1
|
Spillane J, Trip J, Drost G, Faber CG, Hanna MG, Nevitt SJ, Vivekanandam V. Drug treatment for myotonia. Cochrane Database Syst Rev 2025; 4:CD004762. [PMID: 40197813 PMCID: PMC11977047 DOI: 10.1002/14651858.cd004762.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
BACKGROUND Abnormal delayed relaxation of skeletal muscles, known as myotonia, can cause disability in myotonic disorders. The main myotonic disorders are non-dystrophic myotonia and myotonic dystrophy. Non-dystrophic myotonia is a genetic muscle channelopathy predominantly causing myotonia. Myotonic dystrophic is a more systemic neuromuscular disorder causing myotonia as well as progressive myopathy and systemic manifestations, such as arrhythmias and cataracts. Myotonia manifests as stiffness, cramps, locking, pain, and fatigue, and can cause marked morbidity and disability. Sodium channel blockers, tricyclic antidepressive drugs, benzodiazepines, calcium antagonists, taurine, and prednisone may reduce myotonia. This is an update of a review first published in 2005 and updated in 2006. OBJECTIVES To review evidence from randomised controlled trials (RCTs) on the efficacy and tolerability of drug treatment in people with clinical myotonia due to myotonic disorders. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and World Health Organization ICTRP on 29 March 2023. We handsearched the grey literature and contacted disease experts and antimyotonic drug manufacturers. SELECTION CRITERIA We included RCTs involving participants with myotonia treated with any drug treatment versus no therapy, placebo, or any other active drug treatment. We included clinical trials where the reported primary outcome was a participant-reported measure of myotonia. We excluded non-RCTs and where myotonia may have been part of the condition (e.g. paramyotonia or Brody's disease). The primary myotonic conditions were myotonic dystrophy and non-dystrophic myotonia. Our primary outcome was participant-reported improvement in clinical myotonia. Our secondary outcomes were relaxation time, electromyographic relaxation time, adverse events, and quality of life. DATA COLLECTION AND ANALYSIS Review authors independently extracted the data onto standardised extraction forms. Three review authors independently assessed risk of bias and we collected adverse events data from the included trials. We assessed the certainty of the evidence using GRADE. MAIN RESULTS This review includes 17 double-blind or single-blind RCTs involving a total of 392 participants, 219 with myotonic dystrophy type 1 and 173 with non-dystrophic myotonia. Seven RCTs were newly identified and included in this update. Four of these RCTs investigated the effect of mexiletine or lamotrigine versus placebo in people with non-dystrophic myotonia. The remaining RCTs explored mexiletine in myotonic dystrophy. Myotonic dystrophy Mexiletine No RCTs reported improvement in clinical myotonia according to validated scales. Mexiletine likely reduces hand grip relaxation time compared to placebo (mean difference (MD) 1.37 seconds better, 95% confidence interval (CI) 0.87 to 1.86; 2 RCTs, 56 participants; moderate-certainty evidence). Low-certainty evidence from four RCTs (91 participants) reported 55 adverse events with placebo and 84 adverse events with mexiletine. The most frequent adverse events with mexiletine were gastrointestinal symptoms, lethargy, and headache. There may be no difference in quality of life measures between mexiletine and placebo (36-item Short Form (SF-36) Physical Component Summary (PCS): MD -1.40, 95% CI -5.56 to 2.76; SF-36 Mental Component Summary (MCS): MD -1.10, 95% CI -6.17 to 3.97; 1 RCT, 38 participants; low-certainty evidence). Non-dystrophic myotonia Mexiletine Mexiletine likely reduces myotonia compared to placebo using the Interactive Voice Response Diary Stiffness score (across both treatment periods: MD -3.12, 95% CI -3.75 to -2.49; 2 cross-over RCTs, 89 participants; moderate-certainty evidence). There is likely no effect on relaxation times with no differences in eye closure or clinical hand grip between mexiletine and placebo (2 RCTs, 89 participants; moderate-certainty evidence). Mexiletine likely improves quantitative hand grip (MD -0.11, 95% CI -0.18 to -0.04; 2 RCTs, 89 participants; moderate-certainty evidence). Mexiletine likely improves electromyographic-based outcomes, including degree of needle electromyographic myotonia detected (MD -0.67, 95% CI -0.23 to -1.11; 2 RCTs, 89 participants; moderate-certainty evidence). Low-certainty evidence from four RCTs (136 participants) reported 29 adverse events with placebo and 94 adverse events with mexiletine. The most frequent adverse events were gastrointestinal symptoms, lethargy, and headache. There may be improvement in quality of life with mexiletine compared to placebo (SF-36 PCS: MD 6.45, 95% CI 4.32 to 8.58; SF-36 MCS: MD 6.78, 95% CI 1.89 to 11.67, entire treatment period; 2 cross-over RCTs, 89 participants; low-certainty evidence). Lamotrigine No RCTs reported improvement in clinical myotonia according to validated scales. There may be improvement in relaxation time with lamotrigine treatment (hand grip: MD 2.80 (log) seconds better, 95% CI 2.09 to 3.51; eyelid closure: MD 2.30 (log) seconds better, 95% CI 1.79 to 2.81; 1 RCT, 22 participants; low-certainty evidence). Moderate-certainty evidence from one RCT (26 participants) reported 23 adverse events with placebo and 44 adverse events with lamotrigine. The most common adverse events with lamotrigine were headache, fatigue, and rash. Quality of life is likely to improve with lamotrigine compared to placebo (SF-36: MD 5.00 points better, 95% CI 3.12 to 6.88 points better; 1 RCT, 22 participants; moderate-certainty evidence). Other medications Other medications, including phenytoin, imipramine, procainamide, clomipramine, nifedipine, tocainide, diazepam, quinine, diphenylhydantoin, and taurine, were either ineffective or had uncertain evidence with small numbers. Trials were small, with the participant numbers ranging from nine to 59, with high risk of bias. AUTHORS' CONCLUSIONS More-recent trials are more robust, and well-conducted RCTs demonstrate moderate-certainty evidence for the efficacy of symptomatic treatments in non-dystrophic myotonias. Additionally, the data suggest that not all patients respond to therapy and research into aetiology and treatment options for non-responders is needed. Other agents that have not been tested in RCTs, such as acetazolamide, flecainide, ranolazine, and lacosamide, will need to be considered when planning future clinical trials. Moreover, the RCTs, in particular the small numbers of most trials, highlight the challenges in recruitment and design of robust trials in rare diseases, and research into trial design to improve recruitment in rare diseases will be important for future trials.
Collapse
Affiliation(s)
- Jennifer Spillane
- Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jeroen Trip
- Department of Neurology, Isala Hospital, Zwolle, Netherlands
| | - Gea Drost
- Department of Neurology and Neurosurgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Centre, Mental Health and Neuroscience Research Institute, Maastricht, Netherlands
| | - Michael G Hanna
- Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Sarah J Nevitt
- Centre for Reviews and Dissemination, University of York, York, UK
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Vinojini Vivekanandam
- Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
2
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
3
|
Montagnese F. Current Treatment Options for Patients with Myotonic Dystrophy Type 2. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose of the review
Myotonic dystrophy types 1 and 2 are frequent forms of muscular dystrophies in adulthood. Their clinical differences need to be taken into account for the most appropriate treatment of patients. The aim of this article is to provide an overview on the current and upcoming therapeutic options for patients with myotonic dystrophy type 2 (DM2).
Recent findings
At the moment, no disease-modifying therapies are available for DM2; next-generation therapies may however be available in the near future. In the meanwhile, the symptomatic management of patients has greatly improved, thank to the production of consensus-based standards of care and the growing evidence of efficacy of anti-myotonic drugs, promising employment of cannabinoids for symptom’s relief, regular monitoring, and early detection of treatable extra-muscular manifestations.
Summary
The treatment of DM2 is currently symptomatic and relies on the coordinated intervention of a multidisciplinary team. It remains to be determined whether upcoming causal therapies for myotonic dystrophy type 1 will be applicable also in DM2.
Collapse
|
4
|
Harmon KK, Stout JR, Fukuda DH, Pabian PS, Rawson ES, Stock MS. The Application of Creatine Supplementation in Medical Rehabilitation. Nutrients 2021; 13:1825. [PMID: 34071875 PMCID: PMC8230227 DOI: 10.3390/nu13061825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous health conditions affecting the musculoskeletal, cardiopulmonary, and nervous systems can result in physical dysfunction, impaired performance, muscle weakness, and disuse-induced atrophy. Due to its well-documented anabolic potential, creatine monohydrate has been investigated as a supplemental agent to mitigate the loss of muscle mass and function in a variety of acute and chronic conditions. A review of the literature was conducted to assess the current state of knowledge regarding the effects of creatine supplementation on rehabilitation from immobilization and injury, neurodegenerative diseases, cardiopulmonary disease, and other muscular disorders. Several of the findings are encouraging, showcasing creatine's potential efficacy as a supplemental agent via preservation of muscle mass, strength, and physical function; however, the results are not consistent. For multiple diseases, only a few creatine studies with small sample sizes have been published, making it difficult to draw definitive conclusions. Rationale for discordant findings is further complicated by differences in disease pathologies, intervention protocols, creatine dosing and duration, and patient population. While creatine supplementation demonstrates promise as a therapeutic aid, more research is needed to fill gaps in knowledge within medical rehabilitation.
Collapse
Affiliation(s)
- Kylie K. Harmon
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA; (J.R.S.); (D.H.F.)
| | - David H. Fukuda
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA; (J.R.S.); (D.H.F.)
| | - Patrick S. Pabian
- Musculoskeletal Research Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Matt S. Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
5
|
Towards clinical outcome measures in myotonic dystrophy type 2: a systematic review. Curr Opin Neurol 2018; 31:599-609. [DOI: 10.1097/wco.0000000000000591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Wilkinson TJ, Lemmey AB, Jones JG, Sheikh F, Ahmad YA, Chitale S, Maddison PJ, O'brien TD. Can Creatine Supplementation Improve Body Composition and Objective Physical Function in Rheumatoid Arthritis Patients? A Randomized Controlled Trial. Arthritis Care Res (Hoboken) 2017; 68:729-37. [PMID: 26414681 DOI: 10.1002/acr.22747] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Rheumatoid cachexia (muscle wasting) in rheumatoid arthritis (RA) patients contributes to substantial reductions in strength and impaired physical function. The objective of this randomized controlled trial was to investigate the effectiveness of oral creatine (Cr) supplementation in increasing lean mass and improving strength and physical function in RA patients. METHODS In a double-blind design, 40 RA patients were randomized to either 12 weeks' supplementation of Cr or placebo. Body composition (dual x-ray absorptiometry and bioelectrical impedance spectroscopy [BIS]), strength, and objectively assessed physical function were measured at baseline, day 6, week 12, and week 24. Data analysis was performed by analysis of covariance. RESULTS Cr supplementation increased appendicular lean mass (ALM; a surrogate measure of muscle mass) by mean ± SE 0.52 ± 0.13 kg (P = 0.004 versus placebo), and total LM by 0.60 ± 0.37 kg (P = 0.158). The change in LM concurred with the gain in intracellular water (0.64 ± 0.22 liters; P = 0.035) measured by BIS. Despite increasing ALM, Cr supplementation, relative to placebo, failed to improve isometric knee extensor strength (P = 0.408), handgrip strength (P = 0.833), or objectively assessed physical function (P = 0.335-0.764). CONCLUSION In patients with RA, Cr supplementation increased muscle mass, but not strength or objective physical function. No treatment-related adverse effects were reported, suggesting that Cr supplementation may offer a safe and acceptable adjunct treatment for attenuating muscle loss; this treatment may be beneficial for patients experiencing severe rheumatoid cachexia.
Collapse
Affiliation(s)
| | | | - Jeremy G Jones
- Peter Maddison Rheumatology Centre, Llandudno Hospital, Llandudno, North Wales, UK, and Bangor University, Bangor, UK
| | - Fazal Sheikh
- Peter Maddison Rheumatology Centre, Llandudno Hospital, Llandudno, North Wales, UK, and Bangor University, Bangor, UK
| | - Yasmeen A Ahmad
- Peter Maddison Rheumatology Centre, Llandudno Hospital, Llandudno, North Wales, UK, and Bangor University, Bangor, UK
| | - Sarang Chitale
- Peter Maddison Rheumatology Centre, Llandudno Hospital, Llandudno, North Wales, UK, and Bangor University, Bangor, UK
| | - Peter J Maddison
- Peter Maddison Rheumatology Centre, Llandudno Hospital, Llandudno, North Wales, UK, and Bangor University, Bangor, UK
| | - Thomas D O'brien
- Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
7
|
Ho G, Cardamone M, Farrar M. Congenital and childhood myotonic dystrophy: Current aspects of disease and future directions. World J Clin Pediatr 2015; 4:66-80. [PMID: 26566479 PMCID: PMC4637811 DOI: 10.5409/wjcp.v4.i4.66] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/07/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is multisystem disease arising from mutant CTG expansion in the non-translating region of the dystrophia myotonica protein kinase gene. While DM1 is the most common adult muscular dystrophy, with a worldwide prevalence of one in eight thousand, age of onset varies from before birth to adulthood. There is a broad spectrum of clinical severity, ranging from mild to severe, which correlates with number of DNA repeats. Importantly, the early clinical manifestations and management in congenital and childhood DM1 differ from classic adult DM1. In neonates and children, DM1 predominantly affects muscle strength, cognition, respiratory, central nervous and gastrointestinal systems. Sleep disorders are often under recognised yet a significant morbidity. No effective disease modifying treatment is currently available and neonates and children with DM1 may experience severe physical and intellectual disability, which may be life limiting in the most severe forms. Management is currently supportive, incorporating regular surveillance and treatment of manifestations. Novel therapies, which target the gene and the pathogenic mechanism of abnormal splicing are emerging. Genetic counselling is critical in this autosomal dominant genetic disease with variable penetrance and potential maternal anticipation, as is assisting with family planning and undertaking cascade testing to instigate health surveillance in affected family members. This review incorporates discussion of the clinical manifestations and management of congenital and childhood DM1, with a particular focus on hypersomnolence and sleep disorders. In addition, the molecular genetics, mechanisms of disease pathogenesis and development of novel treatment strategies in DM1 will be summarised.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Myotonic dystrophies type 1 and type 2 are progressive multisystem genetic disorders with clinical and genetic features in common. Myotonic dystrophy type 1 is the most prevalent muscular dystrophy in adults and has a wide phenotypic spectrum. The average age of death in myotonic dystrophy type 1 is in the fifth decade. In comparison, myotonic dystrophy type 2 tends to cause a milder phenotype with later onset of symptoms and is less common than myotonic dystrophy type 1. Historically, patients with myotonic dystrophy type 1 have not received the medical and social input they need to maximize their quality and quantity of life. This review describes the improved understanding in the molecular and clinical features of myotonic dystrophy type 1 as well as the screening of clinical complications and their management. We will also discuss new potential genetic treatments. RECENT FINDINGS An active approach to screening and management of myotonic dystrophies type 1 and type 2 requires a multidisciplinary medical, rehabilitative and social team. This process will probably improve morbidity and mortality for patients. Genetic treatments have been successfully used in in-vitro and animal models to reverse the physiological, histopathological and transcriptomic features. SUMMARY Molecular therapeutics for myotonic dystrophy will probably bridge the translational gap between bench and bedside in the near future. There will still be a requirement for clinical screening of patients with myotonic dystrophy with proactive and systematic management of complications.
Collapse
|
9
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. Previous updates were in 2009 and 2011. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH METHODS On 11 September 2012, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL (2012, Issue 9 in The Cochrane Library), MEDLINE (January 1966 to September 2012) and EMBASE (January 1980 to September 2012) for randomised controlled trials (RCTs) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS A total of 14 trials, including 364 randomised participants, met the selection criteria. The risk of bias was low in most studies. Only one trial had a high risk of selection, performance and detection bias. No new studies were identified at this update.Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of participants felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event.In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of activities of daily living (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired activities of daily living and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
10
|
Wadman RI, Bosboom WMJ, van der Pol WL, van den Berg LH, Wokke JHJ, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2012:CD006282. [PMID: 22513940 DOI: 10.1002/14651858.cd006282.pub4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Andres PL, Skerry LM, Munsat TL, Thornell BJ, Szymonifka J, Schoenfeld DA, Cudkowicz ME. Validation of a new strength measurement device for amyotrophic lateral sclerosis clinical trials. Muscle Nerve 2011; 45:81-5. [DOI: 10.1002/mus.22253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Wadman RI, Bosboom WM, van den Berg LH, Wokke JH, Iannaccone ST, Vrancken AF. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2011:CD006282. [PMID: 22161400 DOI: 10.1002/14651858.cd006282.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Rudolf Magnus Institute for Neuroscience, Universiteitsweg 100, Utrecht, Netherlands, 3584 CG
| | | | | | | | | | | |
Collapse
|
13
|
Creatine as a therapeutic strategy for myopathies. Amino Acids 2011; 40:1397-407. [PMID: 21399918 DOI: 10.1007/s00726-011-0876-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022]
Abstract
Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075-0.1 g/kg/day) with greater strength (~9%) and fat-free mass (~0.63 kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle's disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids).
Collapse
|
14
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Specialized Register (4 October 2010), the Cochrane Central Register of Controlled Trials (11 October 2010, Issue 4, 2010 in The Cochrane Library), MEDLINE (January 1966 to September 2010) and EMBASE (January 1980 to September 2010) for randomised controlled trials (RCT) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS The updated searches identified two new studies. A total of 14 trials, including 364 randomised participants, met the selection criteria. Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a weighted mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of patients felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event. In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of ADL (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired ADL and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la-Camp-Platz 1, Bochum, Germany, 44789
| | | | | |
Collapse
|
15
|
Turner C, Hilton-Jones D. Pharmacological treatment for muscle weakness and wasting in myotonic dystrophy. Hippokratia 2010. [DOI: 10.1002/14651858.cd008377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chris Turner
- National Hospital for Neurology and Neurosurgery; MRC Centre for Neuromuscular Disease; Queen Square London UK WC1N 3BG
| | - David Hilton-Jones
- John Radcliffe Hospital; Department of Clinical Neurology; Oxford UK OX3 9DU
| |
Collapse
|
16
|
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids 2009; 38:31-44. [PMID: 19253023 DOI: 10.1007/s00726-009-0263-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson's, Huntington's, and Alzheimer's), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.
Collapse
Affiliation(s)
- Bruno Gualano
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
17
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2009:CD006282. [PMID: 19160275 DOI: 10.1002/14651858.cd006282.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type II and III, and to assess if such therapy can be given safely. Drug treatment for SMA type I will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008), The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA We sought all randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type II and III. Participants had to fulfil the clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS Four randomized placebo-controlled trials on treatment for SMA type II and III were found and included in the review. The treatments were creatine, phenylbutyrate, gabapentin and thyrotropin releasing hormone. None of these trials showed any effect on the outcome measures in patients with SMA type II and III. None of the patients in any of the four trials died or reached the state of full time ventilation and serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA type II and III.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Myotonic dystrophy (DM) is a dominantly inherited neurodegenerative disorder for which there is no cure or effective treatment. Investigation of DM pathogenesis has identified a novel disease mechanism that requires development of innovative therapeutic strategies. It is now clear that DM is not caused by expression of a mutant protein. Instead, DM is the first recognized example of an RNA-mediated disease. Expression of the mutated gene gives rise to an expanded repeat RNA that is directly toxic to cells. The mutant RNA is retained in the nucleus, forming ribonuclear inclusions in affected tissue. A primary consequence of RNA toxicity in DM is dysfunction of two classes of RNA binding proteins, which leads to abnormal regulation of alternative splicing, or spliceopathy, of select genes. Spliceopathy now is known to cause myotonia and insulin resistance in DM. As our understanding of pathogenesis continues to improve, therapy targeted directly at the RNA disease mechanism will begin to replace the supportive care currently available. New pharmacologic approaches to treat myotonia and muscle wasting in DM type 1 are already in early clinical trials, and therapies designed to reverse the RNA toxicity have shown promise in preclinical models by correcting spliceopathy and eliminating myotonia. The well-defined ribonuclear inclusions may serve as convenient therapeutic targets to identify new agents that modify RNA toxicity. Continued development of appropriate model systems will allow testing of additional therapeutic strategies as they become available. Although DM is a decidedly complex disorder, its RNA-mediated disease mechanism may prove to be highly susceptible to therapy.
Collapse
Affiliation(s)
- Thurman M Wheeler
- Neuromuscular Disease Center, Department of Neurology, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
19
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary muscle diseases. Creatine is a popular nutritional supplement among athletes. It improves muscle performance in healthy individuals and might be helpful for treating myopathies. OBJECTIVES To evaluate the efficacy of oral creatine supplementation in muscle diseases. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Register in May 2004 for randomised trials using the search term 'creatine'. We also searched the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 2, 2005) using the same search term. We adapted this strategy to search MEDLINE (PubMed, from January 1966 to September 2005) and EMBASE (from January 1980 to May 2004). We reviewed the bibliographies of the randomised trials identified, contacted the authors and known experts in the field and approached pharmaceutical companies to identify additional published or unpublished data. SELECTION CRITERIA Types of studies: randomised or quasi-randomised controlled trials. TYPES OF PARTICIPANTS people of all ages with hereditary muscle disease. Types of intervention: any creatine supplementation of at least 0.03 g/kg body weight/day. PRIMARY OUTCOME MEASURE change in muscle strength measured by quantitative muscle testing. SECONDARY OUTCOME MEASURES change in muscle strength measured by manual muscle testing, change in energy parameters assessed by 31 phosphorous spectroscopy, change in muscle mass or a surrogate for muscle mass, adverse events. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. Some missing data were obtained from investigators. MAIN RESULTS Twelve trials, including 266 participants, met the selection criteria. One trial compared creatine and glutamine treatment with placebo. In trials with 138 participants with muscular dystrophies treated with creatine, there was a significant increase in maximum voluntary contraction in the creatine group compared to placebo, with a weighted mean difference of 8.47% (95% confidence intervals 3.55 to 13.38). There was also an increase in lean body mass during creatine treatment compared to placebo (weighted mean difference 0.63 kg, 95% confidence intervals 0.02 to 1.25). No trial reported any clinically relevant adverse event. In trials with 33 participants with metabolic myopathies treated with creatine, there was no significant difference in maximum voluntary contraction between the creatine and placebo group (weighted mean difference -2.26%, confidence intervals -6.29 to 1.78). One trial reported a significant increase in muscle pain during high-dose creatine treatment (150 mg/kg body weight) in glycogen storage disease type V. AUTHORS' CONCLUSIONS Evidence from randomised controlled trials shows that short- and medium-term creatine treatment improves muscle strength in people with muscular dystrophies, and is well-tolerated. Evidence from randomised controlled trials does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine in glycogenosis type V increased muscle pain.
Collapse
Affiliation(s)
- R A Kley
- Kliniken Bergmannsheil, Ruhr University Bochum, Department of Neurology, Buerkle-de-la-Camp-Platz 1, Bochum, Germany, 44789.
| | | | | |
Collapse
|
20
|
Abstract
BACKGROUND Abnormal delayed relaxation of skeletal muscles, known as myotonia, can cause disability in myotonic disorders. Sodium channel blockers, tricyclic antidepressive drugs, benzodiazepines, calcium-antagonists, taurine and prednisone may be of use in reducing myotonia. OBJECTIVES To consider the evidence from randomised controlled trials on the efficacy and tolerability of drug treatment in patients with clinical myotonia due to a myotonic disorder. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group trials register (April 2004), MEDLINE (January 1966 to December 2003) and EMBASE (January 1980 to December 2003). Grey literature was handsearched and reference lists of identified studies and reviews were examined. Authors, disease experts and manufacturers of anti-myotonic drugs were contacted. SELECTION CRITERIA We considered all (quasi) randomised trials of participants with myotonia treated with any drug treatment versus no therapy, placebo or any other active drug treatment. The primary outcome measure was:reduced clinical myotonia using two categories: (1) no residual myotonia or improvement of myotonia or (2) No change or worsening of myotonia. Secondary outcome measures were:(1) clinical relaxation time; (2) electromyographic relaxation time; (3) stair test; (4) presence of percussion myotonia; and (5) proportion of adverse events. DATA COLLECTION AND ANALYSIS Two authors extracted the data independently onto standardised extraction forms and disagreements were resolved by discussion. MAIN RESULTS Nine randomised controlled trials were found comparing active drug treatment versus placebo or another active drug treatment in patients with myotonia due to a myotonic disorder. Included trials were double-blind or single-blind crossover studies involving a total of 137 patients of which 109 had myotonic dystrophy type 1 and 28 had myotonia congenita. The studies were of poor quality. Therefore, we were not able to analyse the results of all identified studies. Two small crossover studies without a washout period demonstrated a significant effect of imipramine and taurine in myotonic dystrophy. One small crossover study with a washout period demonstrated a significant effect of clomipramine in myotonic dystrophy. Meta-analysis was not possible. AUTHORS' CONCLUSIONS Due to insufficient good quality data and lack of randomised studies, it is impossible to determine whether drug treatment is safe and effective in the treatment of myotonia. Small single studies give an indication that clomipramine and imipramine have a short-term beneficial effect and that taurine has a long-term beneficial effect on myotonia. Larger, well-designed randomised controlled trials are needed to assess the efficacy and tolerability of drug treatment for myotonia.
Collapse
Affiliation(s)
- J Trip
- Academisch Ziekenhuis Maastricht (AZM), Department of Neurology, P. Debyelaan 25 Postbus5800, Maastricht, Limburg, Netherlands, 6202 AZ.
| | | | | | | |
Collapse
|
21
|
Abstract
Myotonia is repetitive firing of muscle action potentials causing prolonged muscle contractions even after mechanical stimulations to the muscles have ceased. Most common myotonic disorder is myotonic dystrophy which is now termed DM1, myotonic dystrophy type 1. In Japan, proximal myotonic myopathy, which is now called DM2 has not been reported. Both DM1 and DM2 have Cl channel abnormality which causes myotonia. Less commonly we encounter Thomsen's disease, and autosomal recessive generalized myotonia (Becker type) which also have a Cl channel abnormality. There are other myotonic disorders related to Na channelopathy which include three disorders: paramyotonia congenita, adynamia episodica hereditaria, and myotonia fluctuans. Myotonia has been treated by various Na channel blockers, mexiletine, phenytoin, and carbamazepine, but they were originally developed for cardiac arrhythmia, or seizure disorders and they have undesirable side effects, weakness. Comprehensive treatment includes myotonia control without reducing the strength, and care for systemic manifestations of DM1.
Collapse
Affiliation(s)
- Teruyuki Kurihara
- Division of Neurology, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo
| |
Collapse
|
22
|
Baker SK, Tarnopolsky MA. Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 2005; 12:1655-79. [PMID: 14519086 DOI: 10.1517/13543784.12.10.1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).
Collapse
Affiliation(s)
- Steven K Baker
- Neurology and Rehabilitation, Room 4U4, Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
23
|
Abstract
The myotonic disorders, including the myotonic dystrophies (myotonic dystrophy type 1, DM1; myotonic dystrophy type 2, DM2/PROMM/PDM), the muscle channelopathies or non-dystrophic myotonias (chloride, sodium, calcium and potassium channelopathies) are all characterized by myotonia and muscle weakness despite different pathophysiology involved in these disorders. Myotonia may affect the eye, facial and jaw muscles as well as the hands and legs. It may be painful and disabling. Muscle weakness may be episodical as in the paralytic attacks of the sodium and calcium channelopathies or culminate in permanent muscle weakness as in the calcium channelopathies and some sodium channelopathies associated to specific point mutations. The severity of myotonia may fluctuate in the myotonic dystrophies, but weakness is usually fixed, affecting neck flexors, facial and jaw muscles as well as proximal and distal muscles of the limbs. Despite the recent progress in molecular genetics the precise mechanisms responsible for myotonia and weakness are not fully understood and there is no standardized treatment strategy. We present a review of selected treatment trials in the myotonic disorders and the muscle channelopathies, and discuss our experience in the treatment of myotonia and muscle weakness, with reference to the limits and advantages of treatment trials in this field.
Collapse
Affiliation(s)
- G Meola
- Department of Neurology, University of Milan, Istituto Policlinico San Donato, Italy
| | | |
Collapse
|
24
|
Cudkowicz M, Qureshi M, Shefner J. Measures and markers in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2004. [DOI: 10.1007/bf03206611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by loss of spinal and cortical motor neurons, leading to progressive weakness and ultimately, death. Clinically, there appears to be an anatomic focus at disease onset, from which the disease then spreads. Because the focus of initial symptoms and the subsequent direction of spread can vary from patient to patient, disease monitoring is difficult, especially in a clinical trial, in which outcome measures must be identical and able to capture progression of all types. Thus, the search for markers of disease progression is especially important in ALS. Many approaches have been taken, from voluntary strength assessment and functional rating scales to physiological and pathological sampling of affected portions of nervous system. No proposed marker has been demonstrated to meet the desired criteria of biological meaning, sensitivity to disease progression, clear relationship to overall prognosis and survival, and ease of measurement. However, progress is being made in all of these regards.
Collapse
Affiliation(s)
- Merit Cudkowicz
- Neurology Clinical Trial Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Tarnopolsky MA, Bourgeois JM, Snow R, Keys S, Roy BD, Kwiecien JM, Turnbull J. Histological assessment of intermediate- and long-term creatine monohydrate supplementation in mice and rats. Am J Physiol Regul Integr Comp Physiol 2003; 285:R762-9. [PMID: 12959920 DOI: 10.1152/ajpregu.00270.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Creatine monohydrate (CrM) supplementation appears to be relatively safe based on data from short-term and intermediate-term human studies and results from several therapeutic trials. The purpose of the current study was to characterize pathological changes after intermediate-term and long-term CrM supplementation in mice [healthy control and SOD1 (G93A) transgenic] and rats (prednisolone and nonprednisolone treated). Histological assessment (18-20 organs/tissues) was performed on G93A mice after 159 days, and in Sprague-Dawley rats after 365 days, of CrM supplementation (2% wt/wt) compared with control feed. Liver histology was also evaluated in CD-1 mice after 300 days of low-dose CrM supplementation (0.025 and 0.05 g x kg-1x day-1) and in Sprague-Dawley rats after 52 days of CrM supplementation (2% wt/wt) with and without prednisolone. Areas of hepatitis were observed in the livers of the CrM-supplemented G93A mice (P < 0.05), with no significant inflammatory lesions in any of the other 18-20 tissues/organs that were evaluated. The CD-1 mice also showed significant hepatic inflammatory lesions (P < 0.05), yet there was no negative effect of CrM on liver histology in the Sprague-Dawley rats after intermediate-term or long-term supplementation nor was inflammation seen in any other tissues/organs (P = not significant). Dietary CrM supplementation can induce inflammatory changes in the liver of mice, but not rats. The observed inflammatory changes in the murine liver must be considered in the evaluation of hepatic metabolism in CrM-supplemented mice. Species differences must be considered in the evaluation of toxicological and physiological studies.
Collapse
Affiliation(s)
- M A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tarnopolsky M, Mahoney D, Thompson T, Naylor H, Doherty TJ. Creatine monohydrate supplementation does not increase muscle strength, lean body mass, or muscle phosphocreatine in patients with myotonic dystrophy type 1. Muscle Nerve 2003; 29:51-8. [PMID: 14694498 DOI: 10.1002/mus.10527] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Creatine monohydrate (CrM) supplementation may increase strength in some types of muscular dystrophy. A recent study in myotonic muscular dystrophy type 1 (DM1) did not find a significant treatment effect, but measurements of muscle phosphocreatine (PCr) were not performed. We completed a randomized, double-blind, cross-over trial using 34 genetically confirmed adult DM1 patients without significant cognitive impairment. Participants received CrM (5 g, approximately 0.074 g/kg daily) and a placebo for each 4-month phase with a 6-week wash-out. Spirometry, manual muscle testing, quantitative isometric strength testing of handgrip, foot dorsiflexion, and knee extension, handgrip and foot dorsiflexion endurance, functional tasks, activity of daily living scales, body composition (total, bone, and fat-free mass), serum creatine kinase activity, serum creatinine concentration and clearance, and liver function tests were completed before and after each intervention, and muscle PCr/beta-adenosine triphosphate (ATP) ratios of the forearm flexor muscles were completed at the end of each phase. CrM supplementation did not increase any of the outcome measurements except for plasma creatinine concentration (but not creatinine clearance). Thus, CrM supplementation at 5 g daily does not have any effects on muscle strength, body composition, or activities of daily living in patients with DM1, perhaps because of a failure of the supplementation to increase muscle PCr/beta-ATP content.
Collapse
Affiliation(s)
- Mark Tarnopolsky
- Department of Medicine (Neurology and Rehabilitation), McMaster University, Hamilton, Canada.
| | | | | | | | | |
Collapse
|