1
|
Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q, Yang W, Li Y, Li S, Peng Q, Pan M, Gao Y, Xu S, Zhang Y, Zhou S. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience 2024; 27:108912. [PMID: 38323006 PMCID: PMC10844828 DOI: 10.1016/j.isci.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UC-MSCs)-derived hepatocyte-like cells (HLCs) have shown great promise in the treatment of liver diseases. However, most current induction protocols yield hepatocyte-like cells with limited function as compared with primary hepatocytes. Schisandrin B (Sch B) is one of the main components of Schisandra chinensis, which can prevent fibrosis progression and promote liver cell regeneration. Herein, we investigated the effects of Sch B on hepatic differentiation of UC-MSCs. We found that treatment with 10 μM Sch B from the second stage of the differentiation process increased hepatic marker levels and hepatic function. Additionally, RNA-seq analysis revealed that Sch B promoted hepatic differentiation via activating the JAK2/STAT3 pathway. When transplanted HLCs into mice with CCL4-induced liver fibrosis, Sch B-treated HLCs exhibited significant therapeutic effects. This study provides an optimized hepatic differentiation protocol for UC-MSCs based on Sch B, yielding functioning cells for liver disease treatment.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi 844000, China
| | - Wei Hu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Simin Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
- Anesthesiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
2
|
Ding Y, Tan R, Gu J, Gong P. Herpetin Promotes Bone Marrow Mesenchymal Stem Cells to Alleviate Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Molecules 2023; 28:molecules28093842. [PMID: 37175256 PMCID: PMC10180416 DOI: 10.3390/molecules28093842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Herpetin, an active compound derived from the seeds of Herpetospermum caudigerum Wall., is a traditional Tibetan herbal medicine that is used for the treatment of hepatobiliary diseases. The aim of this study was to evaluate the stimulant effect of herpetin on bone marrow mesenchymal stem cells (BMSCs) to improve acute liver injury (ALI). In vitro results showed that herpetin treatment enhanced expression of the liver-specific proteins alpha-fetoprotein, albumin, and cytokeratin 18; increased cytochrome P450 family 3 subfamily a member 4 activity; and increased the glycogen-storage capacity of BMSCs. Mice with ALI induced by carbon tetrachloride (CCl4) were treated with a combination of BMSCs by tail-vein injection and herpetin by intraperitoneal injection. Hematoxylin and eosin staining and serum biochemical index detection showed that the liver function of ALI mice improved after administration of herpetin combined with BMSCs. Western blotting results suggested that the stromal cell-derived factor-1/C-X-C motif chemokine receptor 4 axis and the Wnt/β-catenin pathway in the liver tissue were activated after treatment with herpetin and BMSCs. Therefore, herpetin is a promising BMSC induction agent, and coadministration of herpetin and BMSCs may affect the treatment of ALI.
Collapse
Affiliation(s)
- Yi Ding
- College of Pharmacy, Southwest Minzu University, No. 16, South 4th Section, First Ring Road, Chengdu 610041, China
| | - Rui Tan
- College of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, No. 16, South 4th Section, First Ring Road, Chengdu 610041, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, No. 16, South 4th Section, First Ring Road, Chengdu 610041, China
| |
Collapse
|
3
|
HPF Modulates the Differentiation of BMSCs into HLCs and Promotes the Recovery of Acute Liver Injury in Mice. Int J Mol Sci 2023; 24:ijms24065686. [PMID: 36982757 PMCID: PMC10058346 DOI: 10.3390/ijms24065686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into hepatocyte-like cells (HLCs) to alleviate acute liver injury (ALI). Herpetfluorenone (HPF), as an active ingredient in the dried, mature seeds Herpetospermum caudigerum Wall, used in Tibetan medicine, has been proven to effectively alleviate ALI. Therefore, the purpose of this study was to determine whether HPF can promote the differentiation of BMSCs into HLCs and promote ALI recovery. Mouse BMSCs were isolated, and the BMSCs’ differentiation into HLCs was induced by HPF and hepatocyte growth factor (HGF). Under the induction of HPF and HGF, the expression of hepatocellular specific markers and the accumulation of glycogen and lipids in the BMSCs increased, indicating that BMSCs successfully differentiated into HLCs. Then, the ALI mouse model was established, using carbon tetrachloride, followed by an intravenous injection of BMSCs. Then, only HPF was injected intraperitoneally, in order to verify the effect of HPF in vivo. In vivo imaging was used to detect the homing ability of HPF–BMSCs, and it was detected that HPF–BMSCs significantly increased the levels of serum AST, ALT and ALP in the liver of ALI mice, and alleviated liver cell necrosis, oxidative stress and liver pathology. In conclusion, HPF can promote the differentiation of BMSCs into HLCs and promote the recovery of ALI in mice.
Collapse
|
4
|
Liao H, Du S, Jiang T, Zheng M, Xiang Z, Yang J. UMSCs Attenuate LPS/D-GalN-induced Acute Liver Failure in Mice by Down-regulating the MyD88/NF-κB Pathway. J Clin Transl Hepatol 2021; 9:690-701. [PMID: 34722184 PMCID: PMC8516837 DOI: 10.14218/jcth.2020.00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is an inflammatory process of acute liver cell injury. Mesenchymal stem cells (MSCs) are undifferentiated, primitive cells with anti-inflammatory, anti-apoptotic, and multi-directional differentiation abilities. This study aimed to explore the therapeutic mechanism of umbilical cord (U)MSCs in ALF. METHODS D-galactosamine (D-GalN) combined with lipopolysaccharide (LPS) was used to establish an ALF model. After model establishment, UMSCs were injected via the tail vein. After UMSC transplantation, the number of mouse deaths was monitored every 12 h. A fully automatic biochemical analyzer was used to detect changes in biochemical analysis. Pathological changes was observed by stained with hematoxylin and eosin.The expression of My D88 was detected by immunohistochemical analysis, quantitative reverse transcription, and western blotting. The expression of NF-κB was detected by quantitative reverse transcription, western blotting.The expression of Bcl-2,Bax were detected by quantitative reverse transcription, western blotting.The expression of TNF-α, IL-1β, IL-6 were detected by enzyme-linked immunosorbent assay. RESULTS The 48-h survival rate of the UMSC-treated group was significantly higher than that of the LPS/D-GalN-exposed group. After 24 h of LPS/D-GalN exposure, UMSCs reduced serum alanine aminotransferase and aspartate aminotransferase levels and improved the liver structure. Western blot and real-time fluorescence quantitative nucleic acid amplification analyses showed that UMSCs decreased MyD88 expression, thereby inhibiting LPS/GalN-induced phosphorylation and degradation of inhibitor of nuclear factor (NF)-κB (IκB). Additionally, NF-κB p65 underwent nuclear translocation, inhibiting the production of the inflammatory factors interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and played a protective role in ALF by down-regulating the pro-apoptotic gene Bax and up-regulating the anti-apoptotic gene Bcl-2. In summary, these findings indicate that UMSCs play a protective role in LPS/GalN-induced acute liver injury via inhibition of the MyD88 pathway and subsequent inhibition of NF-κB-mediated cytokine production. CONCLUSIONS Through the above mechanisms, UMSCs can effectively reduce LPS/D-GalN-induced ALF, reduce mouse mortality, and restore damaged liver function and damaged liver tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinhui Yang
- Correspondence to: Jinhui Yang, Department of Digestive Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Yunnan Burma Road, Wuhua District, Kunming, Yunnan 650031, China. ORCID: https://orcid.org/0000-0002-5733-0647. Tel: +86-13608712810, E-mail:
| |
Collapse
|
5
|
Dong HB, Meng J, Yao ZQ, Luo HB, Zhang JX, Du WH, Tang KH, Cao SH. Total synthesis of three natural phenethyl glycosides. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:284-293. [PMID: 32079415 DOI: 10.1080/10286020.2020.1724970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Phenethyl glycosides having phenolic or methoxy functions at benzene rings are substances widely occurring in nature. This kind of compounds has been shown to have anti-oxidant, anti-inflammatory, and anticancer activities. However, some of them are not naturally abundant, thus the synthesis of such molecules is desirable. In this paper, natural phenethyl glycosides 3 and 4 were first totally synthesized from easily available materials with overall yields of 50.5% and 40.1%, respectively. And a new synthetic route to obtain natural phenethyl glycoside 2 in 46.2% yield was also described.
Collapse
Affiliation(s)
- Hong-Bo Dong
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Jian Meng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | | | - Hong-Bing Luo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Jing-Xia Zhang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Hong Du
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke-Hui Tang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Sheng-Hua Cao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Improving Soluble Expression of Tyrosine Decarboxylase from Lactobacillus brevis for Tyramine Synthesis with High Total Turnover Number. Appl Biochem Biotechnol 2018; 188:436-449. [PMID: 30520007 DOI: 10.1007/s12010-018-2925-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/30/2018] [Indexed: 01/13/2023]
Abstract
The soluble expression of tyrosine decarboxylase (TDC) in heterologous host is often challenging. Here, acidic condition was found to be favorable for improving the soluble expression of TDC from Lactobacillus brevis in Escherichia coli, while addition of carbohydrates (such as glucose, arabinose, and fructose) was vital for decreasing the insoluble fraction. By simple pH control and addition of glucose, the specific activity of TDC in crude extract was enhanced to 46.3 U mg-1, 3.67-fold of that produced from LB medium. Optimization of the reaction conditions revealed that Tween-80 was effective in improving the tyramine production catalyzed by TDC, especially at high tyrosine loadings. As much as 400 mM tyrosine could be completely converted into tyramine with a substrate to catalyst ratio of 29.0 g g-1 and total turnover number of 23,300. This study provides efficient strategies for the highly soluble expression of TDC and biocatalytic production of tyramine.
Collapse
|
7
|
Guilin F, Meijiao L, Xiaolin Z, Lihong Z, Jing L, Jingfeng O. Efficacy of Bushenjianpi prescription on autoimmune premature ovarian failure in mice. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30321-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Lihong Z, Zhihong Z, Yanan S, Shuhua M, Weifeng Y, Hongtao L, Junling Z, Jingfeng O, Yi W. Velvet antler polypeptide is able to induce differentiation of neural stem cells towards neurons in vitro. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30065-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wang JM, Qu ZQ, Wu JL, Chung P, Zeng YS. Mitochondrial protective and anti-apoptotic effects of Rhodiola crenulata extract on hippocampal neurons in a rat model of Alzheimer's disease. Neural Regen Res 2017; 12:2025-2034. [PMID: 29323042 PMCID: PMC5784351 DOI: 10.4103/1673-5374.221160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata (RCE) improved spatial cognition in a rat model of Alzheimer's disease. Another study from our laboratory showed that RCE enhanced neural cell proliferation in the dentate gyrus of the hippocampus and prevented damage to hippocampal neurons in a rat model of chronic stress-induced depression. However, the mechanisms underlying the neuroprotective effects of RCE are unclear. In the present study, we investigated the anti-apoptotic effect of RCE and its neuroprotective mechanism of action in a rat model of Alzheimer's disease established by intracerebroventricular injection of streptozotocin. The rats were pre-administered RCE at doses of 1.5, 3.0 or 6.0 g/kg for 21 days before model establishment. ATP and cytochrome c oxidase levels were significantly decreased in rats with Alzheimer's disease. Furthermore, neuronal injury was obvious in the hippocampus, with the presence of a large number of apoptotic neurons. In comparison, in rats given RCE pretreatment, ATP and cytochrome c oxidase levels were markedly increased, the number of apoptotic neurons was reduced, and mitochondrial injury was mitigated. The 3.0 g/kg dose of RCE had the optimal effect. These findings suggest that pretreatment with RCE prevents mitochondrial dysfunction and protects hippocampal neurons from apoptosis in rats with Alzheimer's disease.
Collapse
Affiliation(s)
- Jun-Mei Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ze-Qiang Qu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peter Chung
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University; Institute of Spinal Cord Injury, Sun Yat-sen University; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016; 21:molecules21111490. [PMID: 27834881 PMCID: PMC6272831 DOI: 10.3390/molecules21111490] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.
Collapse
|
11
|
Gow AG, Muirhead R, Hay DC, Argyle DJ. Low-Density Lipoprotein Uptake Demonstrates a Hepatocyte Phenotype in the Dog, but Is Nonspecific. Stem Cells Dev 2016; 25:90-100. [DOI: 10.1089/scd.2015.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Adam G. Gow
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Rhona Muirhead
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - David C. Hay
- MRC Center for Regenerative Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Argyle
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
12
|
Production of salidroside in metabolically engineered Escherichia coli. Sci Rep 2014; 4:6640. [PMID: 25323006 PMCID: PMC4200411 DOI: 10.1038/srep06640] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
Salidroside (1) is the most important bioactive component of Rhodiola (also called as “Tibetan Ginseng”), which is a valuable medicinal herb exhibiting several adaptogenic properties. Due to the inefficiency of plant extraction and chemical synthesis, the supply of salidroside (1) is currently limited. Herein, we achieved unprecedented biosynthesis of salidroside (1) from glucose in a microorganism. First, the pyruvate decarboxylase ARO10 and endogenous alcohol dehydrogenases were recruited to convert 4-hydroxyphenylpyruvate (2), an intermediate of L-tyrosine pathway, to tyrosol (3) in Escherichia coli. Subsequently, tyrosol production was improved by overexpressing the pathway genes, and by eliminating competing pathways and feedback inhibition. Finally, by introducing Rhodiola-derived glycosyltransferase UGT73B6 into the above-mentioned recombinant strain, salidroside (1) was produced with a titer of 56.9 mg/L. Interestingly, the Rhodiola-derived glycosyltransferase, UGT73B6, also catalyzed the attachment of glucose to the phenol position of tyrosol (3) to form icariside D2 (4), which was not reported in any previous literatures.
Collapse
|
13
|
Ouyang J, Huang W, Yu W, Xiong W, Mula RVR, Zou H, Yu Y. Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4. Chem Biol Interact 2013; 208:1-7. [PMID: 24287272 DOI: 10.1016/j.cbi.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/28/2013] [Accepted: 11/16/2013] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes mellitus (T1DM), a multisystem disease with both biochemical and anatomical/structural consequences, is a major health concern worldwide. Pancreatic islet transplantation provides a promising treatment for T1DM. However, the limited availability of islet tissue or new sources of insulin producing cells (IPCs) that are responsive to glucose hinder this promising approach. Though slow, the development of pancreatic beta-cell lines from rodent or human origin has been steadily progressing. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, culture-expanded, non-hematopoietic cells that are currently being investigated as a novel cellular therapy. The in vitro differentiation potential of IPCs has raised hopes for a treatment of clinical diseases associated with autoimmunity. We screened for small molecules that induce pancreatic differentiation of IPCs. There are some compounds which showed positive effects on the DTZ staining. The aminopyrrole derivative compound XW4.4 which shows the best activity among them was found to induce pancreatic differentiation of rat MSCs (rMSCs). The in vitro studies indicated that treatment of rMSCs with compound XW4.4 resulted in differentiated cells with characteristics of IPCs including islet-like clusters, spherical, grape-like morphology, insulin secretion, positive for dithizone, glucose stimulation and expression of pancreatic endocrine cell marker genes. The data has also suggested that hepatocyte nuclear factor 3β (HNF 3β) may be involved in pancreatic differentiation of rMSCs when treated with XW4.4. Results indicate that XW4.4 induced rMSCs support the efforts to derive functional IPCs and serve as a means to alleviate limitations surrounding islet cell transplantation in the treatment of T1DM.
Collapse
Affiliation(s)
- Jingfeng Ouyang
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, No 866, Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Morphology Laboratory, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Huang
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, No 866, Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Wanwan Yu
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, No 866, Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Wei Xiong
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, No 866, Yuhangtang Road, Hangzhou, Zhejiang 310058, China; The First People's Hospital of Jiande, Hangzhou, Zhejiang Province 311600, China
| | | | - Hongbin Zou
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, No 866, Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| | - Yongping Yu
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, No 866, Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Ouyang J, Shao J, Zou H, Lou Y, Yu Y. Hepatic differentiation of rat mesenchymal stem cells by a small molecule. ChemMedChem 2012; 7:1447-52. [PMID: 22715131 DOI: 10.1002/cmdc.201200162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are capable of self-renewal and multilineage differentiation. A periodic acid-Schiff (PAS) stain-based assay was developed to screen for small-molecule inducers of hepatic differentiation of bone marrow MSCs. 2-(4-Bromophenyl)-N-(4-fluorophenyl)-3-propyl-3H-imidazo[4,5-b]pyridin-5-amine (SJA710-6) was identified as a novel small molecule able to induce the differentiation of rat MSCs (rMSCs) toward hepatocyte-like cells in vitro, where rMSCs treated with SJA710-6 have typical morphological and functional characteristics of hepatic cells, including glycogen storage, urea secretion, uptake of low density lipoprotein (LDL) and expression of hepatocyte-specific genes and proteins. Expression of FoxH1 (FAST1/2) induces the differentiation of rMSCs towards hepatocyte-like cells, suggesting that this gene plays an important role in the hepatic fate specification of rMSCs.
Collapse
Affiliation(s)
- Jingfeng Ouyang
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, 866 YuHangTang Road, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
15
|
Qu ZQ, Zhou Y, Zeng YS, Lin YK, Li Y, Zhong ZQ, Chan WY. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One 2012; 7:e29641. [PMID: 22235318 PMCID: PMC3250459 DOI: 10.1371/journal.pone.0029641] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 12/02/2011] [Indexed: 01/05/2023] Open
Abstract
Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS.
Collapse
Affiliation(s)
- Ze-qiang Qu
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan-shan Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yu-kun Lin
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi-qiang Zhong
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Zhang JX, Ma LQ, Yu HS, Zhang H, Wang HT, Qin YF, Shi GL, Wang YN. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis. PLANT CELL REPORTS 2011; 30:1443-53. [PMID: 21538102 DOI: 10.1007/s00299-011-1053-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 05/16/2023]
Abstract
Salidroside, the 8-O-β-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.
Collapse
Affiliation(s)
- Ji-Xing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, 028043, Tongliao, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. PHYTOCHEMISTRY 2011; 72:862-70. [PMID: 21497865 DOI: 10.1016/j.phytochem.2011.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/17/2010] [Accepted: 03/23/2011] [Indexed: 05/23/2023]
Abstract
Salidroside, the 8-O-β-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing production of salidroside by biotechnological manipulations. In this study, two putative UDP-glycosyltransferase (UGT) cDNAs, UGT72B14 and UGT74R1, were isolated from roots and cultured cells of methyl jasmonate (MeJA)-treated R. sachalinensis, respectively. The level of sequence identity between their deduced amino acid sequences was ca. 20%. RNA gel-blot analysis established that UGT72B14 transcripts were more abundant in roots, and UGT74R1 was highly expressed in the calli, but not in roots. Functional analysis indicated that recombinant UGT72B14 had the highest level of activity for salidroside production, and that the catalytic efficiency (Vmax/Km) of UGT72B14 was 620% higher than that of UGT74R1. The salidroside contents of the UGT72B14 and UGT74R1 transgenic hairy root lines of R. sachalinensis were also ∼420% and ∼50% higher than the controls, respectively. UGT72B14 transcripts were mainly detected in roots, and UGT72B14 had the highest level of activity for salidroside production in vitro and in vivo.
Collapse
Affiliation(s)
- Han-Song Yu
- Food Science and Engineering College, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Lan-Qing Ma
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture PR China, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Ji-Xing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China
| | - Guang-Lu Shi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture PR China, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| | - Yao-Hui Hu
- Food Science and Engineering College, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - You-Nian Wang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture PR China, Beijing University of Agriculture, Beijing 102206, People's Republic of China
| |
Collapse
|