1
|
Zhao Z, Li X, Wang Y, Liu C, Ling G, Zhang P. Biomimetic platelet-camouflaged drug-loaded polypyrrole for the precise targeted antithrombotic therapy. J Nanobiotechnology 2023; 21:439. [PMID: 37990207 PMCID: PMC10664675 DOI: 10.1186/s12951-023-02197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
Lower extremity deep venous thrombosis (LEDVT) affects patient's quality of life for a long time, and even causes pulmonary embolism, which threatens human health. Current anticoagulant drugs in clinical treatment are hampered by the risk of bleeding due to poor targeting and low drug penetration. Here, we used platelet (PLT)-like biological targeting to enhance the delivery and accumulation of nanomedicines in thrombus and reduce the risk of bleeding. Meanwhile, the parallel strategy of "thrombus thermal ablation and anticoagulation" was applied to increase the permeability of drugs in thrombus and achieve the optimal antithrombotic effect. Polypyrrole (PPy) and rivaroxban (Riv, an anticoagulant drug) were co-assembled into platelet membrane-coated nanoparticles (NPs), PLT-PPy/Riv NPs, which actively targeted the thrombotic lesion at multiple targets in the platelet membrane and were thermally and drug-specific thrombolysed by 808 nm laser irradiation. The combination therapy resulted in up to 90% thrombolysis in a femoral vein thrombosis model compared to single phototherapy or drug therapy. The results showed that the nanoformulation provided a new direction for remote precise and controlled sustained thrombolysis, which was in line with the trend of nanomedicine towards clinical translation.
Collapse
Affiliation(s)
- Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yan Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Cheng Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
2
|
Bernardes CP, Santos NAG, Costa TR, Menaldo DL, Sisti FM, Amstalden MK, Ribeiro DL, Antunes LMG, Sampaio SV, Santos AC. Effects of C-Terminal-Ethyl-Esterification in a Snake-Venom-Based Peptide Against the Neurotoxicity of Acrolein in PC12 Cells. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Pavlicevic M, Maestri E, Marmiroli M. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Mar Drugs 2020; 18:E424. [PMID: 32823602 PMCID: PMC7460072 DOI: 10.3390/md18080424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11070 Belgrade, Serbia;
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
- Consorzio Italbiotec, Via Fantoli 16/15, 20138 Milan, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
| |
Collapse
|
4
|
REN SH, LIU ZJ, CAO Y, HUA Y, CHEN C, GUO W, KONG Y. A novel protease-activated receptor 1 inhibitor from the leech Whitmania pigra. Chin J Nat Med 2019; 17:591-599. [DOI: 10.1016/s1875-5364(19)30061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 12/26/2022]
|
5
|
Li H, Liu B, Wu J, Yu H, Huang H, Chen X, Chen B, Wu S, Ma J, Liu W, Chen X, Lan L, He Z, Zhang H. The inhibitory effect of tachyplesin I on thrombosis and its mechanisms. Chem Biol Drug Des 2019; 94:1672-1679. [PMID: 31108023 DOI: 10.1111/cbdd.13570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Thrombotic diseases are major cause of cardiovascular diseases. This study was designed to investigate the effect of tachyplesin I on platelet aggregation and thrombosis. Platelet aggregation was analysed with a whole blood aggregometer. The mice were employed to investigate the effect of tachyplesin I on thrombosis in vivo. Tachyplesin I inhibited thrombin-induced platelet aggregation in a dose-dependent manner. Furthermore, tachyplesin I significantly reduced thrombosis in carrageenan-induced tail thrombosis model by intraperitoneal injection (0.1, 0.2 or 0.4 mg/kg) or intragastric administration (15, 30 or 60 mg/kg). Tachyplesin I also prolonged the bleeding time (BT) and clotting time (CT). The results revealed that tachyplesin I inhibited platelet aggregation and thrombosis by interfering the PI3K/AKT pathway. Tachyplesin I did not show significantly toxicity to mice under 300 mg/kg via intravenous injection. The results show that tachyplesin I inhibits thrombosis and has low toxicity. It is suggested that tachyplesin I has the potential to develop a new anti-thrombotic drug.
Collapse
Affiliation(s)
- Huimin Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Bin Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Baoan Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jingyao Ma
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wen Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Xiaoyi Chen
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Liubo Lan
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Zhan He
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Xie Z, Feng S, Wang Y, Cao C, Huang J, Chen Y, Kong Y, Li Z. Design, synthesis of novel tryptophan derivatives for antiplatelet aggregation activity based on tripeptide pENW (pGlu-Asn-Trp). Eur J Med Chem 2015; 102:363-74. [PMID: 26298494 DOI: 10.1016/j.ejmech.2015.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022]
Abstract
pENW, a three mer peptide derived from Agkistrodon acutus Guenther venom, has been found to be an antagonist of the GPIIb/IIIa receptor and shows antiplatelet aggregation activity. Based on pENW and a GPIIb/IIIa inhibitor Tirofiban, a series of tryptophan derivatives were designed, synthesized and evaluated for their antiplatelet aggregation activity induced by ADP. The most potent compound 87 was also tested for the bleeding time and antithrombotic activity in vivo in comparison with Tirofiban. The results indicated that 87 shows similar antiplatelet aggregation activity as Tirofiban to the aggregation of platelet induced by all of the four agonists, but has lower bleeding risk than Tirofiban, representing a promising lead compound for further study.
Collapse
Affiliation(s)
- Zhouling Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Sen Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Ying Wang
- School of Life Science & Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Chen Cao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Jing Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Yahui Chen
- School of Life Science & Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China.
| |
Collapse
|
7
|
Chen M, Ye X, Ming X, Chen Y, Wang Y, Su X, Su W, Kong Y. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates. Sci Rep 2015; 5:10846. [PMID: 26035670 PMCID: PMC4451689 DOI: 10.1038/srep10846] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/05/2015] [Indexed: 11/15/2022] Open
Abstract
Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development.
Collapse
Affiliation(s)
- Meimei Chen
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xiaohui Ye
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yahui Chen
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Ying Wang
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xingli Su
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Wen Su
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Yi Kong
- 1] School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China [2] State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
8
|
Liu Y, Luo W, Yang H, Fang W, Xi T, Li Y, Xiong J. Stimulation of nitric oxide production contributes to the antiplatelet and antithrombotic effect of new peptide pENW (pGlu-Asn-Trp). Thromb Res 2015; 136:319-27. [PMID: 26028472 DOI: 10.1016/j.thromres.2015.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/02/2015] [Accepted: 05/04/2015] [Indexed: 12/23/2022]
Abstract
INTRODUCTION New peptide pGlu-Asn-Trp (pENW), initially extracted from snake venom, significantly attenuates the formation of arterial and venous thrombi in vivo, and has modest in-vitro antiplatelet activity. This study was designed to investigate the underlying mechanisms. METHODS The rat carotid thrombosis model induced by FeCl3 was established to evaluate the antithrombotic activity of pENW. The effects of pENW on the production of nitric oxide (NO), as well as the expression and activity of endothelial nitric oxide synthase (eNOS), were determined. The vasorelaxant effect of pENW was evaluated using isolated rat aortic rings in the absence or presence of N(G)-nitro-L-arginine methyl ester (L-NAME, eNOS inhibitor). Furthermore, the in-vitro antiplatelet activity of pENW was investigated with the addition of sodium nitroprusside (SNP, NO donor) and/or L-NAME to further prove the role of NO and eNOS in the inhibitory effect of pENW on platelet aggregation. RESULTS In vivo, pENW inhibited thrombus formation induced by endothelial injury in a dose-dependent manner, with a significantly prolonged time to the occurrence of arterial occlusion. It was shown that pENW offered protection for blood vessels from oxidative injury. pENW significantly increased NO production in rats treated with pENW at 4 or 2mg/kg body weight. Furthermore, the production of NO from the cultured vascular endothelial cells was increased with the treatment of 10(-4)M and 10(-5)M pENW; pENW also enhanced eNOS expression and activity both in vivo and in vitro, and elicited a concentration-dependent vasorelaxation which was significantly inhibited by L-NAME. Notably, pENW inhibited ADP-induced platelet aggregation, and the inhibition was more significant in the presence of NO. The inhibition of platelet aggregation by pENW was significantly abolished by L-NAME. CONCLUSIONS The in-vivo antiplatelet and antithrombotic effects of pENW are at least partly mediated by the increased production of endogenous NO via up-regulation and stimulation of eNOS. The findings suggest that pENW could potentially be developed as a novel therapeutic agent in the treatment of platelet-driven disorders.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing Jiangsu, China
| | - Wenjing Luo
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing Jiangsu, China
| | - Huan Yang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing Jiangsu, China
| | - Wei Fang
- Jiangsu Hansoh Pharmaceutical Co., Ltd., Lianyungang Jiangsu, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing Jiangsu, China
| | - Yunman Li
- Department of Physiology, China Pharmaceutical University, Nanjing Jiangsu, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing Jiangsu, China.
| |
Collapse
|
9
|
Zavyalova E, Samoylenkova N, Revishchin A, Golovin A, Pavlova G, Kopylov A. Evaluation of antithrombotic activity of thrombin DNA aptamers by a murine thrombosis model. PLoS One 2014; 9:e107113. [PMID: 25192011 PMCID: PMC4156426 DOI: 10.1371/journal.pone.0107113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4–7.1 µmol/kg (14–70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.
Collapse
Affiliation(s)
- Elena Zavyalova
- Chemistry Department of Lomonosov Moscow State University, Moscow, Russian Federation
- ‘APTO-PHARM’ LTD, Moscow, Russian Federation
- * E-mail:
| | - Nadezhda Samoylenkova
- ‘APTO-PHARM’ LTD, Moscow, Russian Federation
- Institute of Gene Biology of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander Revishchin
- Institute of Gene Biology of Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey Golovin
- ‘APTO-PHARM’ LTD, Moscow, Russian Federation
- Department of Bioengineering and Bioinformatics of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Galina Pavlova
- ‘APTO-PHARM’ LTD, Moscow, Russian Federation
- Institute of Gene Biology of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey Kopylov
- Chemistry Department of Lomonosov Moscow State University, Moscow, Russian Federation
- ‘APTO-PHARM’ LTD, Moscow, Russian Federation
| |
Collapse
|
10
|
Xiong J, Bai L, Fang W, Fu J, Fang W, Cen J, Kong Y, Li Y. New peptide pENW (pGlu-Asn-Trp) inhibits platelet activation by attenuating Akt phosphorylation. Eur J Pharm Sci 2012; 45:552-8. [PMID: 22285483 DOI: 10.1016/j.ejps.2011.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/27/2011] [Accepted: 12/01/2011] [Indexed: 01/22/2023]
Abstract
Platelets play a key role in hemostasis and in the initiation and propagation of thrombus formation. New peptide pGlu-Asn-Trp (pENW), initially extracted from snake venom, shows a concentration-dependent antithrombotic activity, significantly attenuated thrombus formation in the arterial and venous vessel systems. This study was designed to further reveal the mechanisms underlying its antithrombotic effect by focusing on its in vitro antiplatelet effect after precluding its influence on coagulation factors. It showed that pENW concentration-dependently inhibited ADP-, collagen- and platelet activating factor (PAF)-induced platelet aggregation, inversely depending upon the intensity of stimulation induced by agonists. Furthermore, data obtained by ELISA and flow cytometry presented that pENW also suppressed ADP-mediated serotonin secretion and P-selectin expression in a concentration-dependent manner. As shown by Western blot assay, ADP-induced platelet Akt phosphorylation was attenuated by the priming incubation with pENW, demonstrating the influence on platelet intracellular signaling. It provided the explaining information for its activity of inhibiting platelet activation in vitro. These results suggested pENW attenuated thrombus formation in part by inhibiting platelet activation instead of coagulation factors, presented evidence of pENW interfering intracellular signaling system in the process of platelet activation and indicated the possibility that pENW could potentially be developed as a novel therapeutic agent in the prevention and treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology, Nanjing Medical University, 140 Han Zhong Rd., Nanjing, Jiangsu 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
A Novel Targeted Multi-Functional Fusion Protein Possesses Inhibitory Activities Against Bacteria, Thrombin and Platelet Aggregation. Protein J 2011; 30:521-8. [DOI: 10.1007/s10930-011-9357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Matsui T, Ito C, Oda M, Itoigawa M, Yokoo K, Okada T, Furukawa H. Lapachol suppresses cell proliferation and secretion of interleukin-6 and plasminogen activator inhibitor-1 of fibroblasts derived from hypertrophic scars. J Pharm Pharmacol 2011; 63:960-6. [DOI: 10.1111/j.2042-7158.2011.01292.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The pathogenesis and therapy of hypertrophic scar have not yet been established. Our aim was to investigate the antiproliferative and antisecretory effects of lapachol, isolated from the stem bark of Avicennia rumphiana Hall. f., on hypertrophic scar fibroblasts.
Methods
The effects of lapachol on hypertrophic scar fibroblast proliferation were measured using the MTT assay, cell-cycle analyses and lactate dehydrogenase assays. The type I collagen α-chain (COL1A1), interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) mRNA and/or protein levels of hypertrophic scar-fibroblasts were quantitated by real-time PCR and ELISA.
Key findings
Lapachol at 25 and 50 µm significantly inhibited the in vitro proliferation of hypertrophic scar fibroblasts, but not fibroblasts from non-lesional skin sites. In addition, lapachol had no apparent effect on cell cycle and lactate dehydrogenase activity in conditioned medium from lapachol-treated hypertrophic scar fibroblasts was nearly equal to that in medium from vehicle-treated cells. Lapachol treatment also inhibited COL1A1 and PAI-1 mRNA levels in hypertrophic scar fibroblasts, but did not affect IL-6 mRNA levels. The protein levels of IL-6 and PAI-1 in conditioned medium from hypertrophic scar fibroblasts treated with 50 µm lapachol were lower than those from vehicle-treated hypertrophic scar fibroblasts.
Conclusions
Lapachol decreased the proliferation rate of hypertrophic scar fibroblasts. As IL-6 and PAI-1 secretion was also lowered in lapachol-treated hypertrophic scar fibroblasts, our findings suggested that lapachol may have suppressed extracellular matrix hyperplasia in wound healing and possibly alleviated the formation of hypertrophic scar.
Collapse
Affiliation(s)
- Takuya Matsui
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
- Department of Physiology, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| | - Makiko Oda
- Department of Plastic Surgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Masataka Itoigawa
- Faculty of Human Wellness, Tokai Gakuen University, Tempaku, Nagoya, Aichi, Japan
| | - Kazuhisa Yokoo
- Department of Plastic Surgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Tadashi Okada
- Department of Physiology, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Hiroshi Furukawa
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| |
Collapse
|