1
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
2
|
Prudovsky I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021; 10:cells10071830. [PMID: 34360000 PMCID: PMC8304273 DOI: 10.3390/cells10071830] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Growth factors belonging to the FGF family play important roles in tissue and organ repair after trauma. In this review, I discuss the regulation by FGFs of the aspects of cellular behavior important for reparative processes. In particular, I focus on the FGF-dependent regulation of cell proliferation, cell stemness, de-differentiation, inflammation, angiogenesis, cell senescence, cell death, and the production of proteases. In addition, I review the available literature on the enhancement of FGF expression and secretion in damaged tissues resulting in the increased FGF supply required for tissue repair.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| |
Collapse
|
3
|
Casey-Sawicki K, Zhang M, Kim S, Zhang A, Zhang SB, Zhang Z, Singh R, Yang S, Swarts S, Vidyasagar S, Zhang L, Zhang A, Okunieff P. A basic fibroblast growth factor analog for protection and mitigation against acute radiation syndromes. HEALTH PHYSICS 2014; 106:704-712. [PMID: 24776903 DOI: 10.1097/hp.0000000000000095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of fibroblast growth factors and their potential as broad-spectrum agents to treat and mitigate radiation injury have been studied extensively over the past two decades. This report shows that a peptide mimetic of basic fibroblast growth factor (FGF-P) protects and mitigates against acute radiation syndromes. FGF-P attenuates both sepsis and bleeding in a radiation-induced bone marrow syndrome model and reduces the severity of gastrointestinal and cutaneous syndromes; it should also mitigate combined injuries. FGF-2 and FGF-P induce little or no deleterious inflammation or vascular leakage, which distinguishes them from most other growth factors, angiogenic factors, and cytokines. Although recombinant FGFs have proven safe in several ongoing clinical trials, they are expensive to synthesize, can only be produced in limited quantity, and have limited shelf life. FGF-P mimics the advantageous features of FGF-2 without these disadvantages. This paper shows that FGF-P not only has the potential to be a potent yet safe broad-spectrum medical countermeasure that mitigates acute radiotoxicity but also holds promise for thermal burns, ischemic wound healing, tissue engineering, and stem-cell regeneration.
Collapse
Affiliation(s)
- Kate Casey-Sawicki
- *Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL; †BioPowerTech, 4734 Bluegrass Pkwy, Tuscaloosa, AL 35406; ‡Department of Pharmaceutics, University of Florida, College of Pharmacy, University of Florida, Gainesville, FL; §DiaCarta, LLC, Hayward, CA 94545
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The effect of different temporary abdominal closure materials on the growth of granulation tissue after the open abdomen. ACTA ACUST UNITED AC 2011; 71:961-5. [PMID: 21378579 DOI: 10.1097/ta.0b013e3181fa2932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Temporary abdominal closure (TAC) is often performed after an open abdomen to prevent postoperative complications. Reducing the time of TAC and performing a skin grafting as early as possible would improve the outcome of open abdomen. This study was designed to evaluate the effects of different TAC materials and topically applied exogenous growth factors on the growth of granulation tissue covered on the wound areas after the open abdomen. METHODS Healthy Sprague-Dawley rats were randomly assigned to four groups of six animals each. Twenty-four hours after induction of peritonitis and intra-abdominal hypertension by intraperitoneal injection of nitrogen, relaparotomies were done. The abdomen was then closed with polyethylene sheet or polypropylene mesh plus growth factor (or not). On the seventh day after TAC surgery, TAC materials were removed, and granulation tissue on the wound surface was assessed microscopically. Microvascular densities, thickness of granulation tissue, and fibroblast counts were also measured. RESULTS Microvascular densities, thickness of granulation tissue, and fibroblast counts were the highest for polypropylene mesh closure plus recombinant bovine basic fibroblast growth factor (rbFGF) followed by polypropylene mesh plus recombinant human growth hormone (rhGH) and polypropylene mesh alone, with polyethylene sheet alone being the least. CONCLUSIONS Polypropylene mesh could promote the growth of granulation tissue after the open abdomen. Topical application of rhGH or rbFGF further hastens the process, with the effect of rbFGF being the greatest.
Collapse
|
5
|
Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2010; 37:1528-42. [PMID: 19930861 DOI: 10.1177/147323000903700531] [Citation(s) in RCA: 1275] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Wound healing remains a challenging clinical problem and correct, efficient wound management is essential. Much effort has been focused on wound care with an emphasis on new therapeutic approaches and the development of technologies for acute and chronic wound management. Wound healing involves multiple cell populations, the extracellular matrix and the action of soluble mediators such as growth factors and cytokines. Although the process of healing is continuous, it may be arbitrarily divided into four phases: (i) coagulation and haemostasis; (ii) inflammation; (iii) proliferation; and (iv) wound remodelling with scar tissue formation. The correct approach to wound management may effectively influence the clinical outcome. This review discusses wound classification, the physiology of the wound healing process and the methods used in wound management.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Maribor, Maribor, Slovenia.
| | | | | |
Collapse
|