1
|
Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022; 14:pharmaceutics14122818. [PMID: 36559311 PMCID: PMC9785322 DOI: 10.3390/pharmaceutics14122818] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The delivery of drugs via transdermal routes is an attractive approach due to ease of administration, bypassing of the first-pass metabolism, and the large skin surface area. However, a major drawback is an inability to surmount the skin's stratum corneum (SC) layer. Therefore, techniques reversibly modifying the stratum corneum have been a classical approach. Surmounting the significant barrier properties of the skin in a well-organised, momentary, and harmless approach is still challenging. Chemical permeation enhancers (CPEs) with higher activity are associated with certain side effects restricting their advancement in transdermal drug delivery. Furthermore, complexity in the interaction of CPEs with the skin has led to difficulty in elucidating the mechanism of action. Nevertheless, CPEs-aided transdermal drug delivery will accomplish its full potential due to advancements in analytical techniques, synthetic chemistry, and combinatorial studies. This review focused on techniques such as drug-vehicle interaction, vesicles and their analogues, and novel CPEs such as lipid synthesis inhibitors (LSIs), cell-penetrating peptides (CPPs), and ionic liquids (ILs). In addition, different types of microneedles, including 3D-printed microneedles, have been focused on in this review.
Collapse
|
2
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
3
|
Zhang X, Wu W. Liquid Crystalline Phases for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:81. [PMID: 33619612 DOI: 10.1208/s12249-021-01951-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid crystalline phases (LCPs) are generated upon lipolysis of ingested lipids in the gastrointestinal tract. The breaking off and subsequent evolution of LCPs produce more advanced vesicular and micellar structures which facilitate oral absorption of lipids, as well as co-loaded drug entities. Owing to sustained or controlled drug release, bioadhesiveness, and capability of loading drugs of different properties, LCPs are promising vehicles to implement for enhancement of oral bioavailability. This review aims to provide an overview on the classification, preparation and characterization, in vivo generation and transformation, absorption mechanisms, and encouraging applications of LCPs in enhancement of oral bioavailability. In addition, we comment on the merits of LCPs as oral drug delivery carriers, as well as solutions to industrialization utilizing liquid crystalline precursor and preconcentrate formulations.
Collapse
|
4
|
Sustained absorption of delamanid from lipid-based formulations as a path to reduced frequency of administration. Drug Deliv Transl Res 2020; 11:1236-1244. [PMID: 32935235 PMCID: PMC8096769 DOI: 10.1007/s13346-020-00851-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Delamanid is a poorly water-soluble drug currently being used for the treatment of tuberculosis. The high frequency of dosing leads to poor adherence for patients who live in lower economic and nomadic populations. Non-digestible self-assembling lipids as a formulation approach for poorly water-soluble drugs have previously been shown to extend the window of absorption through gastric retention. We hypothesise that this approach could lead to the reduction of dosing frequency for delamanid and thereby has potential to improve adherence. Formulations of delamanid were prepared in selachyl alcohol and phytantriol as non-digestible self-assembling lipid vehicles, and their behaviour was compared with reconstituted milk powder, as a digestible lipid-based formulation, and an aqueous suspension. The self-assembly of selachyl alcohol and phytantriol in aqueous media in the presence of delamanid was studied using small angle X-ray scattering and produced the inverse hexagonal (H2) and inverse bicontinuous cubic (V2) liquid crystal structures, respectively. The times at which maximum delamanid levels in plasma were observed (Tmax) after oral administration of the phytantriol, selachyl alcohol and reconstituted milk powder formulations of delamanid to rats were 27 ± 3, 20 ± 4 and 6.5 ± 1.0 h, respectively, compared with the aqueous suspension formulation with a Tmax of 3.4 ± 1 h, which confirms the hypothesis of an extended duration of absorption after administration in non-digestible self-assembling lipids. The digestion products of the triglycerides in the milk formulation increased the solubilisation of delamanid in the gastrointestinal tract, leading to an increase in exposure compared with the aqueous suspension formulation but did not significantly extend Tmax. Overall, the non-digestible nanostructured lipid formulations extended the duration of absorption of delamanid well beyond that from milk or suspension formulations. Graphical abstract ![]()
Collapse
|
5
|
Pham AC, Peng KY, Salim M, Ramirez G, Hawley A, Clulow AJ, Boyd BJ. Correlating Digestion-Driven Self-Assembly in Milk and Infant Formulas with Changes in Lipid Composition. ACS APPLIED BIO MATERIALS 2020; 3:3087-3098. [PMID: 32455340 PMCID: PMC7241073 DOI: 10.1021/acsabm.0c00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
![]()
Lipids in mammalian
milks such as bovine milk and human breast
milk have been shown to self-assemble into various liquid crystalline
materials during digestion. In this study, the direct correlation
between the composition of the lipids from three types of mammalian
milk, three brands of infant formulas (IFs), and soy milk and the
liquid crystalline structures that form during their digestion was
investigated to link the material properties to the composition. The
self-assembly behavior was assessed using in vitro digestion coupled with in situ small-angle X-ray
scattering (SAXS). Lipid composition was determined during in vitro digestion using ex situ liquid
chromatography–mass spectrometry. All tested milks self-assembled
into ordered structures during digestion, with the majority of milks
displaying nonlamellar phases. Milks that released mostly long-chain
fatty acids (>95 mol % of the top 10 fatty acids released) with
more
than 47 mol % unsaturation predominantly formed a micellar cubic phase
during digestion. Other milks released relatively more medium-chain
fatty acids and medium-chain monoglycerides and produced a range of
ordered liquid crystalline structures including the micellar cubic
phase, the hexagonal phase, and the bicontinuous cubic phase. One
infant formula did not form liquid crystalline structures at all as
a consequence of differences in fatty acid distributions. The self-assembly
phenomenon provides a powerful discriminator between different classes
of nutrition and a roadmap for the design of human milklike systems
and is anticipated to have important implications for nutrient transport
and the delivery of bioactives.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019; 58:2958-2978. [PMID: 29926520 PMCID: PMC6606436 DOI: 10.1002/anie.201804067] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.
Collapse
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Front Chem 2018; 6:204. [PMID: 29922648 PMCID: PMC5996110 DOI: 10.3389/fchem.2018.00204] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising novel antibiotics since they have shown antimicrobial activity against a wide range of bacterial species, including multiresistant bacteria; however, toxicity is the major barrier to convert antimicrobial peptides into active drugs. A profound and proper understanding of the complex interactions between these peptides and biological membranes using biophysical tools and model membranes seems to be a key factor in the race to develop a suitable antimicrobial peptide therapy for clinical use. In the search for such therapy, different combined approaches with conventional antibiotics have been evaluated in recent years and demonstrated to improve the therapeutic potential of AMPs. Some of these approaches have revealed promising additive or synergistic activity between AMPs and chemical antibiotics. This review will give an insight into the possibilities that physicochemical tools can give in the AMPs research and also address the state of the art on the current promising combined therapies between AMPs and conventional antibiotics, which appear to be a plausible future opportunity for AMPs treatment.
Collapse
Affiliation(s)
- Axel Hollmann
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina.,Centro de Investigación en Biofísica Aplicada y Alimentos, Consejo Nacional de Investigaciones Científicas y Técnicas and National University of Santiago del Estero, Santiago del Estero, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Melina Martinez
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Patricia Maturana
- Centro de Investigación en Biofísica Aplicada y Alimentos, Consejo Nacional de Investigaciones Científicas y Técnicas and National University of Santiago del Estero, Santiago del Estero, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Liliana C Semorile
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina
| | - Paulo C Maffia
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery. Front Pharmacol 2017; 8:761. [PMID: 29123482 PMCID: PMC5662584 DOI: 10.3389/fphar.2017.00761] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.
Collapse
Affiliation(s)
- Yuan-Seng Wu
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Siew-Ching Ngai
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Centre of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Global Asia in the 21st Century Platform, Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Vice Chancellor Office, Jiangsu University, Zhenjiang, China
| | - Learn-Han Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Centre of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Global Asia in the 21st Century Platform, Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Zhang S, Ou H, Liu C, Zhang Y, Mitragotri S, Wang D, Chen M. Skin Delivery of Hydrophilic Biomacromolecules Using Marine Sponge Spicules. Mol Pharm 2017; 14:3188-3200. [PMID: 28763230 DOI: 10.1021/acs.molpharmaceut.7b00468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of sponge Haliclona sp. spicules, referred to as SHS, and its topical application in skin delivery of hydrophilic biomacromolecules, a series of fluorescein isothiocyanate-dextrans (FDs). SHS are silicious oxeas which are sharp-edged and rod-shaped (∼120 μm in length and ∼7 μm in diameter). SHS can physically disrupt skin in a dose-dependent manner and retain within the skin over at least 72 h, which allows sustained skin penetration of hydrophilic biomacromolecules. The magnitude of enhancement of FD delivery into skin induced by SHS treatment was dependent on its molecular weight. Specifically, SHS topical application enhanced FD-10 (MW: 10 kDa) penetration into porcine skin in vitro by 33.09 ± 7.16-fold compared to control group (p < 0.01). SHS dramatically increased the accumulation of FD-10 into and across the dermis by 62.32 ± 13.48-fold compared to the control group (p < 0.01). In vivo experiments performed using BALB/c mice also confirmed the effectiveness of SHS topical application; the skin absorption of FD-10 with SHS topical application was 72.14 ± 48.75-fold (p < 0.05) and 15.39 ± 9.91-fold (p < 0.05) higher than those from the PBS and Dermaroller microneedling, respectively. Further, skin irritation study and transepidermal water loss (TEWL) measurement using guinea pig skin in vivo indicated that skin disruption induced by SHS treatment is self-limited and can be recovered with time and efficiently. SHS can offer a safe, effective, and sustained skin delivery of hydrophilic biomacromolecules and presents a promising platform technology for a wide range of cosmetic and medical applications.
Collapse
Affiliation(s)
- Saiman Zhang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361102, PR China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Xiamen 361102, PR China
| | - Huilong Ou
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361102, PR China
| | - Chunyun Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361102, PR China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Xiamen 361102, PR China
| | - Yuan Zhang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361102, PR China
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California , Santa Barbara 93106, United States
| | - Dexiang Wang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361102, PR China
| | - Ming Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361102, PR China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Xiamen 361102, PR China
| |
Collapse
|
10
|
Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:277-287. [PMID: 25757886 DOI: 10.1038/jes.2015.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/23/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.
Collapse
Affiliation(s)
- Lien Taevernier
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Lieselotte Veryser
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Catherine Delesalle
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
11
|
Rodrigues LR. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 2015; 449:304-16. [DOI: 10.1016/j.jcis.2015.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
|
12
|
Nguyen TH, Hanley T, Porter CJH, Boyd BJ. Nanostructured reverse hexagonal liquid crystals sustain plasma concentrations for a poorly water-soluble drug after oral administration. Drug Deliv Transl Res 2015; 1:429-38. [PMID: 25786363 DOI: 10.1007/s13346-011-0045-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Reverse hexagonal (H2) liquid crystals formed from selachyl alcohol were demonstrated to sustain the absorption of the poorly water-soluble drug cinnarizine (CZ) after oral administration to rats. When CZ was administered as a bolus lipid solution in selachyl alcohol, the T max was observed to be 23.5 ± 5.9 h, significantly longer than the control suspension (1 h). Administration of selachyl alcohol as dispersed nanoparticles (hexosomes) also resulted in a sustained plasma profile, with drug concentrations maintained from 20 to 40 ng/mL over the first 24 h after administration. Sustained absorption of CZ from the selachyl alcohol hexosomes led to a significant enhancement (p < 0.05) in oral bioavailability (F% = 17%) compared to the control CZ suspension (9%). Analysis of selachyl alcohol hexosomes using small-angle x-ray scattering indicated that neither the presence of CZ (7 mg/g) nor simulated intestinal fluid altered the H2 nanostructure. Selachyl alcohol is not susceptible to digestion. Prolonged absorption from the selachyl alcohol-based H2 systems was attributed to the non-digestible nature of the lipid, similar to non-digestible phytantriol cubic (V2) systems previously reported. Furthermore, the likely presence of non-sink conditions in the gastric compartment provides a drug reservoir requiring gastric emptying to stimulate drug release from the formulation. This study highlights the potential use of non-digestible liquid crystalline systems generally and nanostructured liquid crystalline particles in particular as novel sustained oral drug delivery systems.
Collapse
Affiliation(s)
- Tri-Hung Nguyen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
| | | | | | | |
Collapse
|
13
|
Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:815981. [PMID: 24995330 PMCID: PMC4068036 DOI: 10.1155/2014/815981] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.
Collapse
Affiliation(s)
- Yulin Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Ping Ma
- Global Pharmaceutical Research and Development, Hospira Inc., 1776 North Centennial Drive, McPherson, KS 67460, USA
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
- Anhui Key Laboratory of Modern Chinese Medicine & Materia, Hefei, Anhui 230031, China
- Anhui “115” Xin'an Traditional Chinese Medicine Research & Development Innovation Team, Hefei, Anhui 230031, China
| |
Collapse
|
14
|
Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res 2013; 31:1219-38. [PMID: 24218223 DOI: 10.1007/s11095-013-1244-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics, pharmacodynamic studies in DMBA induced breast cancer model and cardiotoxicity were also evaluated. RESULTS The reconstituted formulation exhibited Pn3m type cubic structure, evident by SAXS and posed stability in simulated gastrointestinal fluids and at accelerated stability conditions for 6 months. Dox-LCNPs revealed significantly higher cell cytotoxicity (16.23-fold) against MCF-7 cell lines as compared to free drug owing to its preferential localization in the vicinity of nucleus. Furthermore, Caco-2 cell experiments revealed formation of reversible "virtual pathways" in the cell membrane for Dox-LCNPs and hence posed significantly higher relative oral bioavailability (17.74-fold). Subsequently, Single dose of Dox-LCNPs (per oral) led to significant reduction in % tumor burden (~42%) as compared that of ~31% observed in case of Adriamycin® (i.v.) when evaluated in DMBA induced breast cancer model. Moreover, Dox induced cardiotoxicity was also found to be significantly lower in case of Dox-LCNPs as compared to clinical formulations (Adriamycin® and Lipodox®). CONCLUSION Incorporation of Dox in the novel LCNPs demonstrated improved antitumor efficacy and safety profile and can be a viable option for oral chemotherapy.
Collapse
|
15
|
Nasir MN, Laurent P, Flore C, Lins L, Ongena M, Deleu M. Analysis of calcium-induced effects on the conformation of fengycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 110:450-457. [PMID: 23588300 DOI: 10.1016/j.saa.2013.03.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
Fengycin is a natural lipopeptide with antifungal and eliciting properties and able to inhibit the activity of phospholipase A2. A combination of CD, FT-IR, NMR and fluorescence spectroscopic techniques was applied to elucidate its conformation in a membrane-mimicking environment and to investigate the effect of calcium ions on it. We mainly observed that fengycin adopts a turn conformation. Our results showed that calcium ions are bound by the two charged glutamates. The calcium binding has an influence on the fengycin conformation and more particularly, on the environment of the tyrosine residues. The modulation of the fengycin conformation by the environmental conditions may influence its biological properties.
Collapse
Affiliation(s)
- Mehmet Nail Nasir
- Unité de Chimie biologique industrielle, University of Liege, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Kumar V, Banga AK. Modulated iontophoretic delivery of small and large molecules through microchannels. Int J Pharm 2012; 434:106-14. [DOI: 10.1016/j.ijpharm.2012.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/09/2012] [Accepted: 05/15/2012] [Indexed: 01/20/2023]
|
17
|
Lian R, Lu Y, Qi J, Tan Y, Niu M, Guan P, Hu F, Wu W. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: physical characterization and enhanced oral bioavailability. AAPS PharmSciTech 2011; 12:1234-40. [PMID: 21948306 DOI: 10.1208/s12249-011-9666-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/16/2011] [Indexed: 11/30/2022] Open
Abstract
Silymarin, a mixture of flavonolignans extracted from the seeds of milk thistle, is used clinically as a hepatoprotector to treat liver injuries and chronic hepatitis. However, its therapeutic effect is compromised by its poor oral bioavailability due to the poor solubility and low permeability across intestinal epithelia. The main purpose of this study was to prepare silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices (GMO/P407 LCM) to improve the oral bioavailability of silymarin. GMO/P407 LCMs were prepared by a melting/congealing method. The isotropic phenomenon observed under polarized light microscope confirmed the liquid crystalline structure at the junction of LCM and water. Both differential scanning calorimetry and X-ray diffraction analysis confirmed disappearance of silymarin crystallinity after incorporation into the LCMs. In vitro release of silymarin from LCMs was limited, whereas LCMs were readily degraded by lipase and released silymarin quickly and completely. Pharmacokinetic study in beagle dogs showed significantly increased peak concentration for silymarin GMO/P407 LCM, and, most importantly, a 3.46-fold increase in oral bioavailability as compared with Legalon®, a commercial silymarin formulation.
Collapse
|
18
|
Takasuga S, Yamamoto R, Mafune S, Sutoh C, Kominami K, Yoshida Y, Ito M, Kinoshita M. In-vitro and in-vivo transdermal iontophoretic delivery of tramadol, a centrally acting analgesic. J Pharm Pharmacol 2011; 63:1437-45. [DOI: 10.1111/j.2042-7158.2011.01355.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The feasibility of transdermal delivery of tramadol, a centrally acting analgesic, by anodal iontophoresis using Ag/AgCl electrodes was investigated in vitro and in vivo.
Methods
To examine the effect of species variation and current strength on skin permeability of tramadol, in-vitro skin permeation studies were performed using porcine ear skin, guinea-pig abdominal skin and hairless mouse abdominal skin as the membrane. In an in-vivo pharmacokinetic study, an iontophoretic patch system was applied to the abdominal skin of conscious guinea pigs with a constant current supply (250 µA/cm2) for 6 h. An intravenous injection group to determine the pharmacokinetic parameters for estimation of the transdermal absorption rate in guinea pigs was also included.
Key findings
The in-vitro steady-state skin permeation flux of tramadol current-dependently increased without significant differences among the three different skin types. In the in-vivo pharmacokinetic study, plasma concentrations of tramadol steadily increased and reached steady state (336 ng/ml) 3 h after initiation of current supply, and the in-vivo steady-state transdermal absorption rate was 499 µg/cm2 per h as calculated by a constrained numeric deconvolution method.
Conclusions
The present study reveals that anodal iontophoresis provides current-controlled transdermal delivery of tramadol without significant interspecies differences, and enables the delivery of therapeutic amounts of tramadol.
Collapse
Affiliation(s)
- Shinri Takasuga
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Rie Yamamoto
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Shoichi Mafune
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Chiyo Sutoh
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Katsuya Kominami
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Yoshimasa Yoshida
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Masao Ito
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| | - Mine Kinoshita
- Department of Device Development, TTI ellebeau, Inc., Higashi-Shinagawa, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|