diffusion and partition processes in model membranes. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Few studies have assessed the impact of binary systems on the fundamental mathematical models that describe drug permeation. The aim of this work was to determine the influence of varying the proportions of prilocaine and lidocaine in a binary saturated solution on mass transfer across synthetic membranes. Infinite-dose permeation studies were performed using Franz diffusion cells with either regenerated cellulose or silicone membranes, and partition coefficients were determined by drug loss over 24 h. There was a linear relationship between the flux of prilocaine and lidocaine through regenerated cellulose membrane (R2 ≥ 0.985, n = 5) and their normalised ratio in solution. This linear model was also applicable for the permeation of prilocaine through silicone membrane (R2 = 0.991, n = 5), as its partition coefficient was independent of the drug ratio (15.84 ± 1.41). However, the partition coefficient of lidocaine increased from 27.22 ± 1.68 to 47.03 ± 3.32 as the ratio of prilocaine increased and this resulted in a non-linear relationship between permeation and drug ratio. Irrespective of the membrane used, the permeation of one drug from a binary system was hindered by the presence of the second, which could be attributed to a reduction in available membrane diffusion volume.
Collapse
Affiliation(s)
- Sarah Fiala
- Pharmaceutical Science Division, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Marc B Brown
- School of Pharmacy, University of Hertfordshire, College Lane, Hatfield, Herts. AL10 9AB, UK
- MedPharm Ltd, Unit 3/Chancellor Court, 50 Occam Road, Surrey Research Park, Guildford GU2 7YN, UK
| | - Stuart A Jones
- Pharmaceutical Science Division, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
11
|
Learoyd TP, Burrows JL, French E, Seville PC. Sustained delivery of salbutamol and beclometasone from spray-dried double emulsions. J Microencapsul 2010. [DOI: 10.3109/02652040903052044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Manipulation of corticosteroid release from a transiently supersaturated topical metered dose aerosol using a residual miscible co-solvent. Pharm Res 2008; 25:2573-80. [PMID: 18668352 DOI: 10.1007/s11095-008-9675-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE The creation of supersaturation transiently after application overcomes the issue of drug instability. However, if the solvents used to drive supersaturation evaporate too quickly, drug recrystallisation or rapid film drying can occur which will inhibit drug release. As such the effects of a residual solvent, poly(ethylene glycol) 400 (PEG), on the release, mobility and supersaturation kinetics of a transiently supersaturated formulation were studied. MATERIALS AND METHODS Metered dose aerosol (MDA) formulations consisting of hydrofluoroalkane 134a, ethanol, poly(vinyl pyrrolidone) K90, beclomethasone dipropionate (BDP), and 0%, 5% or 10% w/w PEG were prepared in canisters sealed with metered dose valves and tested for release and adhesion over time. RESULTS The addition of 10% PEG to the MDA formulation resulted in a significant reduction (p < 0.05) in steady state drug release rate (230.4 +/- 17.3 microg/cm(2)/h for 0% PEG MDA, 83.6 +/- 4.9 microg/cm(2)/h for 10% PEG MDA). The presence of PEG caused a delay in dose depletion (2 h for 0% PEG MDA versus 4 h for 10% PEG), retarded supersaturation kinetics and increased film drying time. CONCLUSION Whilst equivalent amounts of BDP were released, the residual solvent altered the drug release profile to achieve more constant delivery.
Collapse
|