1
|
Vermoyal JC, Hardy D, Goirand-Lopez L, Vinck A, Silvagnoli L, Fortoul A, Francis F, Cappello S, Bureau I, Represa A, Cardoso C, Watrin F, Marissal T, Manent JB. Grey matter heterotopia subtypes show specific morpho-electric signatures and network dynamics. Brain 2024; 147:996-1010. [PMID: 37724593 DOI: 10.1093/brain/awad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Grey matter heterotopia (GMH) are neurodevelopmental disorders associated with abnormal cortical function and epilepsy. Subcortical band heterotopia (SBH) and periventricular nodular heterotopia (PVNH) are two well-recognized GMH subtypes in which neurons are misplaced, either forming nodules lining the ventricles in PVNH, or forming bands in the white matter in SBH. Although both PVNH and SBH are commonly associated with epilepsy, it is unclear whether these two GMH subtypes differ in terms of pathological consequences or, on the contrary, share common altered mechanisms. Here, we studied two robust preclinical models of SBH and PVNH, and performed a systematic comparative assessment of the physiological and morphological diversity of heterotopia neurons, as well as the dynamics of epileptiform activity and input connectivity. We uncovered a complex set of altered properties, including both common and distinct physiological and morphological features across heterotopia subtypes, and associated with specific dynamics of epileptiform activity. Taken together, these results suggest that pro-epileptic circuits in GMH are, at least in part, composed of neurons with distinct, subtype-specific, physiological and morphological properties depending on the heterotopia subtype. Our work supports the notion that GMH represent a complex set of disorders, associating both shared and diverging pathological consequences, and contributing to forming epileptogenic networks with specific properties. A deeper understanding of these properties may help to refine current GMH classification schemes by identifying morpho-electric signatures of GMH subtypes, to potentially inform new treatment strategies.
Collapse
Affiliation(s)
- Jean-Christophe Vermoyal
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Delphine Hardy
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Lucas Goirand-Lopez
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Antonin Vinck
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Lucas Silvagnoli
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Fiona Francis
- INSERM, Sorbonne University, Institut du Fer à Moulin, Paris 75005, France
| | - Silvia Cappello
- Department of Physiological Genomics, Biomedical Center, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Ingrid Bureau
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Alfonso Represa
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Carlos Cardoso
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Françoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Thomas Marissal
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| |
Collapse
|
2
|
Boop S, Barkley A, Emerson S, Prolo LM, Goldstein H, Ojemann JG, Hauptman JS. Robot-assisted stereoelectroencephalography in young children: technical challenges and considerations. Childs Nerv Syst 2022; 38:263-267. [PMID: 34716458 DOI: 10.1007/s00381-021-05384-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Robot-assisted stereoelectroencephalography (sEEG) is frequently employed to localize epileptogenic zones in patients with medically refractory epilepsy (MRE). Its methodology is well described in adults, but less so in children. Given the limited information available on pediatric applications, the objective is to describe the unique technical challenges and considerations of sEEG in the pediatric population. In this report, we describe our institutional experience with the technical aspects of robot-assisted sEEG in an exclusively pediatric epilepsy surgery unit, focusing on pre-, intra-, and post-operative nuances that are particular to the pediatric population. The pediatric population presents several unique challenges in sEEG, including reduced skull thickness relative to adults, incomplete neurologic development, and often special behavioral considerations. Pre-operative selection of putative epileptogenic zones requires careful multidisciplinary decision-making. Intraoperative attention to nuances in positioning, clamp selection, registration, and electrode placement are necessary. Activity considerations and electrode migration and removal are key post-operative considerations. Robot-assisted sEEG is a valuable tool in the armamentarium of techniques to characterize MRE. However, special considerations must be given to the pediatric population to optimize safety and efficacy.
Collapse
Affiliation(s)
- Scott Boop
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ariana Barkley
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Samuel Emerson
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Laura M Prolo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Hannah Goldstein
- Department of Neurosurgery, Seattle Children's Hospital, 4800 Sand Point Way NE, OA.9.220, Seattle, WA, 98105, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.,Department of Neurosurgery, Seattle Children's Hospital, 4800 Sand Point Way NE, OA.9.220, Seattle, WA, 98105, USA
| | - Jason S Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA. .,Department of Neurosurgery, Seattle Children's Hospital, 4800 Sand Point Way NE, OA.9.220, Seattle, WA, 98105, USA.
| |
Collapse
|
3
|
Bulacio JC, Bena J, Suwanpakdee P, Nair D, Gupta A, Alexopoulos A, Bingaman W, Najm I. Determinants of seizure outcome after resective surgery following stereoelectroencephalography. J Neurosurg 2021:1-9. [PMID: 34678771 DOI: 10.3171/2021.6.jns204413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to investigate seizure outcomes after resective epilepsy surgery following stereoelectroencephalography (SEEG), including group characteristics, comparing surgical and nonsurgical groups and assess predictors of time to seizure recurrence. METHODS Clinical and EEG data of 536 consecutive patients who underwent SEEG at Cleveland Clinic Epilepsy Center between 2009 and 2017 were reviewed. The primary outcome was defined as complete seizure freedom since the resective surgery, discounting any auras or seizures that occurred within the 1st postoperative week. In addition, the rate of seizure freedom based on Engel classification was determined in patients with follow-up of ≥ 1 year. Presumably significant outcome variables were first identified using univariate analysis, and Cox proportional hazards modeling was used to identify outcome predictors. RESULTS Of 527 patients satisfying study criteria, 341 underwent resective surgery. Complete and continuous seizure freedom after surgery was achieved in 55.5% of patients at 1 year postoperatively, 44% of patients at 3 years, and 39% of patients at 5 years. As a secondary outcome point, 58% of patients achieved Engel class I seizure outcome for at least 1 year at last follow-up. Among surgical outcome predictors, in multivariate model analysis, the seizure recurrence rate by type of resection (p = 0.039) remained statistically significant, with the lowest risk of recurrence occurring after frontal and temporal lobe resections compared with multilobar and posterior quadrant surgeries. Patients with a history of previous resection (p = 0.006) and bilateral implantations (p = 0.023) were more likely to have seizure recurrence. The absence of an MRI abnormality prior to resective surgery did not significantly affect seizure outcome in this cohort. CONCLUSIONS This large, single-center series shows that resective surgery leads to continuous seizure freedom in a group of patients with complex and severe pharmacoresistant epilepsy after SEEG evaluation. In addition, up to 58% of patients achieved seizure freedom at last follow-up. The authors' results suggest that SEEG is equally effective in patients with frontal and temporal lobe epilepsy with or without MRI identified lesions.
Collapse
Affiliation(s)
- Juan C Bulacio
- 1Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland; and
| | - James Bena
- 2Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | | | - Dileep Nair
- 1Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland; and
| | - Ajay Gupta
- 1Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland; and
| | | | - William Bingaman
- 1Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland; and
| | - Imad Najm
- 1Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland; and
| |
Collapse
|
4
|
Succinate accumulation contributes to oxidative stress and iron accumulation in pentylenetetrazol-induced epileptogenesis and kainic acid-induced seizure. Neurochem Int 2021; 149:105123. [PMID: 34224804 DOI: 10.1016/j.neuint.2021.105123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022]
Abstract
This study explored the role of succinate accumulation in the oxidative stress and iron accumulation in both pentylenetetrazol (PTZ)-induced epileptogenesis and kainic acid (KA)-induced status epilepticus (SE). The levels of succinate, oxidative stress, iron content, iron-related protein expression, and the severity of neuronal injury and seizures were measured in both models. We found that increased concentrations of succinate were associated with increased levels of oxidative stress, iron content, iron regulator protein, and iron importer divalent metal transporter 1, as well as decreased levels of iron exporter ferropotin 1. Aggravated neuronal injury was observed in the hippocampi and cortices of both models. The cell-permeable molecule dimethyl malonate (DM), a competitive inhibitor of succinate dehydrogenase (SDH), significantly attenuated succinate accumulation, reduced the oxidative stress and iron levels, and mitigated the severity of the seizures and neuronal injury. Our results thus indicate that the accumulation of succinate due to the reverse catalysis of SDH may exacerbate oxidative stress and thus induce iron accumulation and neuronal injury in both models. Targeting succinate accumulation may achieve neuroprotective and anti-seizure effects.
Collapse
|
5
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
6
|
Plantier V, Watrin F, Buhler E, Martineau FS, Sahu S, Manent JB, Bureau I, Represa A. Direct and Collateral Alterations of Functional Cortical Circuits in a Rat Model of Subcortical Band Heterotopia. Cereb Cortex 2020; 29:4253-4262. [PMID: 30534979 DOI: 10.1093/cercor/bhy307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/14/2022] Open
Abstract
Subcortical band heterotopia (SBH), also known as double-cortex syndrome, is a neuronal migration disorder characterized by an accumulation of neurons in a heterotopic band below the normotopic cortex. The majority of patients with SBH have mild to moderate intellectual disability and intractable epilepsy. However, it is still not clear how cortical networks are organized in SBH patients and how this abnormal organization contributes to improper brain function. In this study, cortical networks were investigated in the barrel cortex in an animal model of SBH induced by in utero knockdown of Dcx, main causative gene of this condition in human patients. When the SBH was localized below the Barrel Field (BF), layer (L) four projection to correctly positioned L2/3 pyramidal cells was weakened due to lower connectivity. Conversely, when the SBH was below an adjacent cortical region, the excitatory L4 to L2/3 projection was stronger due to increased L4 neuron excitability, synaptic strength and excitation/inhibition ratio of L4 to L2/3 connection. We propose that these developmental alterations contribute to the spectrum of clinical dysfunctions reported in patients with SBH.
Collapse
Affiliation(s)
- Vanessa Plantier
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Françoise Watrin
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Emmanuelle Buhler
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | | | - Surajit Sahu
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | | | - Ingrid Bureau
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| | - Alfonso Represa
- INMED, Aix-Marseille Université, INSERM UMR1249, Marseille 13009, France
| |
Collapse
|
7
|
Di Giacomo R, Uribe-San-Martin R, Mai R, Francione S, Nobili L, Sartori I, Gozzo F, Pelliccia V, Onofrj M, Lo Russo G, de Curtis M, Tassi L. Stereo-EEG ictal/interictal patterns and underlying pathologies. Seizure 2019; 72:54-60. [DOI: 10.1016/j.seizure.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
|
8
|
Zhang Y, Zhang M, Zhu W, Pan X, Wang Q, Gao X, Wang C, Zhang X, Liu Y, Li S, Sun H. Role of Elevated Thrombospondin-1 in Kainic Acid-Induced Status Epilepticus. Neurosci Bull 2019; 36:263-276. [PMID: 31664678 DOI: 10.1007/s12264-019-00437-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Previous studies have suggested that thrombospondin-1 (TSP-1) regulates the transforming growth factor beta 1 (TGF-β1)/phosphorylated Smad2/3 (pSmad2/3) pathway. Moreover, TSP-1 is closely associated with epilepsy. However, the role of the TSP-1-regulated TGF-β1/pSmad2/3 pathway in seizures remains unclear. In this study, changes in this pathway were assessed following kainic acid (KA)-induced status epilepticus (SE) in rats. The results showed that increases in the TSP-1/TGF-β1/pSmad2/3 levels spatially and temporally matched the increases in glial fibrillary acidic protein (GFAP)/chondroitin sulfate (CS56) levels following KA administration. Inhibition of TSP-1 expression by small interfering RNA or inhibition of TGF-β1 activation with a Leu-Ser-Lys-Leu peptide significantly reduced the severity of KA-induced acute seizures. These anti-seizure effects were accompanied by decreased GFAP/CS56 expression and Smad2/3 phosphorylation. Moreover, inhibiting Smad2/3 phosphorylation with ponatinib or SIS3 also significantly reduced seizure severity, alongside reducing GFAP/CS56 immunoreactivity. These results suggest that the TSP-1-regulated TGF-β1/pSmad2/3 pathway plays a key role in KA-induced SE and astrogliosis, and that inhibiting this pathway may be a potential anti-seizure strategy.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Chaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yuxia Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
Malformazioni dello sviluppo corticale. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Popescu CE, Mai R, Sara R, Lizio D, Zanni D, Rossetti C, Caobelli F. The Role of FDG-PET in Patients with Epilepsy Related to Periventricular Nodular Heterotopias: Diagnostic Features and Long-Term Outcome. J Neuroimaging 2019; 29:512-520. [PMID: 31006947 DOI: 10.1111/jon.12620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Periventricular nodular heterotopias (PNHs) are frequently associated with drug-resistant epilepsy (DRE). Although magnetic resonance imaging (MRI) can define the morphological features of PNHs, still there is a need to assess their metabolic activity in order to provide useful information on epileptogenicity and long-term outcome. To that end, we investigated the ability of 18 F-FDG PET to identify seizure onset zone in order to assess the metabolic activity of the ectopic neurons and to provide prognostic information on the postsurgical outcome. METHODS Sixteen patients (6 men and 10 women; ranging between 24 and 53 years of age) with PNHs-related DRE were evaluated. All patients underwent clinical evaluation, Stereo-electroencephalogram (SEEG), brain MRI, and 18 F-FDG brain PET/CT. PET images were superimposed on the patient-specific 3-dimensional-brain MRI. The metabolic activity of each nodule and of their cortex was visually and semiquantitatively assessed. The outcome after intervention was assessed in all patients using Engel classification. RESULTS Thirty-one heterotopic sites were identified. Twenty-one of 23 nodules with detectable electric activity on SEEG were identified by PET (91.3%), while 5 of 8 of nodules without electric activity showed no metabolism on PET (62.5%). Overall, the concordance between SEEG and FDG-PET was 26/31 (83.9%). Furthermore, cortical metabolic alterations were depicted, correlating with epileptogenic areas. A favorable postsurgical outcome was reported in 13 patients (81.3%). The presence of a hypometabolic nodule significantly correlated with a worse outcome after surgical therapy (P = .036). CONCLUSIONS In PNHs-related epilepsy, FDG-PET more accurately identifies epileptogenic foci, which aids surgical planning and in postoperative seizure control.
Collapse
Affiliation(s)
| | - Roberto Mai
- Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | - Roberto Sara
- Nuclear Medicine Department, Niguarda Hospital, Milan, Italy
| | | | - Daniela Zanni
- Medical Physics Unit, Niguarda Hospital, Milan, Italy
| | | | - Federico Caobelli
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Represa A. Why Malformations of Cortical Development Cause Epilepsy. Front Neurosci 2019; 13:250. [PMID: 30983952 PMCID: PMC6450262 DOI: 10.3389/fnins.2019.00250] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Malformations of cortical development (MCDs), a complex family of rare disorders, result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are an important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the physiopathological mechanisms of epilepsy in MCD patients remain poorly elucidated, research during the past decade highlighted the contribution of some factors that will be reviewed in this paper and that include: (i) the genes that caused the malformation, that can be responsible for a significant reduction of inhibitory cells (e.g., ARX gene) or be inducing cell-autonomous epileptogenic changes in affected neurons (e.g., mutations on the mTOR pathway); (ii) the alteration of cortical networks development induced by the malformation that will also involve adjacent or distal cortical areas apparently sane so that the epileptogenic focus might be more extended that the malformation or even localized at distance from it; (iii) the normal developmental processes that would influence and determine the onset of epilepsy in MCD patients, particularly precocious in most of the cases.
Collapse
Affiliation(s)
- Alfonso Represa
- INSERM, Institut de Neurobiologie de la Méditerranée, Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Sahu S, Buhler E, Vermoyal JC, Watrin F, Represa A, Manent JB. Spontaneous epileptiform activity in a rat model of bilateral subcortical band heterotopia. Epilepsia 2018; 60:337-348. [PMID: 30597542 PMCID: PMC7027481 DOI: 10.1111/epi.14633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Malformations of cortical development are common causes of intellectual disability and epilepsy, yet there is a crucial lack of relevant preclinical models associating seizures and cortical malformations. Here, we describe a novel rat model with bilateral subcortical band heterotopia (SBH) and examine whether this model develops spontaneous epileptic seizures. METHODS To generate bilateral SBH in rats, we combined RNAi-mediated knockdown of Dcx and in utero electroporation with a tripolar electrode configuration enabling simultaneous transfection of the two brain hemispheres. To determine whether bilateral SBH leads to epileptiform activity, rats of various ages were implanted for telemetric electrocorticographic recordings and histopathological examination was carried out at the end of the recording sessions. RESULTS By 2 months, rats with bilateral SBH showed nonconvulsive spontaneous seizures consisting of spike-and-wave discharges (SWDs) with dominant frequencies in the alpha and theta bands and secondarily in higher-frequency bands. SWDs occurred during both the dark and the light period, but were more frequent during quiet awake state than during sleep. Also, SWDs were more frequent and lasted longer at older ages. No sex differences were found. Although frequencies and durations of SWDs were found to be uncorrelated with the size of SBH, SWDs were initiated in some occasions from brain hemispheres comprising a larger SBH. Lastly, SWDs exhibited absence-like pharmacological properties, being temporarily alleviated by ethosuximide administration. SIGNIFICANCE This novel model of bilateral SBH with spontaneous epilepsy may potentially provide valuable new insights into causality between cortical malformations and seizures, and help translational research aiming at designing novel treatment strategies for epilepsy.
Collapse
Affiliation(s)
- Surajit Sahu
- Neurobiology Institute of the Mediterranean (INMED), Aix-Marseille University, French National Institute of Health and Medical Research (INSERM) UMR1249, Marseille, France
| | - Emmanuelle Buhler
- Neurobiology Institute of the Mediterranean (INMED), Aix-Marseille University, French National Institute of Health and Medical Research (INSERM) UMR1249, Marseille, France
| | - Jean-Christophe Vermoyal
- Neurobiology Institute of the Mediterranean (INMED), Aix-Marseille University, French National Institute of Health and Medical Research (INSERM) UMR1249, Marseille, France
| | - Françoise Watrin
- Neurobiology Institute of the Mediterranean (INMED), Aix-Marseille University, French National Institute of Health and Medical Research (INSERM) UMR1249, Marseille, France
| | - Alfonso Represa
- Neurobiology Institute of the Mediterranean (INMED), Aix-Marseille University, French National Institute of Health and Medical Research (INSERM) UMR1249, Marseille, France
| | - Jean-Bernard Manent
- Neurobiology Institute of the Mediterranean (INMED), Aix-Marseille University, French National Institute of Health and Medical Research (INSERM) UMR1249, Marseille, France
| |
Collapse
|
13
|
Chassoux F, Navarro V, Catenoix H, Valton L, Vignal JP. Planning and management of SEEG. Neurophysiol Clin 2018; 48:25-37. [DOI: 10.1016/j.neucli.2017.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
14
|
Teplyshova AM, Gaskin VV, Kustov GV, Gudkova AA, Luzin RV, Trifonov IS, Lebedeva AV. [Subcortical laminar heterotopia 'double cortex syndrome']. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:75-79. [PMID: 29213043 DOI: 10.17116/jnevro20171179275-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents a clinical case of a 29-year-old patient with 'Double cortex syndrome' with epilepsy, intellectual and mental disorders. Subcortical band heterotopia is a rare disorder of neuronal migration. Such patients typically present with epilepsy and variable degrees of mental retardation and behavioral and intellectual disturbances. The main diagnostic method is magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- A M Teplyshova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - V V Gaskin
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - G V Kustov
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - A A Gudkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - R V Luzin
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia, Pirogov Russian National Research Medical University, Moscow, Russia, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - I S Trifonov
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A V Lebedeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
15
|
|
16
|
Kini LG, Nasrallah IM, Coto C, Ferraro LC, Davis KA. Advanced structural multimodal imaging of a patient with subcortical band heterotopia. Epilepsia Open 2016; 1:152-155. [PMID: 28413838 PMCID: PMC5387998 DOI: 10.1002/epi4.12019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug‐resistant epilepsy. We describe a patient with SBH and drug‐resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than to gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.
Collapse
Affiliation(s)
- Lohith G Kini
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33 St, Philadelphia PA 19104, U.S.A
| | - Ilya M Nasrallah
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 1 Silverstein Pavilion, Philadelphia PA 19104, U.S.A
| | - Carlos Coto
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3 West Gates Bldg., Philadelphia PA 19104, U.S.A
| | - Lindsay C Ferraro
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3 West Gates Bldg., Philadelphia PA 19104, U.S.A
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3 West Gates Bldg., Philadelphia PA 19104, U.S.A
| |
Collapse
|
17
|
Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure 2016; 41:211-6. [DOI: 10.1016/j.seizure.2016.06.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
|
18
|
Hung PC, Wang HS, Chou ML, Lin KL, Hsieh MY, Wong AMC. Clinical and neuroimaging findings in children with gray matter heterotopias: A single institution experience of 36 patients. Eur J Paediatr Neurol 2016; 20:732-7. [PMID: 27262615 DOI: 10.1016/j.ejpn.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To describe the clinical spectrum and neuroimaging features of childhood gray matter heterotopias in a single tertiary hospital in Taiwan. METHODS We retrospectively reviewed the medical records and magnetic resonance images (MRI) of 36 patients with gray matter heterotopias, 19 females and 17 males, between July 1999 and June 2014. The MRI morphologic findings of gray matter heterotopias were recorded along with the presence of associated cerebral malformations. The clinical, electrophysiological and associated systemic malformation data were also recorded. RESULTS A total of 36 patients were included in the study. Their ages ranged from 1 month to 18 years with a mean age of 3 years 6 months. According to the location of gray matter heterotopias, patients were classified into two groups: periventricular (26) and band (10). The phenotypic spectrum in our population differed from that described previously. In the periventricular group, additional cerebral malformations were found in 18/26 (69%) and systemic malformations in 14/26 (54%). In the band group, additional cerebral malformations were found in 5/10 (50%) and systemic malformations in 2/10 (20%). The majority of patients had developmental delay and intellectual deficit. Twenty-two patients suffered from epileptic seizures with 12 developing refractory epilepsy. CONCLUSIONS In periventricular heterotopias, the most common associated cerebral malformation was ventriculomegaly, followed by agenesis of corpus callosum. Congenital heart disease was the most common additional systemic malformation. However, the most common associated cerebral malformation was pachygyria in band form. The majority of patients had developmental delay, intellectual deficit, especially in band heterotopias.
Collapse
Affiliation(s)
- Po-Cheng Hung
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC.
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ming-Liang Chou
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Alex M-C Wong
- Division of Pediatric Neuroradiology, Chang Gung Children Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5, Fu-Hsing St., Kwei-Shan, Taoyuan 333, Taiwan, ROC
| |
Collapse
|
19
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
20
|
Watrin F, Manent JB, Cardoso C, Represa A. Causes and consequences of gray matter heterotopia. CNS Neurosci Ther 2014; 21:112-22. [PMID: 25180909 DOI: 10.1111/cns.12322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to review the pathophysiological bases of gray matter heterotopia and to appreciate their involvement in brain cortical development and functional consequences, namely epilepsy. The development of the cerebral cortex results from complex sequential processes including cell proliferation, cell migration, cortical organization, and formation of neuronal networks. Disruption of these steps yields different types of cortical malformations including gray matter heterotopia, characterized by the ectopic position of neurons along the ventricular walls or in the deep white matter. Cortical malformations are major causes of epilepsy, being responsible for up to 40% of drug-resistant epilepsy, and the cognitive level of affected patients varies from normal to severely impaired. This review reports data from human patients and animal models highlighting the genetic causes for these disorders affecting not only neuronal migration but also the proliferation of cortical progenitors. Therefore, gray matter heterotopias should not be considered as solely due to an abnormal neuronal migration and classifying them as such may be too restrictive. The review will also summarize literature data indicating that besides ectopic neurons, neighbor cortical areas also play a consistent role in epileptogenesis, supporting the notion that plastic changes secondary to the initial malformation are instrumental in the pathophysiology of epilepsy in affected patients.
Collapse
Affiliation(s)
- Françoise Watrin
- INSERM, INMED, Marseille, France; Aix-Marseille University, UMR 901, Marseille, France
| | | | | | | |
Collapse
|
21
|
Petit LF, Jalabert M, Buhler E, Malvache A, Peret A, Chauvin Y, Watrin F, Represa A, Manent JB. Normotopic cortex is the major contributor to epilepsy in experimental double cortex. Ann Neurol 2014; 76:428-42. [PMID: 25074818 DOI: 10.1002/ana.24237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Subcortical band heterotopia (SBH) is a cortical malformation formed when neocortical neurons prematurely stop their migration in the white matter, forming a heterotopic band below the normotopic cortex, and is generally associated with intractable epilepsy. Although it is clear that the band heterotopia and the overlying cortex both contribute to creating an abnormal circuit prone to generate epileptic discharges, it is less understood which part of this circuitry is the most critical. Here, we sought to identify the origin of epileptiform activity in a targeted genetic model of SBH in rats. METHODS Rats with SBH (Dcx-KD rats) were generated by knocking down the Dcx gene using shRNA vectors transfected into neocortical progenitors of rat embryos. Origin, spatial extent, and laminar profile of bicuculline-induced interictal-like activity on neocortical slices were analyzed by using extracellular recordings from 60-channel microelectrode arrays. Susceptibility to pentylenetetrazole-induced seizures was assessed by electrocorticography in head-restrained nonanesthetized rats. RESULTS We show that the band heterotopia does not constitute a primary origin for interictal-like epileptiform activity in vitro and is dispensable for generating induced seizures in vivo. Furthermore, we report that most interictal-like discharges originating in the overlying cortex secondarily propagate to the band heterotopia. Importantly, we found that in vivo suppression of neuronal excitability in SBH does not alter the higher propensity of Dcx-KD rats to display seizures. INTERPRETATION These results suggest a major role of the normotopic cortex over the band heterotopia in generating interictal epileptiform activity and seizures in brains with SBH.
Collapse
Affiliation(s)
- Ludovic Franck Petit
- Institut de Neurobiologie de la Méditerranée/Institut National de la Santé et de la Recherche Médicale U901, Marseille, France; Aix-Marseille University, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Structural abnormalities of the brain are increasingly recognized in patients that suffer from pharmacoresistant focal epilepsies by applying high-resolution imaging techniques. In many of these patients, epilepsy surgery results in control of seizures. Neuropathologically, a broad spectrum of malformations of cortical development (MCD) is observed in respective surgical brain samples. These samples provide a unique basis to further understand underlying pathomechanisms by molecular approaches and develop improved diagnostics and entirely new therapeutic perspectives. Here we provide a comprehensive description of neuropathological findings, available classification systems as well as molecular mechanisms of MCDs. We emphasize the recently published ILEA classification system for focal cortical dysplasias (FCDs), which are now histopathologically distinguished as types I to III. However, this revised classification system represents a major challenge for molecular neuropathologists, as the underlying pathomechanisms in virtually all FCD entities will need to be specified in detail. The fact that only recently, the mammalian target of rapamycin (mTOR)-antagonist Everolimus has been introduced as a treatment of epilepsies in the context of tuberous sclerosis-associated brain lesions is a striking example of a successful translational "bedside to bench and back" approach. Hopefully, the exciting clinico-pathological developments in the field of MCDs will in short term foster further therapeutic breakthroughs for the frequently associated medically refractory epilepsies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam
| | | | | |
Collapse
|
23
|
Chassoux F. Malformazioni dello sviluppo corticale. Neurologia 2012. [DOI: 10.1016/s1634-7072(12)62060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Donkol RH, Moghazy KM, Abolenin A. Assessment of gray matter heterotopia by magnetic resonance imaging. World J Radiol 2012; 4:90-6. [PMID: 22468189 PMCID: PMC3314933 DOI: 10.4329/wjr.v4.i3.90] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 12/23/2011] [Accepted: 01/01/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate magnetic resonance imaging (MRI) features of different types of gray matter heterotopia.
METHODS: Between June 2005 and December 2009, the medical records and MRI studies of patients with gray matter heterotopia were reviewed. The MRI morphologic findings of heterotopia were recorded along with the presence and type of associated cranial malformations. Available clinical and electrophysiological data were also recorded.
RESULTS: 20 patients were included in the study. Their ages ranged from 9 mo to 39 years with a mean age of 15 years. All patients suffered from epileptic seizures. According to the location of heterotopia, patients were classified into three groups: subependymal (12), subcortical (5) and band (3) heterotopia.
CONCLUSION: MRI was useful in diagnosing and differentiating between various types of gray matter heterotopia. The severity of clinical manifestations of heterotopia was related to the location and pattern of heterotopia. Determination of heterotopia type and its extent is useful for management planning and predicting prognosis.
Collapse
|
25
|
Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimaging Clin N Am 2012; 21:483-543, vii. [PMID: 21807310 DOI: 10.1016/j.nic.2011.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cerebral cortex develops in several stages from a pseudostratified epithelium at 5 weeks to an essentially complete cortex at 47 weeks. Cortical connectivity starts with thalamocortical connections in the 3rd trimester only and continues until well after birth. Vascularity adapts to proliferation and connectivity. Malformations of cortical development are classified into disorders of specification, proliferation/apoptosis, migration, and organization. However, all processes are intermingled, as for example a dysplastic cell may migrate incompletely and not connect appropriately. However, this classification is convenient for didactic purposes as long as the complex interactions between the different processes are kept in mind.
Collapse
|
26
|
Affiliation(s)
- Roberto Spreafico
- Department of Research and Diagnostics, IRCCS Foundation Istituto Neurologico C. Besta, Milan, Italy.
| | | |
Collapse
|
27
|
Fiber tractography assessment in double cortex syndrome. Childs Nerv Syst 2011; 27:1197-202. [PMID: 21607638 DOI: 10.1007/s00381-011-1491-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Subcortical band heterotopia (SBH) or double cortex syndrome is a malformation of cortical development that may be related to intractable epilepsy and severe mental retardation or to mild epilepsy and slight mental delay or normal cognitive functions. Several studies have been performed using neuroradiological or neurophysiological techniques, like SPECT, PET, MRS, fMRI, and MEG, in attempt to better characterize this neuronal migration disorder. Recently, also diffusion tensor imaging (DTI) and fiber tracking (FT) have been used to investigate on white matter anomalies in SBH, adding more information about such gray matter anomaly. METHODS We report on three cases of SBH, evaluated with MRI, DTI, and FT. CONCLUSIONS The data gathered from DTI and TF allow us to hypothesize a new functional role for heterotopic gray matter.
Collapse
|
28
|
Malformations of Cortical Development and Aberrant Cortical Networks: Epileptogenesis and Functional Organization. J Clin Neurophysiol 2010; 27:372-9. [DOI: 10.1097/wnp.0b013e3181fe0585] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Abstract
PURPOSE Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. MATERIALS AND METHODS Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. RESULTS Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 +/- 0.011 vs. 0.169 +/- 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 +/- 0.011 vs. 0.259 +/- 0.016, p < 0.01). CONCLUSION Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment.
Collapse
Affiliation(s)
- Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea.
| | | |
Collapse
|
30
|
Parisi P, Miano S, Mei D, Paolino MC, Castaldo R, Villa MP. Diffuse subcortical band heterotopia, periodic limb movements during sleep and a novel "de novo" mutation in the DCX gene. Brain Dev 2010; 32:511-5. [PMID: 19619967 DOI: 10.1016/j.braindev.2009.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
Mutations of the DCX gene (Xp22.3) cause X-linked lissencephaly in males and double cortex syndrome (DCS) or subcortical band heterotopia (SBH) in females. SBH is characterized by bilateral bands of grey matter interposed in the white matter between the cortex and the lateral ventricles. The main clinical manifestation in patients with SBH is epilepsy, which may be partial or generalized and is intractable in approximately 65% of the patients. An association of periodic limb movements (PLMs) and SBH has not been documented previously. We describe a 2-year-old girl affected by SBH with epilepsy and periodic limb movements (PLMs), in whom a novel "de novo" missense substitution, Met1Val (M1V), was identified in the DCX gene. Physiopathological links between PLMs and SBH are discussed.
Collapse
Affiliation(s)
- Pasquale Parisi
- Child Neurology, Paediatric Department, I Faculty of Medicine, La Sapienza University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Dubeau F, Tyvaert L. Understanding the epileptogenicity of lesions: A correlation between intracranial EEG and EEG/fMRI. Epilepsia 2010; 51 Suppl 1:54-8. [DOI: 10.1111/j.1528-1167.2009.02447.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Tyvaert L, LeVan P, Dubeau F, Gotman J. Noninvasive dynamic imaging of seizures in epileptic patients. Hum Brain Mapp 2009; 30:3993-4011. [PMID: 19507156 PMCID: PMC3767605 DOI: 10.1002/hbm.20824] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 11/09/2022] Open
Abstract
Epileptic seizures are due to abnormal synchronized neuronal discharges. Techniques measuring electrical changes are commonly used to analyze seizures. Neuronal activity can be also defined by concomitant hemodynamic and metabolic changes. Simultaneous electroencephalogram (EEG)-functional MRI (fMRI) measures noninvasively with a high-spatial resolution BOLD changes during seizures in the whole brain. Until now, only a static image representing the whole seizure was provided. We report in 10 focal epilepsy patients a new approach to dynamic imaging of seizures including the BOLD time course of seizures and the identification of brain structures involved in seizure onset and discharge propagation. The first activation was observed in agreement with the expected location of the focus based on clinical and EEG data (three intracranial recordings), thus providing validity to this approach. The BOLD signal preceded ictal EEG changes in two cases. EEG-fMRI may detect changes in smaller and deeper structures than scalp EEG, which can only record activity form superficial cortical areas. This method allowed us to demonstrate that seizure onset zone was limited to one structure, thus supporting the concept of epileptic focus, but that a complex neuronal network was involved during propagation. Deactivations were also found during seizures, usually appearing after the first activation in areas close or distant to the activated regions. Deactivations may correspond to actively inhibited regions or to functional disconnection from normally active regions. This new noninvasive approach should open the study of seizure generation and propagation mechanisms in the whole brain to groups of patients with focal epilepsies.
Collapse
Affiliation(s)
- Louise Tyvaert
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | | | | | | |
Collapse
|
33
|
Spencer-Smith M, Leventer R, Jacobs R, Luca CDE, Anderson V. Neuropsychological profile of children with subcortical band heterotopia. Dev Med Child Neurol 2009; 51:909-16. [PMID: 19416314 DOI: 10.1111/j.1469-8749.2009.03309.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Subcortical band heterotopia (SBH) or 'double cortex' is a malformation of cortical development resulting from impaired neuronal migration. So far, research has focused on the neurological, neuroimaging, and genetic correlates of SBH. More recently, clinical reports and small sample studies have documented neuropsychological dysfunction in patients with this malformation. This study aimed to characterize further the phenotype of patients with SBH by describing the neuropsychological profiles of children. METHOD Seven children (six females) aged 4 to 15 years were assessed for cognitive functioning (intellectual ability, processing speed, attention, working memory) and academic achievement (reading, spelling, arithmetic). Parents completed questionnaires examining their child's social skills and problem behaviours. Magnetic resonance images (MRI) conducted for routine clinical follow-up were coded by a paediatric neurologist. Genetic and seizure history were obtained from medical records. RESULTS There was variation in the neurological, neuroimaging, and genetic presentation of children in the sample. Impairments were observed in all areas of neuropsychological functioning examined. Intellectual ability was generally within the 'extremely low' range (full-scale IQ 44-74; performance IQ 45-72; verbal IQ 57-80). Generalized impairments in cognitive skills were typical, with severe impairments (scores greater than 2SD below the test mean) reported in processing speed, working memory, and arithmetic. Impairments in academic, social, and behavioural functioning were less generalized. No clear relationship between neuroimaging and neuropsychological impairments was found. INTERPRETATION Children with SBH demonstrate cognitive, academic, social, and behavioural problems, with the greatest difficulties in processing speed and complex cognitive skills.
Collapse
|
34
|
Duchowny M. Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management. Epilepsia 2009; 50 Suppl 9:19-27. [DOI: 10.1111/j.1528-1167.2009.02291.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage 2009; 49:366-78. [PMID: 19647798 DOI: 10.1016/j.neuroimage.2009.07.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Seizures occur rarely during EEG-fMRI acquisitions of epilepsy patients, but can potentially offer a better estimation of the epileptogenic zone than interictal activity. Independent component analysis (ICA) is a data-driven method that imposes minimal constraints on the hemodynamic response function (HRF). In particular, the investigation of HRFs with clear peaks, but varying latency, may be used to differentiate the ictal focus from propagated activity. METHODS ICA was applied on ictal EEG-fMRI data from 15 patients. Components related to seizures were identified by fitting an HRF to the component time courses at the time of the ictal EEG events. HRFs with a clear peak were used to derive maps of significant BOLD responses and their associated peak delay. The results were then compared with those obtained from a general linear model (GLM) method. Concordance with the presumed epileptogenic focus was also assessed. RESULTS The ICA maps were significantly correlated with the GLM maps for each patient (Spearman's test, p<0.05). The ictal BOLD responses identified by ICA always included the presumed epileptogenic zone, but were also more widespread, accounting for 20.3% of the brain volume on average. The method provided a classification of the components as a function of peak delay. BOLD response clusters associated with early HRF peaks were concordant with the suspected epileptogenic focus, while subsequent HRF peaks may correspond to ictal propagation. CONCLUSION ICA applied to EEG-fMRI can detect areas of significant BOLD response to ictal events without having to predefine an HRF. By estimating the HRF peak time in each identified region, the method could also potentially provide a dynamic analysis of ictal BOLD responses, distinguishing onset from propagated activity.
Collapse
Affiliation(s)
- Pierre LeVan
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
36
|
Loup F, Picard F, Yonekawa Y, Wieser HG, Fritschy JM. Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Brain 2009; 132:2449-63. [DOI: 10.1093/brain/awp178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
37
|
Neuronal migration disorders. Neurobiol Dis 2009; 38:154-66. [PMID: 19245832 DOI: 10.1016/j.nbd.2009.02.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/21/2009] [Accepted: 02/06/2009] [Indexed: 01/08/2023] Open
Abstract
Lissencephaly-pachygyria-severe band heterotopia are diffuse neuronal migration disorders (NMDs) causing severe, global neurological impairment. Abnormalities of the LIS1, DCX, ARX, TUBA1A and RELN genes have been associated with these malformations. NMDs only affecting subsets of neurons, such as mild subcortical band heterotopia and periventricular heterotopia, cause neurological and cognitive impairment that vary from severe to mild deficits. They have been associated with abnormalities of the DCX, FLN1A, and ARFGEF2 genes. Polymicrogyria results from abnormal late cortical organization and is inconstantly associated with abnormal neuronal migration. Localized polymicrogyria has been associated with anatomo-specific deficits, including disorders of language and higher cognition. Polymicrogyria is genetically heterogeneous and only in a small minority of patients a definite genetic cause has been identified. Mutations of the GPR56 and SRPX2 genes have been related to isolated polymicrogyria. Focal migration abnormalities associated with abnormal cell types, such as focal cortical dysplasia, are highly epileptogenic and variably influence the functioning of the affected cortex. The functional consequences of abnormal neuronal migration are still poorly understood. Conservation of function in the malformed cortex, its atypical representation, and relocation outside the malformed area are all possible. Localization of function based on anatomic landmarks may not be reliable.
Collapse
|
38
|
Tyvaert L, Hawco C, Kobayashi E, LeVan P, Dubeau F, Gotman J. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. ACTA ACUST UNITED AC 2008; 131:2042-60. [PMID: 18669486 DOI: 10.1093/brain/awn145] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD patients may help to understand the role of the lesion in epileptogenesis and also determine the potential surgical target.
Collapse
Affiliation(s)
- L Tyvaert
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | | | | | | | | | | |
Collapse
|
39
|
Chassoux F. Malformations du développement cortical : quelles stratégies ? Neurochirurgie 2008; 54:272-81. [DOI: 10.1016/j.neuchi.2008.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 01/10/2023]
|
40
|
Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 2008; 31:154-62. [PMID: 18262290 DOI: 10.1016/j.tins.2007.12.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/27/2007] [Accepted: 12/28/2007] [Indexed: 11/21/2022]
|
41
|
Otsubo H, Imai K. Clinical neurophysiology of cortical malformations: magnetoencephalography and electroencephalography. HANDBOOK OF CLINICAL NEUROLOGY 2008; 87:503-516. [PMID: 18809041 DOI: 10.1016/s0072-9752(07)87027-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|
42
|
Dericioglu N, Oguz KK, Ergun EL, Tezer FI, Saygi S. Ictal/interictal EEG patterns and functional neuroimaging findings in subcortical band heterotopia: report of three cases and review of the literature. Clin EEG Neurosci 2008; 39:43-9. [PMID: 18318419 DOI: 10.1177/155005940803900113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Subcortical band heterotopia (SBH) is a rare, genetic disorder of neuronal migration, which is seen almost exclusively in females. Little is known about the functionality of the band heterotopia, in terms of both physiology and pathology, in this malformation. Patients are reported to have several different types of seizures, which are usually drug resistant. Interictal EEG findings are known to correlate with the type of seizures, however less is known about the ictal EEG patterns. We present 3 female patients who were investigated at our center with video-scalp EEG monitoring, interictal single photon emission computed tomography (SPECT), functional magnetic resonance (MR) imaging (fMRI) and MR spectroscopy (MRS) besides routine MR imaging. They had several different types of seizures, and one of them reported also having circling seizures that have not been reported previously in patients with SBH. Ictal EEG recordings were remarkable for their unusual patterns of propagation. The findings in structural and functional neuroradiological investigations are discussed in light of the literature.
Collapse
Affiliation(s)
- Nese Dericioglu
- Hacettepe University School of Medicine, Department of Neurology, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
43
|
Chassoux F, Landre E, Rodrigo S, Beuvon F, Turak B, Semah F, Devaux B. Intralesional recordings and epileptogenic zone in focal polymicrogyria. Epilepsia 2007; 49:51-64. [PMID: 17868055 DOI: 10.1111/j.1528-1167.2007.01267.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Polymicrogyria (PMG) is recognized as an epileptogenic lesion but few data concerning organization of the epileptogenic zone (EZ) are available. METHODS We analyzed the distribution of the EZ according to Stereo-EEG (SEEG) with intralesional recordings in four patients evaluated for intractable partial epilepsy associated with focal unilateral PMG, involving the posterior temporal region in two, the perisylvian area in one and the temporoparietal junction in the other. All had ictal scalp EEG, high-resolution structural and functional MRI, fluorodeoxyglucose positron emission tomography (FDG-PET), and SEEG. For each patient, several depth electrodes were implanted both within the PMG and in extralesional areas. RESULTS In three patients, the PMG displayed high-frequency spiking activity. However, interictal and ictal recordings demonstrated a large epileptogenic network, which was more widespread than the PMG, including the mesial temporal structures in two. In another patient, interictal spiking and seizure onset site were located within the hippocampus and outside of the PMG, although it was rapidly involved during seizure spread. Overall, EZ was considered to be larger than the PMG in all patients although hypometabolic areas detected by PET were concordant with EZ. Three patients underwent extensive surgery including the PMG and are seizure free with a follow-up >2 years. DISCUSSION Although intralesional recordings demonstrated intrinsic epileptogenicity in PMG, our data provide evidence that unilateral focal PMG belongs to a large epileptogenic network extending beyond the MRI lesion. SEEG may be helpful for planning surgery with favorable outcome, providing large resections are feasible, even in apparently focal PMG.
Collapse
Affiliation(s)
- Francine Chassoux
- Department of Neurosurgery, Centre Hospitalier Sainte-Anne, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Lu MK, Chang FC, Yang YW, Lin YC, Lee CC, Tsai CH. Abnormal movement-related cortical potential in patients with subcortical heterotopia. Brain Dev 2006; 28:560-5. [PMID: 16682157 DOI: 10.1016/j.braindev.2006.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 03/16/2006] [Accepted: 03/20/2006] [Indexed: 11/15/2022]
Abstract
Movement-related cortical potential (MRCP) is recorded to investigate the cerebral motor preparation in two patients with subcortical heterotopia. Magnetic resonance imaging (MRI) studies were conducted in the two patients. Scalp MRCP elicited by self-paced voluntary extension of the wrist was recorded. The MRCP waveforms and the potential maps were compared to those of an age-matched normal subject. MRI reveals subcortical heterotopia in the right frontal area and bilateral centrum semiovale in one patient and in the left parietal lobe in the other. Both of the patients had history of early onset epilepsy and were hypersensitive to unexpected loud noises. Distinctly different from the normal MRCP, the waveforms of the patients are flattened in all scalp electrodes by moving either the right or the left hand. And the topographic potential map detects no evidence of preponderance of negativity on the hemisphere contralateral to the moving side in the patients. The ectopic neurons of the subcortical heterotopia may produce chaotic discharges, which can interrupt or cancel the well oriented dipole of the MRCP activities.
Collapse
Affiliation(s)
- Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Cossu M, Cardinale F, Castana L, Citterio A, Francione S, Tassi L, Benabid AL, Lo Russo G. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery 2006. [PMID: 16239883 DOI: 10.1227/01.neu.0000176656.33523.1e] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To report on indications, surgical technique, results, and morbidity of stereoelectroencephalography (SEEG) in the presurgical evaluation of patients with drug-resistant focal epilepsy. METHODS Two-hundred fifteen stereotactic implantations of multilead intracerebral electrodes were performed in 211 patients (4 patients were explored twice), who showed variable patterns of localizing incoherence among electrical (interictal/ictal scalp electroencephalography), clinical (ictal semeiology), and anatomic (magnetic resonance imaging [MRI]) investigations. MRI scanning showed a lesion in 134 patients (63%; associated with mesial temporal sclerosis in 7) and no lesion in 77 patients (37%; with mesial temporal sclerosis in 14 patients). A total of 2666 electrodes (mean, 12.4 per patient) were implanted (unilaterally in 175 procedures and bilaterally in 40). For electrode targeting, stereotactic stereoscopic cerebral angiograms were used in all patients, coupled with a coregistered three-dimensional MRI scan in 108 patients. RESULTS One hundred eighty-three patients (87%) were scheduled for resective surgery after SEEG recording, and 174 have undergone surgery thus far. Resections sites were temporal in 47 patients (27%), frontal in 55 patients (31.6%), parietal in 14 patients (8%), occipital in one patient (0.6%), rolandic in one patient (0.6%), and multilobar in 56 patients (32.2%). Outcome on seizures (Engel's classification) in 165 patients with a follow-up period of more than 12 months was: Class I, 56.4%; Class II, 15.1%; Class III, 10.9%; and Class IV, 17.6%. Outcome was significantly associated with the results of MRI scanning (P = 0.0001) and with completeness of lesion removal (P = 0.038). Morbidity related to electrode implantation occurred in 12 procedures (5.6%), with severe permanent deficits from intracerebral hemorrhage in 2 (1%) patients. CONCLUSION SEEG is a useful and relatively safe tool in the evaluation of surgical candidates when noninvasive investigations fail to localize the epileptogenic zone. SEEG-based resective surgery may provide excellent results in particularly complex drug-resistant epilepsies.
Collapse
Affiliation(s)
- Massimo Cossu
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kobayashi E, Hawco CS, Grova C, Dubeau F, Gotman J. Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology 2006; 66:1049-55. [PMID: 16606918 DOI: 10.1212/01.wnl.0000204232.37720.a4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Combined recording of EEG and fMRI has shown changes in blood oxygenation level dependent (BOLD) signal during focal interictal epileptic spikes. Due to difficult assessment of seizures inside the scanner little is known about BOLD changes during seizures. OBJECTIVES To describe BOLD changes related to brief focal electrographic seizures in a patient with right temporo-parietal gray matter nodular heterotopia. METHODS The patient underwent two EEG-fMRI sessions during which several focal seizures were recorded. EEG was acquired continuously during scanning and seizure timing was used for statistical analysis. Functional maps were thresholded to disclose positive (activation) and negative (deactivation) BOLD changes. RESULTS Twenty-five focal electrographic seizures were analyzed, consisting of runs of polyspikes lasting 2 to 6 s in the right temporal region. Activation included a large volume, involving the heterotopia and the abnormal temporo-parietal cortex overlying the nodule, with a clear maximum over the angular gyrus. Deactivation was bilateral and maximum in the occipital regions. The hemodynamic response function showed a return to baseline of the BOLD signal 30 s after seizure end. CONCLUSIONS The brief focal seizures resulted in high amplitude and widespread blood oxygenation level dependent (BOLD) responses taking 30 s to return to baseline. This suggests that such brief events could have important behavioral consequences despite absent overt manifestations. A clear focal BOLD peak was found at some distance from the main EEG discharge, raising the possibility that the seizure could have started in a region that did not generate a visible EEG change despite its superficial location.
Collapse
Affiliation(s)
- E Kobayashi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
48
|
Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F. Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders. ACTA ACUST UNITED AC 2005; 129:366-74. [PMID: 16339793 DOI: 10.1093/brain/awh710] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Grey matter heterotopia are commonly associated with refractory epilepsy. Depth electrodes recordings have shown that epileptiform activity can be generated within these lesions, and also at a distance in the neocortex. Heterotopia seem to be part of a more complex circuitry involving also the surrounding and distant cerebral cortex. Blood oxygenation level-dependent (BOLD) changes to interictal spikes using continuous EEG and functional MRI (EEG-fMRI) can help to understand non-invasively the mechanisms of epileptogenicity in these patients. We studied 14 patients with epilepsy and heterotopia using simultaneous recording of EEG-fMRI. EEG was continuously acquired from inside the scanner during 2 h sessions. Epileptic spikes were visually identified in the filtered EEG and each type of spike determined one EEG-fMRI study. We looked at positive (activation) and negative (deactivation) changes in the BOLD signal. Eleven patients had nodular heterotopia and three band heterotopia. Four patients had more than one type of spikes, with a total of 26 EEG-fMRI studies. We excluded three with less than three spikes, and therefore a total of 23 studies (12 with nodular and 11 with band heterotopia) were analysed. Nodular heterotopia: Activation was present in nine studies, with involvement of the heterotopia or surrounding cortex in six, three of which had concomitant distant activation. Deactivation was also observed in nine studies, with involvement of the heterotopia and surrounding cortex in four, three of which had concomitant distant deactivation. Band heterotopia: Activation was present in all 11 studies, and always involved the heterotopia and surrounding cortex, 9 of which had concomitant distant activation. Deactivation was also observed in all 11 studies, with involvement of both the heterotopia and surrounding cortex, in addition to distant deactivation in 5 studies. EEG-fMRI studies reveal, non-invasively, metabolic responses in the heterotopia despite the fact that spikes are generated in the neocortex. The responses, activation or deactivation, had different correlation with the lesion and surrounding or distant cortex, activation reflecting intense neuronal activity, or excitation, and deactivation a possible distant (extra-lesional) inhibition. EEG-fMRI may become a useful tool to understand the epileptogenicity of such malformations.
Collapse
Affiliation(s)
- Eliane Kobayashi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
49
|
Cossu M, Cardinale F, Castana L, Citterio A, Francione S, Tassi L, Benabid AL, Lo Russo G. Stereoelectroencephalography in the Presurgical Evaluation of Focal Epilepsy: A Retrospective Analysis of 215 Procedures. Neurosurgery 2005. [DOI: 10.1093/neurosurgery/57.4.706] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci 2005; 20:2617-28. [PMID: 15548205 DOI: 10.1111/j.1460-9568.2004.03729.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Together with its adaptor protein, the adaptor protein of 12 kDa also known as KARAP and TYROBP (DAP12), triggering receptor expressed in myeloid cells 2 (TREM2) is a stimulatory membrane receptor of the immunoglobulin/lectin-like superfamily, well known in myeloid cells. In humans, however, loss-of-function mutations of TREM2/DAP12 leave myeloid cells unaffected but induce an autosomal recessive disease characterized, together with bone cysts, by a spectrum of pathological lesions in the cortex, thalamus and basal ganglia with clinical symptoms of progressive dementia (polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy). Nothing was known about the role of TREM2/DAP12 in brain cell biology and physiology. By confocal immunocytochemistry we demonstrate that, in both human and mouse cerebral cortex, TREM2/DAP12, strongly expressed by microglia, is also present in a fraction of neurons but not in astrocytes and oligodendrocytes. In contrast, in the hippocampal cortex TREM2-expressing neurons are rare. Both in neurons and microglia the receptor appears to be located mostly intracellularly in a discrete compartment(s) partially coinciding with (or adjacent to) the Golgi complex/trans-Golgi network. Four nerve cell lines were identified as expressing the intracellular receptor system. In living human microglia CHME-5 and glioblastoma T98G cells, activation of TREM2 by its specific antibody induced [Ca2+]i responses, documenting its surface expression and functioning. Surface expression of TREM2, low in resting CHME-5 and T98G cells, increases significantly and transiently (60 min) when cells are stimulated by ionomycin, as revealed by both surface biotinylation and surface immunolabeling. Our results provide the first information about the expression, distribution (mostly intracellular) and functioning of TREM2/DAP12 system in nerve cells, a necessary step in the understanding of the cellular mechanisms affected in polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies/pharmacology
- Brain/anatomy & histology
- Brain/metabolism
- Calcium/metabolism
- Cell Line, Tumor
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Dementia/complications
- Dementia/genetics
- Drug Interactions
- Epilepsy/metabolism
- Flow Cytometry/methods
- Glial Fibrillary Acidic Protein/metabolism
- Glioblastoma
- Golgi Apparatus/metabolism
- Golgi Apparatus/ultrastructure
- Golgi Matrix Proteins
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- Ionomycin/pharmacology
- Ionophores/pharmacology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/ultrastructure
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Microglia/metabolism
- Microscopy, Confocal/methods
- Microscopy, Immunoelectron/methods
- Myeloid Cells/metabolism
- Neuroblastoma
- Neurons/cytology
- Neurons/metabolism
- Phosphopyruvate Hydratase/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Subacute Sclerosing Panencephalitis/complications
- Subacute Sclerosing Panencephalitis/genetics
- Time Factors
- Triggering Receptor Expressed on Myeloid Cells-1
Collapse
Affiliation(s)
- Giuseppina Sessa
- Department of Neuroscience, DIBIT, Vita-Salute San Raffaele University and San Raffaele Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|