1
|
Liu J, Ding H, Xu K, Liu R, Wang D, Ouyang J, Liu Z, Miao Z. Pallidal versus subthalamic deep-brain stimulation for meige syndrome: a retrospective study. Sci Rep 2021; 11:8742. [PMID: 33888857 PMCID: PMC8062505 DOI: 10.1038/s41598-021-88384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Deep-brain stimulation (DBS) is an effective treatment for patients with Meige syndrome. The globus pallidus interna (GPi) and the subthalamic nucleus (STN) are accepted targets for this treatment. We compared 12-month outcomes for patients who had undergone bilateral stimulation of the GPi or STN. Forty-two Asian patients with primary Meige syndrome who underwent GPi or STN neurostimulation were recruited between September 2017 and September 2019 at the Department of Neurosurgery, Peking University People's Hospital. The primary outcome was the change in motor function, including the Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) and disability subscale (BFMDRS-D) at 3 days before DBS (baseline) surgery and 1, 3, 6, and 12 months after surgery. Secondary outcomes included health-related quality of life, sleep quality status, depression severity, and anxiety severity at 3 days before and 12 months after DBS surgery. Adverse events during the 12 months were also recorded. Changes in BFMDRS-M and BFMDRS-D scores at 1, 3, 6, and 12 months with DBS and without medication did not significantly differ based on the stimulation target. There were also no significant differences in the changes in health-related quality of life (36-Item Short-Form General Health Survey) and sleep quality status (Pittsburgh Sleep Quality Index) at 12 months. However, there were larger improvements in the STN than the GPi group in mean score changes on the 17-item Hamilton depression rating scale (- 3.38 vs. - 0.33 points; P = 0.014) and 14-item Hamilton anxiety rating scale (- 3.43 vs. - 0.19 points; P < 0.001). There were no significant between-group differences in the frequency or type of serious adverse events. Patients with Meige syndrome had similar improvements in motor function, quality of life and sleep after either pallidal or subthalamic stimulation. Depression and anxiety factors may reasonably be included during the selection of DBS targets for Meige syndrome.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ke Xu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China.
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Zhi Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Zeyu Miao
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| |
Collapse
|
2
|
Baumann-Vogel H, Imbach LL, Sürücü O, Stieglitz L, Waldvogel D, Baumann CR, Werth E. The Impact of Subthalamic Deep Brain Stimulation on Sleep–Wake Behavior: A Prospective Electrophysiological Study in 50 Parkinson Patients. Sleep 2017; 40:3079010. [DOI: 10.1093/sleep/zsx033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 11/12/2022] Open
|
3
|
Nakano N, Taneda M, Watanabe A, Kato A. Computed three-dimensional atlas of subthalamic nucleus and its adjacent structures for deep brain stimulation in Parkinson's disease. ISRN NEUROLOGY 2012; 2012:592678. [PMID: 22389840 PMCID: PMC3265216 DOI: 10.5402/2012/592678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/25/2011] [Indexed: 11/23/2022]
Abstract
Background. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is one of the standard surgical treatments for advanced Parkinson's disease. However, it has been difficult to accurately localize the stimulated contact area of the electrode in the subthalamic nucleus and its adjacent structures using a two-dimensional atlas. The goal of this study is to verify the real and detailed localization of stimulated contact of the DBS electrode therapeutically inserted into the STN and its adjacent structures using a novel computed three-dimensional atlas built by a personal computer. Method. A three-dimensional atlas of the STN and its adjacent structures (3D-Subthalamus atlas) was elaborated on the basis of sagittal slices from the Schaltenbrand and Wahren stereotactic atlas on a personal computer utilizing a commercial software. The electrode inserted into the STN and its adjacent structures was superimposed on our 3D-Subthalamus atlas based on intraoperative third ventriculography in 11 cases. Findings. Accurate localization of the DBS electrode was identified using the 3D-Subthalamus atlas, and its clinical efficacy of the electrode stimulation was investigated in all 11 cases. Conclusion. This study demonstrates that the 3D-Subthalamus atlas is a useful tool for understanding the morphology of deep brain structures and for the precise anatomical position findings of the stimulated contact of a DBS electrode. The clinical analysis using the 3D atlas supports the contention that the stimulation of structures adjacent to the STN, particularly the zona incerta or the field of Forel H, is as effective as the stimulation of the STN itself for the treatment of advanced Parkinson's disease.
Collapse
Affiliation(s)
- Naoki Nakano
- Department of Neurosurgery, Faculty of Medicine, Kinki University, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | | | | | | |
Collapse
|